立体几何中的向量方法(平行和垂直).ppt_第1页
立体几何中的向量方法(平行和垂直).ppt_第2页
立体几何中的向量方法(平行和垂直).ppt_第3页
立体几何中的向量方法(平行和垂直).ppt_第4页
立体几何中的向量方法(平行和垂直).ppt_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.2.1 立体几何中的向量方法 方向向量与法向量,A,P,直线的方向向量,直线的向量式方程,换句话说,直线上的非零向量叫做直线的 方向向量,一、方向向量与法向量,2、平面的法向量,l,平面 的向量式方程,换句话说,与平面垂直的非零向量叫做平面 的法向量,例1. 如图所示, 正方体的棱长为1 直线OA的一个方向向量坐标为_ 平面OABC 的一个法向量坐标为_ 平面AB1C 的一个法向量坐标为_,(-1,-1,1),(0,0,1),(1,0,0),练习 如图,在四棱锥P-ABCD中,底面ABCD是 正方形,侧棱PD底面ABCD,PD=DC=1 ,E是PC 的中点, 求平面EDB的一个法向量.,A,B,C,D,P,E,解:如图所示建立空间直角坐标系.,设平面EDB的法向量为,二、 立体几何中的向量方法 平行关系,m,l,一. 平行关系:,三、 立体几何中的向量方法 垂直关系,二、垂直关系:,l,m,l,A,B,C,3.2.4 立体几何中的向量方法 夹角问题,夹角问题:1线线角,l,m,l,m,夹角问题:2线面角,l,l,夹角问题:3面面角(二面角),例:,的棱长为 1.,解1 建立直角坐标系.,3.2.4 立体几何中的向量方法 距离问题,距离问题:,(1) A(x1,y1,z1), B(x2,y2,z2), 则,距离问题:,(2) 点P与直线l的距离为d , 则,距离问题:,(3) 点P与平面的距离为d , 则,d,距离问题:,(4) 平面与的距离为d , 则,例 如图,在正方体ABCD-A1B1C1D1中,棱长为1,E为D1C1的中点,求点E到直线A1B的距离.,点E到直线A1B的距离为,例 如图,在正方体ABCD-A1B1C1D1中,棱长为1,E为D1C1的中点,求点E到直线A1B的距离.,解2,例 如图,在正方体ABCD-A1B1C1D1中,棱长为1,E为D1C1的中点,求B1到面A1BE的距离.,例 如图,在正方体ABCD-A1B1C1D1中,棱长为1,E为D1C1的中点,求B1到面A1BE的距离.,等体积法,解2,例 如图,在正方体ABCD-A1B1C1D1中,棱长为1,E为D1C1的中点,求D1C到面A1BE的距离.,解1:D1C面A1BE D1到面A1BE的距离即为 D1C到面A1BE的距离.,仿上例求得D1C到 面A1BE的距离为,例 如图,在正方体ABCD-A1B1C1D1中,棱长为1,E为D1C1的中点,求D1C到面A1BE的距离.,等体积法,解2,例 如图,在正方体ABCD-A1B1C1D1中,棱长为1,求面A1DB与面D1CB1的距离.,解1:面D1CB1面A1BD D1到面A1BD的距离即 为面D1CB1到面A1BD的距离,例 如图,在正方体ABCD-A1B1C1D1中,棱长为1,求面A1DB与面D1CB1的距离.,等体积法,解2,例 如图,在正方体ABCD-A1B1C1D1中,棱长为1,E为D1C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论