




已阅读5页,还剩85页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
乘法中的巧算 (一)学习指导 首先认识乘法交换律: 乘法结合律: 如: 或 利用这些定律,可以使式题简便,同时可以推广到多个数相乘,我们可以选择两个因数相乘,得出较简单的(整十、整百、整千)积,再将这个积与其它因数相乘,有时也可以把某个因数再分解成两个因数,使其中一个因数与其它的乘数的积成为较简单的数,然后再与其它的因数相乘,这样就可以进行巧算。 例1. 用简便方法计算。 (1)(3) (2)(4) 分析:(1)可以将4和25结合起来先乘。这样: 原式 (2)可以将125和8相结合起来乘,这样: 原式 (3)可以把28变成47,再将125和4结合起来先乘: 原式 (4)我们先把32变为48,再把25和4,125和8结合起来乘: 原式 利用乘法分配律,可以使一些题简便: ,这个定律可以推广,一般的有,如,当两个数相乘时,有时可以把一个因数变为两个数的和与另一个因数相乘,也可以把一个因数变为两个数的差与另一个因数相乘,这样计算简便。 例2. 用简便方法计算下面各题。 (1)(3) (2)(4) 分析:(1)、(2)题可以直接用乘法分配律去计算。 (1)(2) (3)题可以先把4004变为(),然后再用分配律计算。 (4)小题可以先把798变为(),再运用分配律计算。 例3. 巧算一个数乘以10,100,1000 分析:一个数乘以10,就是在这个数后添0,如: 当一个数乘以100时,就是在这个数后添00,如: 当一个数乘以1000时,就是在这个数后添000,如 例4. 巧算一个数与99相乘。 分析:先填空,再观察一个数与99相乘的规律。 观察发现:“一个数与99相乘,先在这个数后添00,再减去此数”即可。如果是一个数与999相乘,是否也具有这样的规律呢?请你先填空,再总结规律。 由此得到:几与999相乘,就用几千减去几? 例5. 巧算两位数与11相乘。 分析: 观察上面一组数,发现两位数与11相乘,只要把这个两位数打开,个位数字做积的个位,十位数字做积的百位,个位数字与十位数字相加做积的十位,如果满十,就向百位进1。 如: 方法是:两边一拉,中间相加,满十进1。 例5. 巧算三位数与11相乘。 分析:三位数与11相乘的速算方法同样可以概括为“两边拉,中间加”。注意中间是相邻位相加。 练一练: 例6. 巧算两位数与101相乘。 竖式: 观察发现“4343、8989”,两位数与101相乘,积是把这个两位数连续写两遍。 练一练: 例7. 巧算三位数与1001相乘。 竖式: 发现:三位数与1001相乘,积是把这个三位数连续写两遍。 练一练: 例8. 根据,简算下面各题。 (1)376(5)3730 (2)379(6)3724 (3)3712(7)3733 (4)3715(8)3727 分析:我们根据,计算下面各题。想376中的因数6可以分解为23。所以(1)3763732 1112 222 以此类推: (2)3793733 1113 333 (3)37123734 1114 444 (4)37153735 1115 555除法中的巧算(一)学习方法指导 我们利用“商不变的性质”进行除法中的巧算,因为“商不变性质”,是被除数、除数同时乘以或同时除以一个数(零除外),它们的商不变。 一般有这样的公式: 或 如: 或 例1. 用简便方法计算下列各题。 (1)(2) 分析:(1)(2)可以利用“商不变的性质”去计算。 (1) 想办法使其中一个数扩大、或缩小后成为整十、整百、整千,如25扩大4倍得100。 (2) 看到被除数,与除数末尾都有00,这样让它们同时缩小100倍。 在除法运算中,还有两个数的和,(或差)除以一个数,可以用这个数分别去除这两个数(在都能整除的情况下),再求两个商的和或差。 一般公式: 如: 这个性质可以推广到多个数的和除以一个数的情况。 例2. 用简便方法计算。 (1) (2) 分析:这两题都可以运用以上性质去解答,就是“两个数的和(差)除以一个数”的除法运算性质。 (1)(2) 除了以上性质外,使计算题简便,同时还有利用乘、除同级运算带着符号“搬家”的性质: (1)两个数的商除以一个数,等于商中的被除数先除以这个数,再除以原来商中的除数。 