




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时分层作业 四十二空间几何体的表面积与体积一、选择题(每小题5分,共35分)1.某几何体的三视图如图所示(图中网格的边长为1个单位),其中俯视图为扇形,则该几何体的体积为()A.B.C.D.【解析】选B.由三视图知几何体是圆锥的一部分,由俯视图可得:底面扇形的圆心角为120,又由侧视图知几何体的高为3,底面圆的半径为2,所以几何体的体积V=223=.2.已知一个空间几何体的三视图如图所示,其中俯视图是边长为6的正三角形,若这个空间几何体存在唯一的一个内切球(与该几何体各个面都相切),则这个几何体的表面积是()A.18B.36C.45D.54【解析】选D.由三视图知,几何体为正三棱柱.因为俯视图是边长为6的正三角形,所以几何体的内切球的半径R=6=,所以三棱柱的侧棱长为2.所以几何体的表面积S=266+362=54.3.已知某几何体的外接球的半径为,其三视图如图所示,图中均为正方形,则该几何体的体积为()A.16B.C.D.8【解析】选C.由该三视图可知:该几何体是一个正方体,切去四个角所得的正四面体,其外接球等同于该正方体的外接球,设正方体的棱长为a,则有=, a=2,故该正四面体的体积为V=23-423=.【变式备选】已知三棱锥的三视图如图所示,其中侧视图是边长为的正三角形,则该几何体的外接球的体积为()A.B.C.4D.16【解析】选B.由已知中的三视图,可得该几何体的直观图如图所示:取AB的中点F,AF的中点E,由三视图可得:AB垂直平面CDE,且平面CDE是边长为的正三角形,AB=1+3=4,所以AF=BF=2,EF=1,所以CF=DF=2,故F即为棱锥外接球的球心,半径R=2,故外接球的体积V=R3=.4.已知在长方体ABCD-A1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离是()A.B.C.D.【解析】选C.设点A1到截面AB1D1的距离是h,由=,可得h=AA1,解得h=.【一题多解】选C.取B1D1的中点E1,连接A1E1,AE1,根据几何体的结构特征,可知,作A1HAE1,垂足为H,A1H平面AB1D1,A1H即为所求.A1E1=,A1A=4,A1AA1E1,A1H=(等面积法).【变式备选】如图,在四棱锥P-ABCD中, 底面ABCD是矩形,PD底面ABCD,M,N分别为AB,PC的中点,PD=AD=2,AB=4.则点A到平面PMN的距离为_.【解析】取PD的中点E,连接AE,NE,则因为四棱锥P-ABCD中,底面ABCD是矩形,M,N分别为AB,PC的中点,所以NEAM,NE=AM,所以四边形AENM是平行四边形,所以AEMN,所以点A到平面PMN的距离等于点E到平面PMN的距离,设为h,在PMN中,PN=,PM=2,MN=,所以SPMN=2=,由VE-PMN=VM-PEN,可得h=122,所以h=.答案:【方法技巧】求点到平面的距离(1)能作出高线的则直接作出高线,转化为求线段的长度;(2)不能直接求时,可转化为与平面平行的直线上一点到平面的距离.或利用等体积法求解.5.已知A,B是球O的球面上两点,AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为()导学号12560642A.36B.64C.144D.256【解析】选C.如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O-ABC的体积最大,设球O的半径为R,此时VO-ABC=VC-AOB=R2R=R3=36,故R=6,则球O的表面积为S=4R2=144.6.某几何体的三视图如图所示,其内切球的体积为 ()A.B.C.D.【解析】选A.根据图示可得几何体为正八面体,内切球心为O,过O作OH垂直AD于点H,连接S1H,作OR垂直S1H,OR即为内切球O的半径.所以R=,V0=.7.如图,在透明塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水(未满),现将容器底面一边BC固定在底面上,再将容器倾斜,随着倾斜度的不同,有下列四种说法:水的部分始终呈棱柱状;水面四边形EFGH的面积为定值;棱A1D1始终与水面EFGH平行;若EAA1,FBB1,则AE+BF是定值.则其中正确命题的个数是()导学号12560644A.1个B.2个C.3个D.4个【解析】选C.结合题设中提供的图形信息可知:当容器底面一边BC固定时,BCFGA1D1,故由线面平行的判定定理可知结论“棱A1D1始终与水面EFGH平行”成立;同时由于四边形ABFE四边形DCGH,且互相平行,则由棱柱的定义可知结论“水的部分始终呈棱柱状”正确;如图,由于水平放置时,水的高度是定值,所以当一部分上升的同时,另一面下降相同的高度,因为BF=h-FD,AE=h+D1E且FD=D1E,所以BF+AE=h-FD+h+D1E=2h(定值),即结论“若EAA1,FBB1,则AE+BF是定值”是正确的;因为水面四边形EFGH的边长在变化,因此其面积是变化的,故结论“水面四边形EFGH的面积为定值”的说法不正确.