高中数学必修4复综合习.doc_第1页
高中数学必修4复综合习.doc_第2页
高中数学必修4复综合习.doc_第3页
高中数学必修4复综合习.doc_第4页
高中数学必修4复综合习.doc_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中数学必修4教案第一章三角函数复习(一)教学目的【过程与方法】一、知识结构:二、知识要点:1. 角的概念的推广:(1) 正角、负角、零角的概念:(2) 终边相同的角:所有与角a终边相同的角,连同角a在内,可构成一个集合: 象限角的集合:第一象限角集合为: ;第二象限角集合为: ;第三象限角集合为: ;第四象限角集合为: ; 轴线角的集合:终边在x轴非负半轴角的集合为: ;终边在x轴非正半轴角的集合为: ;故终边在x轴上角的集合为: ;终边在y轴非负半轴角的集合为: ;终边在y轴非正半轴角的集合为: ;故终边在y轴上角的集合为: ;终边在坐标轴上的角的集合为: .2. 弧度制:我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制. 在弧度制下,1弧度记做1rad. (1) 角度与弧度之间的转换: 将角度化为弧度: 将弧度化为角度: (2) 把上述象限角和轴线角用弧度表示.(3) 上述象限角和轴线角用弧度表示:3. 任意角的三角函数: (2) 判断各三角函数在各象限的符号:(3) 三角函数线:4. 同角三角函数基本关系式: (1) 平方关系: (2) 商数关系:5. 诱导公式诱导公式(一)诱导公式(二)诱导公式(三)诱导公式(四)sin(pa)=sina cos(p a)=cosa tan (pa)=tana诱导公式(五)对于五组诱导公式的理解 :函数名不变,符号看象限3. 利用诱导公式将任意角三角函数转化为锐角三角函数的基本步骤:三、基础训练:四、典型例题: 例3. 五、课堂小结1. 任意角的三角函数;2. 同角三角函数的关系;3. 诱导公式.六、课后作业1. 阅读教材P.67-P.68;2. 习案作业十六中1至6题. 第二章 平面向量复习课(一)一、教学目标1. 理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向量.两向量的夹角等概念。2. 了解平面向量基本定理.3. 向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。4. 了解向量形式的三角形不等式:|-|+|(试问:取等号的条件是什么?)和向量形式的平行四边形定理:2(|+|)=|+|+|.5. 了解实数与向量的乘法(即数乘的意义):6. 向量的坐标概念和坐标表示法7. 向量的坐标运算(加.减.实数和向量的乘法.数量积)8. 数量积(点乘或内积)的概念,=|cos=xx+yy注意区别“实数与向量的乘法;向量与向量的乘法”二、知识与方法向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视. 数量积的主要应用:求模长;求夹角;判垂直三、教学过程(一)重点知识: 1. 实数与向量的积的运算律:2. 平面向量数量积的运算律: 3. 向量运算及平行与垂直的判定:则 4. 两点间的距离: 5. 夹角公式:6. 求模: (二)习题讲解:习案P167 面2题,P168面6题,P169面1题,P170面5、6题, P171面1、2、3题,P172面5题,P173面6题。(三)典型例题例1 已知O为ABC内部一点,AOB=150,BOC=90,设=,=,=,且|=2,|=1,| |=3,用与表示 解:如图建立平面直角坐标系xoy,其中, 是单位正交基底向量, 则B(0,1),C(-3,0),设A(x,y),则条件知x=2cos(150-90),y=-2sin(150-90),即A(1,-),也就是= , =, =-3所以-3=3+|即=33(四)基础练习:习案P178面6题、P180面3题。 (五)、小结:掌握向量的相关知识。(六)作业:习案作业二十七。第二章 平面向量复习课(二)一、教学过程(一)习题讲解:习案P173面6题。(二)典型例题例1已知圆C:及点A(1,1),M是圆上任意一点,点N在线段MA的延长线上,且,求点N的轨迹方程。练习:1. 已知O为坐标原点,=(2,1),=(1,7),=(5,1),=x,y= (x,yR) 求点P(x,y)的轨迹方程;2. 已知常数a0,向量,经过定点A(0,a)以为方向向量的直线与经过定点B(0,a)以为方向向量的直线相交于点P,其中.求点P的轨迹C的方程;例2.设平面内的向量, , ,点P是直线OM上的一个动点,求当取最小值时,的坐标及APB的余弦值解 设 点P在直线OM上, 与共线,而, x2y=0即x=2y,有 , = 5y220y+12= 5(y2)28 从而,当且仅当y=2,x=4时,取得最小值8,此时,于是, 小结:利用平面向量求点的轨迹及最值。作业:习案作业二十八。第三章 三角恒等变换复习(一)教学目标:1. 通过对本章的知识的复习、总结,使学生对本章形成一个知识框架网络.2. 能灵活运用公式进行求值、证明恒等式.教学重点:运用公式求值、证明恒等式.教学难点:证明恒等式教学过程一、基础知识复习(略)二、作业讲评习案作业三十五中的第5、6题.三、已知三角函数值求三角函数值四、证明恒等式五、课堂小结1. 给值求角时,先要求所求角的某一三角函数值,需结合角的范围确定角的符号;2. 证明三角恒等式时,要灵活地运用公式.六、课后作业教材P.146第8题第(3)、(4)问; P.146第1、2、3题; P.146第4题第(1)、(2)、(3)问; P.147第3题;第三章 三角恒等变换复习(二)教学目标:1. 综合运用知识解决相关问题.2. 培养学生分析问题,运用知识解决问题的能力.教学重点:运用知识解决实际问题教学难点:建立函数关系解决实际问题.教学过程一、作业讲评习案作业P.196的第5、6题.二、例题分析4. 已知直线l1l2,A是l1,l2之间的一定点,并且A点到l1,l2的距离分别为h1,h2 . B是直线l2上一动点,作ACAB,且使AC与直线l1交于点C,求ABC面积的最小值.5. 如图,正方形ABCD的边长为1,P,Q分别为边AB,DA上的点.当ABC的周长为2时,求PCQ的大小.三、课堂小结本节主要讲运用公式解决有关问题:最值问题、存在性问题.四、课后作业习案作业三十六.第三章 三角恒等变换复习(三)教学目标:1. 综合运用知识解决相关问题.2. 培养学生分析问题,运用知识解决问题的能力.教学重点:运用知识解决实际问题教学难点:建立函数关系解决实际问题.教学过程一、作业讲评习案P.192的第3题习案P.194的第6题习案P.196的第5题二、例题分析1. 已知直线l1l2,A是l1,l2之间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论