一般有: 如: (2)两个数的积除以一个数,等于用除数先去除积的任意一个因数,再与另一个因数相乘。 一般有: 或 如: 或: 例3. 计算下面各题。 (1) (2) 分析:这两题可以运用乘除混合运算带着符号“搬家”的性质。 (1)(2) 在运算中经常出现乘除混合运算及括号等,怎么办,仍有一些性质: 1. 一个数除以两个数的积,等于这个数依次除以积的两个因数。 一般公式: 如: 例5. 简便计算下面各题。 (1) (2) 分析:利用以上公式计算,发现(1)被除数两个数的积,可以用下面公式计算: (1)(2) 2. 一个数乘以两个数的商,等于这个数乘以商中的被除数,再除以商中的除数。 一般的有: 如: 例6. 简便计算。 (1) (2) 分析:以上两题可以利用乘除混合运算“去括号”,或“添括号”的性质进行巧算。 (1)(2) 3. 一个数除以两个数的商,等于这个数除以商中的被除数,再乘以商中的除数。 一般有: 如: 例7. 简便计算下面各题。 (1) (2) 分析:这两题即根据小性质去做,可“添括号”。 (1)(2) 以上6题都是利用乘除混合运算去括号,或添括号的性质解决的。但要注意:我们在使用以上全部除法的运算性质时,必须具备的条件是商不能有余数。如果商有余数,在使用这些运算性质时,余数是会发生变化的。如: 例8. 巧算下面各题。 (1)(3) (2)(4) 分析:以上4题,有些算式表面看起来不能进行简便运算时,可把已知数适当分解或转化,从而使计算简便。另外,在计算时无论题目是否要求简算,都应尽量地使用简便方法,有时可反复使用有关的定律和性质。 (1) 这题我们将39分解为,然后按性质去做。 (2) 此题将125转化为 (3) 这一步将99转化为 此题直接利用乘法分配律计算就可以。 (4) 再次转化为 对接近100的两位数相乘的速算。 接近100的两位数,用被乘数减去,100减乘数的差,所得的结果作积的前两位;再用100减去被乘数的差与100减乘数的差相乘,所得的结果作积的后两位。或用乘数减去,100减被乘数的差,所得的结果作积的前两位,再用100减去被乘数的差与100减去乘数的差相乘,所得的结果作积的后两位。我们用这种方法计算。 例9. 计算: 分析:因为差对98而言 差对91而言 所以 或 所以 用这种方法,有两种特例需要注意: 特例1. 用100分别减去两个因数所得的差相乘之积不足10时,要在这个一位数前添0,否则积变成三位数就错了。 如:速算为: (注意8前添0) 发现:差、差,用第一个因数差,再用差差,最后结果是第一个因数差的结果做为前两位数,差差的结果做为后两位数。如果结果为一位数,前面要添0。 特例2. 用100分别减去两个因数所得的差相乘之积大于10时,要将百位作为向前进位的数,否则积变成五位数就错了。 如:速算为: (注意百位上的1要向前进位)【试题答案】 (1) (2) (3) (4) (5) (6) 和倍问题(一)学习指导 例1. 秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁? 分析: 我们把秦奋的年龄作为1倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5倍是40岁,也就是(41)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少? 解: (1)秦奋和妈妈年龄倍数和是:415(倍) (2)秦奋的年龄:4058岁 (3)妈妈的年龄:8432岁 综合:40(41)8岁 8432岁 为了保证此题的正确,验证 (1)83240岁(2)3284(倍) 计算结果符合条件,所以解题正确。 例2. 甲乙两架飞机同时从机场向相反方向飞行,3小时共飞行3600千米,甲的速度是乙的2倍,求它们的速度各是多少? 分析:看图: 已知两架飞机3小时共飞行3600千米,就可以求出两架飞机每小时飞行的航程,也就是两架飞机的速度和。看图可知,这个速度和相当于乙飞机速度的3倍,这样就可以求出乙飞机的速度,再根据乙飞机的速度求出甲飞机的速度。 (1)甲乙两架飞机每小时的航程(速度和)是 (千米) (2)乙飞机的速度是: (千米) (3)甲飞机的速度是: (千米) 答:甲乙飞机的速度分别每小时行800千米、400千米。 例3. 弟弟有课外书20本,哥哥有课外书25本,哥哥给弟弟多少本后,弟弟的课外书是哥哥的2倍? 