即命题是正确的.【题目溯源】本题来源于人教A版必修2P29A组第4题.【变式备选】水平桌面上放置着一个容积为V的密闭长方体玻璃容器ABCD-A1B1C1D1,其中装有V的水,给出下列操作与结论:把容器一端慢慢提起,使容器的一条棱BC保持在桌面上,这个过程中,水的状态始终是柱体;在中的运动过程中,水面始终是矩形;把容器提离桌面,随意转动,水面始终过长方体内一个定点;在中的转动中水与容器的接触面积始终不变.以上说法正确的是_.(把所有正确命题的序号都填上)【解析】水的部分始终呈棱柱状;从棱柱的特征及平面ABFE平行平面DCGH即可判断正确;如图,在中的运动过程中,水面四边形EFGH的对边始终保持平行,且EFFG,故水面始终是矩形,是正确的;由于始终装有V的水,而平分长方体体积的平面必定经过长方体的中心,即水面始终过长方体内一个定点;所以结论正确;在中的转动中水与容器接触时,由于水的体积是定值,所以水与容器的接触面的面积是正方体表面积的一半,故始终保持不变,所以正确.答案:二、填空题(每小题5分,共15分)8.如图直三棱柱ABC-A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为_.【解析】由题意知,球心在侧面BCC1B1的中心O上,BC为截面圆的直径,所以BAC=90,ABC的外接圆圆心N是BC的中点,同理A1B1C1的外心M是B1C1的中点.设正方形BCC1B1的边长为x.在RtOMC1中,OM=,MC1=,OC1=R=1(R为球的半径),所以+=1,即x=,则AB=AC=1,所以=1=.答案:9.(2016浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是_cm2,体积是_cm3.【解析】几何体为两个相同长方体组合而成,长方体的长、宽、高分别为4,2,2,所以体积为2(224)=32(cm3),由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(222+244)-222=72(cm2).答案:723210.一个圆锥的表面积为,它的侧面展开图是圆心角为120的扇形,则该圆锥的高为_.【解析】设圆锥底面半径是r,母线长为l,所以r2+rl=,即r2+rl=1,根据圆心角公式=,即l=3r,所以解得r=,l=,那么高h=.答案:【变式备选】已知圆锥侧面展开图的圆心角为90,则该圆锥的底面半径与母线长的比为_.【解析】设圆锥的母线长是R,则扇形的弧长是=,设底面半径是r,则=2r,所以r=,所以圆锥的底面半径与母线长的比为14.答案:1.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为 ()A.18+36B.54+18C.90D.81【解题指南】根据三视图作出原几何体是关键.【解析】选B.根据三视图可知原几何体是一个斜四棱柱,上下底面为边长为3的正方形,左右为宽为3,长为3的矩形,前后为底边长为3,且底边上的高为6的平行四边形,所以S=9+9+18+18+9+9=54+18.2.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为 ()A.90B.63C.42D.36【解析】选B.由三视图知,该几何体为一个底面半径为3,高为4的圆柱和一个底面半径为3,高为6的圆柱的一半,故其体积为V=326+324=63.3.(10分)已知一个平放的各棱长为4的三棱锥内有一个小球,现从该三棱
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 出品部培训课件
- 2025-2030年中国电脑周边组合线项目投资可行性研究分析报告
- 中国杀线虫剂行业调查报告
- 2025年混凝土密封固化剂市场调研报告
- 2025年AC发泡剂项目可行性分析报告
- 中国大蒜及深加工行业发展趋势及投资前景预测报告
- 2025年 江西工商职业技术学院招聘考试笔试试题附答案
- 2025年 杭州市供销社社有企业招聘考试笔试试题附答案
- 中国电声元件行业发展前景预测及投资方向研究报告
- 2025年 甘肃临夏双城高级中学招聘教师考试试题附答案
- 精准药物研发策略-深度研究
- 物业夏季安全培训
- 初级无机化学反应生产工职业技能鉴定理论考试题库(含答案)
- 2025年离婚协议纸质模板电子版
- 2024-2025学年度第一学期七年级英语期末试卷
- 2025年春新北师大版数学一年级下册课件 综合实践 设计教室装饰图
- 2025年陕西延长石油集团矿业公司招聘笔试参考题库含答案解析
- A型肉毒毒素在整形外科中的临床应用指南
- 2024年度艺人演出保密协议
- 临床成人失禁相关性皮炎的预防与护理团体标准解读
- 产品授权代理合同的续签与变更
评论
0/150
提交评论