




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第31讲 数列求和解密考纲考查数列的通项公式、数列求和的方法,主要考查公式法、裂项相消法和错位相减法求前n项和,以及利用Sn与an的关系求通项公式,三种题型均有考查,位于各类题型的中间靠后位置一、选择题1数列an的前n项和为Sn,若an,则S6(D)ABCD解析 因为an,所以S611.2已知Sn,若Sm10,则m(C)A11B99C120D121解析 因为,所以Sm1.由已知得110,所以m120,故选C3在数列an中,已知a11,an1ansin ,记Sn为数列an的前n项和,则S2 018(D)A1 006B1 007C1 008D1 010解析 由题意,得an1ansin,所以a2a1sin 1,a3a2sin0,a4a3sin 20,a5a4sin1,因此,数列an是一个以4为周期的周期数列,而2 01845042,所以S2 018504(a1a2a3a4)a1a21 010,故选D4已知等差数列an的前n项和为Sn,a55,S515,则数列的前100项和为(A)ABCD解析 设等差数列an的首项为a1,公差为d.a55,S515,ana1(n1)dn.,数列的前100项和为11.5数列an的通项公式anncos ,其前n项和为Sn,则S2 018(B)A2 017B1 010C504D0解析 因为anncos,所以当n为奇数时,an0,当n为偶数时,an其中mN*,所以S2 018a1a2a3a4a5a2 016a2 017a2 018a2a4a6a8a2 016a2 01824681012142 0162 018(24)(68)(1012)(2 0142 016)2 01825042 0181 010,故选B6已知数列an满足a11,an1an2n(nN*),Sn是数列an的前n项和,则S2 018(B)A22 0181B321 0093C321 0091D322 0182解析 依题意得anan12n,an1an22n1,于是有2,即2,数列a1,a3,a5,a2n1,是以a11为首项、2为公比的等比数列;数列a2,a4,a6,a2n,是以a22为首项、2为公比的等比数列,于是有S2 018(a1a3a5a2 017)(a2a4a6a2 018)321 0093.二、填空题7在数列an中,an,又bn,则数列bn的前n项和为_.解析 an,bn8.b1b2bn8.8(2018河南郑州模拟)设数列an的通项公式为an2n10(nN*),则|a1|a2|a15|_130_.解析 由an2n10(nN*)知an是以8为首项,2为公差的等差数列,又由an2n100得n5,所以当n5时,an0;当n5时,an0,所以|a1|a2|a15|(a1a2a3a4)(a5a6a15)20110130.9若数列an是正项数列,且n23n(nN*),则_2n26n_.解析 令n1,得4,a116.当n2时,(n1)23(n1)与已知式相减,得(n23n)(n1)23(n1)2n2.an4(n1)2,当n1时,a1适合an.an4(n1)2,4n4,2n26n.三、解答题10在数列an中,a13,an2an1(n2) (n2,nN*)(1)求a2,a3的值;(2)证明:数列ann是等比数列,并求an的通项公式;(3)求数列an的前n项和Sn.解析 (1)令n2得a22a16.令n3,得a32a2113.(2)证明:因为ann2an1(n1),a1140,所以ann0,所以2,所以数列ann是首项为4,公比为2的等比数列,所以ann42n12n1,所以an2n1n.(3)因为an2n1n,所以Sn(22232n1)(12n)2n2.11(2018安徽淮南模拟)在公差为d的等差数列an中,已知a110,且a1,2a22,5a3成等比数列(1)求d,an;(2)若d0,求|a1|a2|a3|an|.解析 (1)由题意得5a3a1(2a22)2,所以d23d40,解得d1或d4,所以ann11或an4n6.(2)设数列an的前n项和为Sn.因为d0,所以d1,ann11.当n11时,|a1|a2|a3|an|Snn2n;当n12时,|a1|a2|a11|a12|an|a1a2a11a12anS11(SnS11)Sn2S11n2n110.综上所述,|a1|a2|an|12(2016山东卷)已知数列an的前n项和Sn3n28n,bn是等差数列,且anbnbn1.(1)求数列的通项公式;(2)令cn,求数列的前n项和Tn.解析 (1)由题意知,当n2时,anSnSn16n5.当n1时,a1S111,所以an6n5.设数列bn的公差为d.由即可解得b14,d3.所以bn3n1.(2)由(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园小班户外简单游戏100例
- 智慧工厂设备维护岗位职责解析
- 格式化在保险风险分析-洞察及研究
- 法律法规框架-洞察及研究
- 市场营销方案撰写与评估标准
- 一年级数学期中考试试题及详解
- 餐饮行业服务流程优化与标准化
- 小学体育课程教学评价方案
- 基础教育阶段音乐教学课程设计研究
- 高考英语核心词汇记忆方法及练习题
- 瑞幸咖啡公司员工管理制度
- 2025至2030年中国电动场地车行业竞争战略分析及市场需求预测报告
- 胖东来考勤管理制度
- 公司举办台球赛策划方案
- DZ 53-1987沉积岩分散有机质中镜质组反射率测定方法
- 小区物业管家管理制度
- T/DZJN 168-2023废旧动力电池有价金属回收率计算与检测方法
- 超市水产合作商协议书
- 第三届全国技能大赛竞赛-无人机驾驶(植保)选拔赛备考试题库(附答案)
- 市场营销合同协议书
- 危险性较大的分部分项工程专项施工方案严重缺陷清单(试行)2025解读
评论
0/150
提交评论