分析: 思考:(1)哥哥在给弟弟课外书前后,题目中不变的数量是什么? (2)要想求哥哥给弟弟多少本课外书,需要知道什么条件? (3)如果把哥哥剩下的课外书看作1倍,那么这时(哥哥给弟弟课外书后)弟弟的课外书可看作是哥哥剩下的课外书的几倍? 思考以上几个问题的基础上,再求哥哥应该给弟弟多少本课外书。根据条件需要先求出哥哥剩下多少本课外书。如果我们把哥哥剩下的课外书看作1倍,那么这时弟弟的课外书可看作是哥哥剩下的课外书的2倍,也就是兄弟俩共有的倍数相当于哥哥剩下的课外书的3倍,而兄弟俩人课外书的总数始终是不变的数量。 (1)兄弟俩共有课外书的数量是202545。 (2)哥哥给弟弟若干本课外书后,兄弟俩共有的倍数是213。 (3)哥哥剩下的课外书的本数是45315。 (4)哥哥给弟弟课外书的本数是251510。 试着列出综合算式: 答:哥哥给弟弟10本课外书。 例4. 甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,这时甲库存粮是乙库存粮的2倍,两个粮库原来各存粮多少吨? 分析: 根据甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,可求出这时甲、乙两库共存粮多少吨。根据“这时甲库存粮是乙库存粮的2倍”,如果这时把乙库存粮作为1倍,那么甲、乙库所存粮就相当于乙存粮的3倍。于是求出这时乙库存粮多少吨,进而可求出乙库原来存粮多少吨。最后就可求出甲库原来存粮多少吨。 (1)甲库运出30吨,这时甲乙两库共存粮吨数是 吨 (2)给乙库运进10吨,这时甲、乙两个库共存粮吨数是 (吨) (3)这时甲乙两个粮库共存粮相当于乙库存粮的倍数是 倍 (4)这时乙粮库存粮吨数是 吨 (5)乙粮库原存粮吨数是 吨 (6)甲粮库原存粮吨数是 吨 列综合算式: 答:甲库原存粮130吨,乙库原存粮40吨。 验算: (1)吨 (2)倍 想一想,如果不用上面的方法求甲粮库原来存粮多少吨,还可以怎样求? 你能根据下面的算式讲一讲理由吗? 例5. 少先队员种柳树和杨树共125棵,杨树的棵数比柳树的棵数的3倍多5棵,两种树各种多少棵? 分析: 如果杨树少5棵,杨树和柳树的总棵数是棵,这时杨树的棵数恰好是柳树的3倍,所以柳树的棵数是:棵,杨树棵数是棵。 解: 棵 棵 答:种柳树30棵,杨树95棵。 例6. 花园里的菊花、月季花、杜鹃花共1200棵,其中月季花是菊花的2倍,杜鹃花是菊花的3倍,求三种花各多少棵? 分析: 看图: 我们把菊花看作1份,总棵数是菊花的份,所以菊花的棵数是棵,月季花的棵数是棵,杜鹃花的棵数是棵。 解: (棵) (棵) (棵) 和倍问题的课题要点: 和(倍数1)小数(即1倍数) 小数倍数大数奇数与偶数(二)阅读思考:其实,在日常生活中同学们就已经接触了很多的奇数、偶数。凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数。因为偶数是2的倍数,所以通常用这个式子来表示偶数(这里是整数)。因为任何奇数除以2其余数都是1,所以通常用式子来表示奇数(这里是整数)。奇数和偶数有许多性质,常用的有:性质1 两个偶数的和或者差仍然是偶数。例如:8+4=12,8-4=4等。两个奇数的和或差也是偶数。例如:9+3=12,9-3=6等。奇数与偶数的和或差是奇数。例如:9+4=13,9-4=5等。单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数。性质2 奇数与奇数的积是奇数。例如:等偶数与整数的积是偶数。例如:等。性质3 任何一个奇数一定不等于任何一个偶数。 例1. 有5张扑克牌,画面向上。小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?分析与解答:同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下。要想使5张牌的画面都向下,那么每张牌都要翻动奇数次。5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下。而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数。所以无论他翻动多少次,都不能使5张牌画面都向下。 