2020高考数学复习第九章解析几何题组层级快练60双曲线(二)文(含解析).docx_第1页
2020高考数学复习第九章解析几何题组层级快练60双曲线(二)文(含解析).docx_第2页
2020高考数学复习第九章解析几何题组层级快练60双曲线(二)文(含解析).docx_第3页
2020高考数学复习第九章解析几何题组层级快练60双曲线(二)文(含解析).docx_第4页
2020高考数学复习第九章解析几何题组层级快练60双曲线(二)文(含解析).docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

题组层级快练(六十)1已知集合A(x,y)|1,x,yR,B(x,y)|1,x,yR,则AB中元素的个数为()A0B1C2 D3答案B解析集合A表示双曲线,顶点为(3,0),其渐近线方程为0,集合B表示直线,与x轴的交点为(3,0),且与其中一条渐近线平行,与双曲线有且只有一个交点,所以AB中元素的个数为1.故选B.2直线l过点(,0)且与双曲线x2y22仅有一个公共点,这样的直线有()A1条 B2条C3条 D4条答案C解析该点为双曲线的顶点,与双曲线相切的直线有一条,与渐近线平行的直线有两条,共3条3已知F1,F2是双曲线y21的左、右焦点,P,Q为右支上的两点,直线PQ过F2且倾斜角为,则|PF1|QF1|PQ|的值为()A8 B2C4 D随的大小而变化答案C解析由双曲线定义知:|PF1|QF1|PQ|PF1|QF1|(|PF2|QF2|)(|PF1|PF2|)(|QF1|QF2|)4a4.4等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y216x的准线交于A,B两点,|AB|4,则C的实轴长为()A. B2C4 D8答案C解析抛物线y216x的准线方程是x4,所以点A(4,2)在等轴双曲线C:x2y2a2(a0)上,将点A的坐标代入得a2,所以C的实轴长为4.5若直线xym0与双曲线x21交于不同的两点A,B,且线段AB的中点在圆x2y25上,则m的值为()A B2C1 D答案C解析设A,B两点的坐标分别为A(x1,y1),B(x2,y2),线段AB的中点为M(x0,y0)由得x22mxm220(0),x0m,y0x0m2m,点M(x0,y0)在圆x2y25上,m2(2m)25,m1.6(2019山东青岛二模)直线l:x2y50过双曲线1(a0,b0)的一个焦点且与其一条渐近线平行,则该双曲线的方程为()A.1 B.1C.y21 Dx21答案A解析根据题意,令y0,则x5,则c5.又,所以a220,b25,所以双曲线的方程为1.7已知直线ykx1与双曲线x21交于A,B两点,且|AB|8,则实数k的值为()A B或C D答案B解析由直线与双曲线交于A,B两点,得k2.将ykx1代入x21得(4k2)x22kx50,则4k24(4k2)50,k20,b0)的左焦点为F,离心率为.若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为()A.1 B.1C.1 D.1答案B解析由F(c,0),P(0,4),得kPF,又e,所以e,所以ab,c4,故a2b28,故选B.11(2019长沙调考)过双曲线1(ba0)的右顶点A作斜率为1的直线,该直线与双曲线的两条渐近线的交点分别为B,C,若A,B,C三点的横坐标成等比数列,则双曲线的离心率为()A. B.C. D.答案C解析由题意可知,经过右顶点A的直线方程为yxa,联立解得x.联立解得x.因为ba0,所以0,又点B的横坐标为等比中项,所以点B的横坐标为,则a()2,解得b3a,所以双曲线的离心率e.12(2019山西省实验中学质量监测)若直线l与双曲线y21相切于点P,l与双曲线的两条渐近线分别交于M,N两点,则的值为()A3 B4C5 D与点P的位置有关答案A解析设切点P的坐标为(x0,y0),则切线l的方程为x0xy0y1.由双曲线的方程,得两条渐近线的方程分别为yx,yx.分别联立切线方程和渐近线方程,得M(,),N(,),.x024y024,3.故选A.13(2018课标全国)已知双曲线C:y21,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若OMN为直角三角形,则|MN|()A. B3C2 D4答案B解析因为双曲线y21的渐近线方程为yx,所以MON60.不妨设过点F的直线与直线yx交于点M,由OMN为直角三角形,不妨设OMN90,则MFO60,又直线MN过点F(2,0),所以直线MN的方程为y(x2),由得所以M(,),所以|OM|,所以|MN|OM|3,故选B.14(2015江苏)在平面直角坐标系xOy中,P为双曲线x2y21右支上的一个动点若点P到直线xy10的距离大于c恒成立,则是实数c的最大值为_答案解析设P(x,y),(x1),因为直线xy10平行于渐近线xy0,所以c的最大值为直线xy10与渐近线xy0之间距离,为.15(2019山西一模)过双曲线E:1(a0,b0)的右焦点,且斜率为2的直线与E的右支有两个不同的公共点,则双曲线E的离心率的取值范围是_答案(1,)解析斜率为2的直线与双曲线E的右支有两个交点,2.又b2c2a2,2.整理,得ca,e1,双曲线E的离心率的取值范围是(1,)16已知点M(2,0),N(2,0),动点P满足条件|PM|PN|2,记动点P的轨迹为W.(1)求W的方程;(2)若A和B是W上的不同两点,O是坐标原点,求的最小值答案(1)1(x)(2)2解析(1)由|PM|PN|2知动点P的轨迹是以M,N为焦点的双曲线的右支,实半轴长a.又焦距2c4,所以虚半轴长b.所以W的方程为1(x)(2)设A,B的坐标分别为(x1,y1),(x2,y2)当ABx轴时,x1x2,y1y2,从而x1x2y1y2x12y122.当AB与x轴不垂直时,设直线AB的方程为ykxm(k1),与W的方程联立,消去y得(1k2)x22kmxm220,则x1x2,x1x2,所以x1x2y1y2x1x2(kx1m)(kx2m)(1k2)x1x2km(x1x2)m2m22.又因为x1x20,所以k210.所以2.综上所述,当ABx轴时,取得最小值2.17已知圆C1:(x)2y2,圆C2:(x)2y2,动圆P与已知两圆都外切(1)求动圆的圆心P的轨迹E的方程;(2)直线l:ykx1与点P的轨迹E交于不同的两点A,B,AB的中垂线与y轴交于点N,求点N的纵坐标的取值范围答案(1)2x2y21(x0)(2)(,)解析(1)已知两圆的圆心、半径分别为C1(,0),r1;C2(,0),r2.设动圆P的半径为r,由题意知|PC1|r,|PC2|r,则|PC1|PC2|0)(2)将直线ykx1代入双曲线方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论