




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章习题参考解答3.1 求下列信号展开成傅里叶级数,并画出响应相应的幅频特性曲线。 (b) (c) (1) -2 - 0 2 (d)题图3.1 (a)解 (a)解 (b) 解 (c) X 1/T -2 - 0 2 (b)解 (d) (a) (b) (c) (d) - (e) (f) 1 ( 题图3.23.2 求题图3.2所示信号的傅里叶变换。解 (a)解 (b)设,由傅氏变换的微积分性质知:解 (c) 利用傅氏变换性质知:解 (d) 或 解 (e) 解 (f) 3.3 若已知,试求下列信号的傅里叶变换。(1) 解(2) 解(3) 解(4) 解(5) 解(6) 解 令则有:, ,3.4 在题图3.2(b)中取,将进行周期为的周期延拓,得到周期信号,如题图3.4(a)所示;取的个周期构成截取函数,如题图3.4(b)所示。(1) 求周期信号傅里叶级数系数;(2) 求周期信号的傅里叶变换;(3) 求截取信号的傅里叶变换。 - (a) - - (b) 题图3.4解 (1)设单个三角波脉冲为,其傅里叶变换根据傅里叶级数和傅里叶变换之间的关系知:(2) 由周期信号的傅里叶变换知: (3)因为 3.5 绘出下列信号波形草图,并利用傅里叶变换的对偶性,求其傅里叶变换。(1) (2) 提示:参见脉冲信号和三角波信号的傅里叶变换解(1) , 根据对偶知: A - 解(2) - 3.6 已知的波形如题图3.6(a)所示,(1) 画出其导数及的波形图;(2) 利用时域微分性质,求的傅里叶变换; (3) 求题图3.6(b)所示梯形脉冲调制信号的频谱函数。 1 -2 - 0 2 (a) 题图3.6 1 -2 2 (b) 解(1)及的波形如下: - -2 0 2 2 -2 - 0 (2)(3) 3.7 求下列频谱函数的傅里叶逆变换。(1)解(2) 解(3) 解(4) 解(5) 解 (3.7.5.1)又 (3.7.5.2)由(3.7.5.1)、(3.7.5.2)式可知:(6) 解*3.8 设输入信号为,系统的频率特性为,求系统的零状态响应。解 1 - 0 题图3.93.9 理想低通滤波器的幅频特性为矩形函数,相频特性为线性函数,如题图3.9所示。现假设输入信号为的矩形脉冲,试求系统输出信号。 解利用傅里叶变换的对称性,可以求得该系统的冲激响应为:,令得:其中: 3.10 在题图3.10(a)所示系统中,采样信号如图(b) 所示,是一个正负交替出现的冲激串,输入信号的频谱如图(c)所示。(1) 对于,画出和的频谱;(2) 对于,确定能够从中恢复的系统。 (a) (1) - -2 2 (b) 1 - 0 (c) 1 - - (d)题图3.10 解(1)由此可以绘出及的频谱图如下: 2 1/Ts -3 - 0 2 1/Ts -3 - 0 2 Ts - (2) 从的频谱可以看出,由恢复的系统如图所示: (a) 1 -2 0 2 (b) 1 -5 -3 3 5 (c) 1 -3 3 (d)题图3.113.11 在题图3.11(a)所示系统中,已知输入信号的傅里叶变换如题图(b)所示,系统的频率特性和分别如图(c)和图(d)所示,试求输出的傅里叶变换。解:参见题图的标注。 1/2 -5 -3 3 5 1/2 -7 -5 -3 3 5 7 1/4 -8 -6 -2 2 6 8 1/4 -2 2 *3.12 在题图3.12(a)所示的滤波器中,。如果滤波器的频率特性函数满足: (,为常数)则称该滤波器为信号的匹配滤波器。(1) 若为图(b)所示的单个矩形脉冲,求其匹配滤波器的频率特性函数;(2) 证明图(c)所示系统是单个矩形脉冲的匹配滤波器;(3) 求单个单个矩形脉冲匹配滤波器的冲激响应,并画出的波形;(4) 求单个单个矩形脉冲匹配滤波器的输出响应,并画出的波形。 (a) 滤波器 1 (b) + - (c) 理想积分器延时 题图3.12解 (1)解 (2) 参见图(c)标注.又,即与()中有相同的函数形式。解 (3),解 (4)(取) 为一三角波*3.13 求题3.1中和的功率谱密度函数。解 (1)参见3-1题。首先推出周期信号功率谱密度函数的表达式:周期信号的傅里叶变换为: 其中是傅里叶级数展开式系数。考虑截取信号:根据频域卷积定理,截取信号的傅里叶变换为: 当时,趋向于集中在处,其他地方为零值,所以功率谱密度函数为: 由于,所以: 由此可求题给信号的功率谱密度函数: 解 (2)*3.14 求题3.2中和的能量谱密度函数。解设的能量谱密度函数为,。设的能量谱密度函数为,。*3.15 信号的最高频率为500Hz,当信号的最低频率分别为0,300Hz,400Hz时,试确定能够实现无混叠采样的最低采样频率,并解释如何从采样后信号中恢复。解(1) ,所以 (2) ,取当代入式中可知,只有当不等式才能成立:,所以采样频率只能取Hz。(3) , 当代入式中可知,当不等式成立:,所以最低采样频率。*3.16 正弦信号的振幅电平为V,现采用12位的量化器进行舍入式量化,求量化误差的方均根值和量化信噪比。解 ,;,;,; 0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 播音文体考试题及答案
- 招聘平台测试题及答案
- 应聘java项目经理面试题及答案
- java岗位100题面试题及答案
- 2024-2025学年下学期期末备考初二物理专题01 力(菁讲)
- 【课件】人教版地理复习专训-专项+中国工业的分布+蓬勃发展的高新技术产业+课件
- 广西金融职业技术学院《天然药物绿色制备技术》2023-2024学年第二学期期末试卷
- 浙江工商大学《综合商务英语(三)》2023-2024学年第二学期期末试卷
- 唐山师范学院《学前儿童健康教育与活动指导》2023-2024学年第二学期期末试卷
- 浙江大学《生物学综合(二)》2023-2024学年第二学期期末试卷
- 香港证券及期货从业资格考试温习手册版HK
- 2025年中考物理知识点归纳(挖空版)
- 2024年安徽省初中学业水平考试生物试题含答案
- 2024年演出经纪人考试必背1000题及完整答案(各地真题)
- 雨水管道非开挖修复工程施工方案
- 拉线的作用和制作方法
- 氩弧焊作业指导书(共22页)
- 通道县生物多样性调查
- 汉语拼音音节表带声调
- 假发行业英语术语整理
- 中国银行营业网点基础服务礼仪规范
评论
0/150
提交评论