例2. 甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒。那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?分析与解答:不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒。所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子。如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个。否则甲盒子中的黑子数不变。也就是说,李平每次从甲盒子拿出的黑子数都是偶数。由于181是奇数,奇数减偶数等于奇数。所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子。 例3. 如图(1-1)是一张的正方形纸片。将它的左上角一格和右下角一格去掉,剩下的部分能否剪成若干个的长方形纸片?图(1-1)图(1-2)分析与解答:如图1-2,我们在方格内顺序地填上奇、偶两字。这时就会发现,要从上面剪下一个的长方形纸片,不论怎样剪,都会包含一个奇,一个偶。我们再数一下奇字和偶字的个数,奇字有30个,偶字有32个。所以这张纸不能剪成若干个的长方形纸片。 2. 一串数排成一行,它们的规律是:前两个数都是1,从第三个数开始,每个数都是前两个数的和,也就是:1,1,2,3,5,那么这串数的第100个是奇数还是偶数?分析与解答:这道题的规律是两奇一偶,第100个为奇数。列方程组解应用题(一) 列一元一次方程解应用题,同学们已经在课本上学习了。今天我们主要和同学们共同研究如何列方程组解应用题。较好地掌握这一解题思路是提高解答较难应用题的重要方法,这个内容共安排两讲,这一讲研究学习如何解方程组。(一)思路指导: 例1. 用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套? 分析与解答:依据题意可知这个题有两个未知量,一个是制盒身的铁皮张数,一个是制盒底的铁皮张数,这样就可以用两个未知数表示,要求出这两个未知数,就要从题目中找出两个等量关系,列出两个方程,组在一起,就是方程组。 两个等量关系是:A做盒身张数+做盒底的张数=铁皮总张数 B制出的盒身数2=制出的盒底数 解:设用张铁皮制盒身,y张铁皮制盒底。 像上面这组方程,我们叫它二元一次方程组。你知道什么是方程组了吗?又怎样求出这两个未知数呢? 这里我们主要介绍两种方法: 第一种方法:代入法 由(1)式得 把(3)代入(2)得 把代入方程(3)得 答:用86张白铁皮做盒身,64张白铁皮做盒底。 你知道怎样用代入法解方程组了吗?请有条理地说一说。 试一试,看谁学会了。 (1) (2) (1)题是刘莉和王颖合作完成的。 (2)题是吴可非完成的,请你认真阅读她们的解题过程,判断是否正确? (1) 解:由得 把代入方程得: 把代入得 所以是方程组的解。 (2) 解:由得 把代入方程得 把代入得 所以是该方程的解。 经检查他们做得完全正确,你判断对了吗? 第二种方法:消去法 例2. 解:根据题意可先做如下变化: 用得 用得 把代入方程得 所以是方程组的解。 例3. 一. 确定;二. 变化;三. 求解 解:得 得 得 把代入得 所以是方程组的解。 请你说一说如何用“消去法”解方程组。练习题答题时间:30分钟 根据题目特点选择方法解下面方程组。 1. 2. 3. 4. 5. 第1讲 数论的方法技巧(上)数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。小学数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。主要的结论有:1带余除法:若a,b是两个整数,b0,则存在两个整数q,r,使得a=bq+r(0rb),且q,r是唯一的。特别地,如果r=0,那么a=bq。这时,a被b整除,记作b|a,也称b是a的约数,a是b的倍数。2若a|c,b|c,且a,b互质,则ab|c。3唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1p2pk为质数,a1,a2,ak为自然数,并且这种表示是唯一的。(1)式称为n的质因数分解或标准分解。4约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)(ak+1)。5整数集的离散性:n与n+1之间不再有其他整数。因此,不等式xy与xy-1是等价的。下面,我们将按解数论题的方法技巧来分类讲解。一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。这些常用的形式有:1十进制表示形式:n=an10n+an-110n-1+a0;2带余形式:a=bq+r;42的乘方与奇数之积式:n=2mt,其中t为奇数。例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。结果小明发现,无论白色卡片上是什么数字,计算结果都是1998。问:红、黄、蓝3张卡片上各是什么数字?解:设红、黄、白、蓝色卡片上的数字分别是a3,a2,a1,a0,则这个四位数可以写成1000a3+100a2+10a1+a0,它的各位数字之和的10倍是10(a3+a2+a1+a0)=10a3+10a2+10a1+10a0,这个四位数与它的各位数字之和的10倍的差是990a3+90a2-9a0=1998,110a3+10a2-a0=222。比较上式等号两边个位、十位和百位,可得a0=8,a2=1,a3=2。所以红色卡片上是2,黄色卡片上是1,蓝色卡片上是8。解:依题意,得a+b+c14,说明:求解本题所用的基本知识是,正整数的十进制表示法和最简单的不定方程。例3 从自然数1,2,3,1000中,最多可取出多少个数使得所取出的数中任意三个数之和能被18整除?解:设a,b,c,d是所取出的数中的任意4个数,则a+b+c=18m,a+b+d=18n,其中m,n是自然数。于是c-d=18(m-n)。上式说明所取出的数中任意2个数之差是18的倍数,即所取出的每个数除以18所得的余数均相同。设这个余数为r,则a=18a1+r,b=18b1+r,c=18c1+r,其中a1,b1,c1是整数。于是a+b+c=18(a1+b1+c1)+3r。因为18|(a+b+c),所以18|3r,即6|r,推知r=0,6,12。因为1000=5518+10,所以,从1,2,1000中可取6,24,42,996共56个数,它们中的任意3个数之和能被18整除。例4 求自然数N,使得它能被5和49整除,并且包括1和N在内,它共有10个约数。解:把数N写成质因数乘积的形式由于N能被5和72=49整除,故a31,a42,其余的指数ak为自然数或零。依题意,有(a1+1)(a2+1)(an+1)=10。由于a3+12,a4+13,且10=25,故a1+1=a2+1=a5+1=an+1=1,即a1=a2=a5=an=0,N只能有2个不同的质因数5和7,因为a4+132,故由(a3+1)(a4+1)=10知,a3+1=5,a4+1=2是不可能的。因而a3+1=2,a4+1=5,即N=52-175-1=574=12005。例5 如果N是1,2,3,1998,1999,2000的最小公倍数,那么N等于多少个2与1个奇数的积?解:因为210=1024,211=20482000,每一个不大于2000的自然数表示为质因数相乘,其中2的个数不多于10个,而1024=210,所以,N等于10个2与某个奇数的积。说明:上述5例都是根据题目的自身特点,从选择恰当的整数表示形式入手,使问题迎刃而解。二、枚举法枚举法(也称为穷举法)是把讨论的对象分成若干种情况(分类),然后对各种情况逐一讨论,最终解决整个问题。运用枚举法有时要进行恰当的分类,分类的原则是不重不漏。正确的分类有助于暴露问题的本质,降低问题的难度。数论中最常用的分类方法有按模的余数分类,按奇偶性分类及按数值的大小分类等。例6 求这样的三位数,它除以11所得的余数等于它的三个数字的平方和。分析与解:三位数只有900个,可用枚举法解决,枚举时可先估计有关量的范围,以缩小讨论范围,减少计算量。设这个三位数的百位、十位、个位的数字分别为x,y,z。由于任何数除以11所得余数都不大于10,所以x2+y2+z210,从而1x3,0y3,0z3。所求三位数必在以下数中:100,101,102,103,110,111,112,120,121,122,130,200,201,202,211,212,220,221,300,301,310。不难验证只有100,101两个数符合要求。例7 将自然数N接写在任意一个自然数的右面(例如,将2接写在35的右面得352),如果得到的新数都能被N整除,那么N称为魔术数。问:小于2000的自然数中有多少个魔术数?对N为一位数、两位数、三位数、四位数分别讨论。N|100,所以N=10,20,25,50; N|1000,所以N=100,125,200,250,500;(4)当N为四位数时,同理可得N=1000,1250,2000,2500,5000。符合条件的有1000,1250。综上所述,魔术数的个数为14个。说明:(1)我们可以证明:k位魔术数一定是10k的约数,反之亦然。 (2)这里将问题分成几种情况去讨论,对每一种情况都增加了一个前提条件,从而降低了问题的难度,使问题容易解决。例8 有3张扑克牌,牌面数字都在10以内。把这3张牌洗好后,分别发给小明、小亮、小光3人。每个人把自己牌的数字记下后,再重新洗牌、发牌、记数,这样反复几次后,3人各自记录的数字的和顺次为13,15,23。问:这3张牌的数字分别是多少?解:13+15+23=51,51=317。因为1713,摸17次是不可能的,所以摸了 3次, 3张扑克牌数字之和是17,可能的情况有下面15种:1,6,10 1,7,9 1,8,8 2,5,10 2,6,9 2,7,8 3,4,10 3,5,9 3,6,8 3,7,7 (11)4,4,9 (12)4,5,8(13)4,6,7 (14)5,5,7 (15)5,6,6只有第种情况可以满足题目要求,即3+5+5=13;3+3+9=15;5+9+9=23。这3张牌的数字分别是3,5和9。例9 写出12个都是合数的连续自然数。分析一:在寻找质数的过程中,我们可以看出100以内最多可以写出7个连续的合数:90,91,92,93,94,95,96。我们把筛选法继续运用下去,把考查的范围扩大一些就行了。解法1:用筛选法可以求得在113与127之间共有12个都是合数的连续自然数:114,115,116,117,118,119,120,121,122,123,124,125,126。分析二:如果12个连续自然数中,第1个是2的倍数,第2个是3的倍数,第3个是4的倍数第12个是13的倍数,那么这12个数就都是合数。又m+2,m+3,m+13是12个连续整数,故只要m是2,3,13的公倍数,这12个连续整数就一定都是合数。解法2:设m为2,3,4,13这12个数的最小公倍数。m+2,m+3,m+4,m+13分别是2的倍数,3的倍数,4的倍数13的倍数,因此12个数都是合数。说明:我们还可以写出13!+2,13!+3,13!+13(其中n!=123n)这12个连续合数来。同样,(m+1)!+2,(m+1)!+3,(m+1)!+m+1是m个连续的合数。三、归纳法当我们要解决一个问题的时候,可以先分析这个问题的几种简单的、特殊的情况,从中发现并归纳出一般规律或作出某种猜想,从而找到解决问题的途径。这种从特殊到一般的思维方法称为归纳法。例10 将100以内的质数从小到大排成一个数字串,依次完成以下5项工作叫做一次操作:(1)将左边第一个数码移到数字串的最右边;(2)从左到右两位一节组成若干个两位数;(3)划去这些两位数中的合数;(4)所剩的两位质数中有相同者,保留左边的一个,其余划去;(5)所余的两位质数保持数码次序又组成一个新的数字串。问:经过1999次操作,所得的数字串是什么?解:第1次操作得数字串711131131737;第2次操作得数字串11133173;第3次操作得数字串111731;第4次操作得数字串1173;第5次操作得数字串1731;第6次操作得数字串7311;第7次操作得数字串3117;第8次操作得数字串1173。不难看出,后面以4次为周期循环,1999=4499+3,所以第1999次操作所得数字串与第7次相同,是3117。例11 有100张的一摞卡片,玲玲拿着它们,从最上面的一张开始按如下的顺序进行操作:把最上面的第一张卡片舍去,把下一张卡片放在这一摞卡片的最下面。再把原来的第三张卡片舍去,把下一张卡片放在最下面。反复这样做,直到手中只剩下一张卡片,那么剩下的这张卡片是原来那一摞卡片的第几张?分析与解:可以从简单的不失题目性质的问题入手,寻找规律。列表如下:设这一摞卡片的张数为N,观察上表可知:(1)当N=2a(a=0,1,2,3,)时,剩下的这张卡片是原来那一摞卡片的最后一张,即第2a张;(2)当N=2a+m(m2a)时,剩下的这张卡片是原来那一摞卡片的第2m张。取N=100,因为100=26+36,236=72,所以剩下这张卡片是原来那一摞卡片的第72张。说明:此题实质上是著名的约瑟夫斯问题:传说古代有一批人被蛮族俘虏了,敌人命令他们排成圆圈,编上号码1,2,3,然后把1号杀了,把3号杀了,总之每隔一个人杀一个人,最后剩下一个人,这个人就是约瑟夫斯。如果这批俘虏有111人,那么约瑟夫斯的号码是多少?例12 要用天平称出1克、2克、3克40克这些不同的整数克重量,至少要用多少个砝码?这些砝码的重量分别是多少?分析与解:一般天平两边都可放砝码,我们从最简单的情形开始研究。(1)称重1克,只能用一个1克的砝码,故1克的一个砝码是必须的。(2)称重2克,有3种方案:增加一个1克的砝码;用一个2克的砝码;用一个3克的砝码,称重时,把一个1克的砝码放在称重盘内,把3克的砝码放在砝码盘内。从数学角度看,就是利用3-1=2。(3)称重3克,用上面的两个方案,不用再增加砝码,因此方案淘汰。(4)称重4克,用上面的方案,不用再增加砝码,因此方案也被淘汰。总之,用1克、3克两个砝码就可以称出(3+1)克以内的任意整数克重。(5)接着思索可以进行一次飞跃,称重5克时可以利用9-(3+1)=5,即用一个9克重的砝码放在砝码盘内,1克、3克两个砝码放在称重盘内。这样,可以依次称到1+3+9=13(克)以内的任意整数克重。而要称14克时,按上述规律增加一个砝码,其重为14+13=27(克),可以称到1+3+9+27=40(克)以内的任意整数克重。总之,砝码的重量为1,3,32,33克时,所用砝码最少,称重最大,这也是本题的答案。这个结论显然可以推广,当天平两端都可放砝码时,使用1,3,这是使用砝码最少、称重最大的砝码重量设计方案。练习1 1已知某个四位数的十位数字减去1等于其个位数字,个位数字加2等于百位数字,这个四位数的数字反着顺序排列成的数与原数之和等于9878。试求这个四位数。3设n是满足下列条件的最小自然数:它们是75的倍数且恰有75个4不能写成两个奇合数之和的最大偶数是多少?5把1,2,3,4,999这999个数均匀排成一个大圆圈,从1开始数:隔过1划掉2,3,隔过4,划掉5,6这样每隔一个数划掉两个数,转圈划下去。问:最后剩下哪个数?为什么?6圆周上放有N枚棋子,如右图所示,B点的一枚棋子紧邻A点的棋子。小洪首先拿走B点处的1枚棋子,然后顺时针每隔1枚拿走2枚棋子,连续转了10周,9次越过A。当将要第10次越过A处棋子取走其它棋子时,小洪发现圆周上余下20多枚棋子。若N是14的倍数,则圆周上还有多少枚棋子?7用0,1,2,3,4五个数字组成四位数,每个四位数中均没有重复数字(如1023,2341),求全体这样的四位数之和。8有27个国家参加一次国际会议,每个国家有2名代表。求证:不可能将54位代表安排在一张圆桌的周围就座,使得任一国的2位代表之间都夹有9个人。第2讲 数论的方法技巧(下)四、反证法反证法即首先对命题的结论作出相反的假设,并从此假设出发,经过正确的推理,导出矛盾的结果,这就否定了作为推理出发点的假设,从而肯定了原结论是正确的。反证法的过程可简述为以下三个步骤:1反设:假设所要证明的结论不成立,而其反面成立;2归谬:由“反设”出发,通过正确的推理,导出矛盾与已知条件、公理、定义、定理、反设及明显的事实矛盾或自相矛盾;3结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立。运用反证法的关键在于导致矛盾。在数论中,不少问题是通过奇偶分析或同余等方法引出矛盾的。解:如果存在这样的三位数,那么就有100a+10b+c=(10a+b)+(10b+c)+(10a+c)。上式可化简为 80a=b+c,而这显然是不可能的,因为a1,b9,c9。这表明所找的数是不存在的。说明:在证明不存在性的问题时,常用反证法:先假设存在,即至少有一个元素,它符合命题中所述的一切要求,然后从这个存在的元素出发,进行推理,直到产生矛盾。例2 将某个17位数的数字的排列顺序颠倒,再将得到的数与原来的数相加。试说明,得到的和中至少有一个数字是偶数。解:假设得到的和中没有一个数字是偶数,即全是奇数。在如下式所示的加法算式中,末一列数字的和d+a为奇数,从而第一列也是如此,因此第二列数字的和b+c9。将已知数的前两位数字a,b与末两位数字c,d去掉,所得的13位数仍具有“将它的数字颠倒,得到的数与它相加,和的数字都是奇数”这一性质。照此进行,每次去掉首末各两位数字,最后得到一位数,它与自身相加是偶数,矛盾。故和的数字中必有偶数。说明:显然结论对(4k+1)位数也成立。但对其他位数的数不一定成立。如12+21,506+605等。例3 有一个魔术钱币机,当塞入1枚1分硬币时,退出1枚1角和1枚5分的硬币;当塞入1枚5分硬币时,退出4枚1角硬币;当塞入1枚1角硬币时,退出3枚1分硬币。小红由1枚1分硬币和1枚5分硬币开始,反复将硬币塞入机器,能否在某一时刻,小红手中1分的硬币刚好比1角的硬币少10枚?解:开始只有1枚1分硬币,没有1角的,所以开始时1角的和1分的总枚数为 0+1=1,这是奇数。每使用一次该机器,1分与1角的总枚数记为Q。下面考查Q的奇偶性。如果塞入1枚1分的硬币,那么Q暂时减少1,但我们取回了1枚1角的硬币(和1枚5分的硬币),所以总数Q没有变化;如果再塞入1枚5分的硬币(得到4枚1角硬币),那么Q增加4,而其奇偶性不变;如果塞入1枚1角硬币,那么Q增加2,其奇偶性也不变。所以每使用一次机器,Q的奇偶性不变,因为开始时Q为奇数,它将一直保持为奇数。这样,我们就不可能得到1分硬币的枚数刚好比1角硬币数少 10的情况,因为如果我们有P枚1分硬币和(P+10)枚1角硬币,那么1分和1角硬币的总枚数为(2P+10),这是一个偶数。矛盾。例 4在33的方格表中已如右图填入了9个质数。将表中同一行或同一列的3个数加上相同的自然数称为一次操作。问:你能通过若干次操作使得表中9个数都变为相同的数吗?为什么?解:因为表中9个质数之和恰为100,被3除余1,经过每一次操作,总和增加3的倍数,所以表中9个数之和除以3总是余1。如果表中9个数变为相等,那么9个数的总和应能被3整除,这就得出矛盾!所以,无论经过多少次操作,表中的数都不会变为9个相同的数。五、构造法构造法是一种重要的数学方法,它灵活多样,数论中的许多问题都可以通过构造某些特殊结构、特殊性质的整数或整数的组合来解决。例5 9999和99!能否表示成为99个连续的奇自然数之和?解:9999能。因为9999等于99个9998之和,所以可以直接构造如下:9999=(9998-98)+(9998-96)+=(9998-2)+9998+(9998+2)+=(9998+96)+(9998+98)。99!不能。因为99!为偶数,而99个奇数之和为奇数,所以99!不能表示为99个连续奇数之和。说明:利用构造法证明存在性问题,只要把满足题设要求的数学对象构造出来就行。例6 从1,2,3,999这999个数中,要求划去尽量少的数,使得余下的数中每一个数都不等于另外两个数的乘积。应划去哪些数?解:我们可划去2,3,30,31这30个数,因为划去了上述这30个数之后,余下的数中,除1以外的任何两个数之积将大于322=1024999。另一方面,可以通过构造三元数组来证明30是最少的个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中药材赋能新质生产力发展
- 领导干部如何引领新质生产力
- 2025年急诊医学实际操作技能训练考核答案及解析
- 2025年儿科感染性疾病治疗知识检测答案及解析
- 2025年中医学基础理论知识检测答案及解析
- 2025年康复运动处方设计模拟测试卷答案及解析
- 2025年神经内科常见急救药品使用模拟考试答案及解析
- 2025年眼视光学验光技术评定试卷答案及解析
- 2025年脊柱外科脊柱骨折的手术治疗模拟考试卷答案及解析
- 新质生产力产业引热议
- 2025年教科版新教材科学三年级上册教学计划(含进度表)
- 幼儿园美术课件 5-6岁 《电线杆上的小鸟》教案
- 共同黏膜免疫反应研究进展
- 第五章-第四种检查器的使用
- 成瘾心理咨询与治疗权威指南
- 希尔国际商务第11版英文教材课件完整版电子教案
- SWITCH塞尔达传说旷野之息-1.6金手指127项修改使用说明教程
- 启东事业单位考试真题2022
- 导尿术导尿术课件
- 燃气轮机控制系统
- 规划用地性质调整论证报告
评论
0/150
提交评论