




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数列的通项公式与求和问题等综合问题数列在高考中占重要地位,每年都考,应当牢记等差、等比的通项公式,前n项和公式,等差、等比数列的性质,以及常见求数列通项的方法,如累加、累乘、构造等差、等比数列法、取倒数等.数列求和问题是数列中的重要知识,在各地的高考试题中频频出现,对于等差数列、等比数列的求和主要是运用公式;而非等差数列、非等比数列的求和问题,一般用倒序相加法、通项化归法、错位相减法、裂项相消法、分组求和法等数列的求和问题多从数列的通项入手,通过分组、错位相减等转化为等差或等比数列的求和问题,考查等差、等比数列求和公式及转化与化归思想的应用,属中档题一、数列的通项公式数列的通项公式在数列中占有重要地位,是数列这部分内容的基础之一,在高考中,等差数列和等比数列的通项公式,前n项和公式以及它们的性质是必考内容,一般以填空题、选择题的形式出现,属于低中档题,若数列与函数、不等式、解析几何、向量、三角函数等知识点交融,难度就较大,也是近几年命题的热点. 1.由数列的前几项归纳数列的通项公式 根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(1)n或(1)n1来调整例1. 根据数列的前几项,写出下列各数列的一个通项公式(1)-1,7,-13,19,;(2)0.8,0.88,0.888,;(3);思路分析:归纳通项公式应从以下四个方面着手:(1)观察项与项之间的关系;(2)符号与绝对值分别考虑;(3)规律不明显,适当变形 ,原数列化为, an(1)n.点评:求数列的通项时,要抓住以下几个特征:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项符号特征等,并对此进行归纳、化归、联想2.由数列的递推关系求通项若一个数列首项确定,其余各项用an与an1的关系式表示(如an2an11,(n1),则这个关系式称为数列的递推公式 由递推关系求数列的通项的基本思想是转化,常用的方法:(1)an1anf(n)型,采用叠加法(2)f(n)型,采用叠乘法(3)an1panq(p0,p1)型,转化为等比数列解决例2.对于数列 .(1)求数列、的通项公式;(2)令,求数列的前项和.思路分析:(1)由化简得,利用累加法求得,对利用配凑法求得通项公式为;(2)化简,这是等差数列除以等比数列,故用错位相减求和法求得前项和为.(2), 则, -得.点评:本题主要考查递推数列求通项的方法,考查了累加法和配凑法,考查了错位相减求和法.对于来说,化简题目给定的含有的表达式后,得到,这个是累加法的标准形式,故用累加法求其通项公式,对于来说,由于,则采用配凑法求其通项公式,对于来说,由于它是等差数列除以等比数列,故用错位相减求和法求和. 3.由与的关系求通项数列是一种特殊的函数,因此,在研究数列问题时,即要注意函数方法的普遍性,又要考虑数列方法的特殊性Sn与an的关系为:an例3. 【安徽省淮南市2018届第四次联考】已已知数列为数列的前项和,且满足 .(1)求数列的通项公式;(2)求的通项公式思路分析:(1)由的关系得相减得检验时, 适合上式即得数列的通项公式(2),两边同时除以得累加法即得解. 点评:已知数列前n项和与第n项关系,求数列通项公式,常用将所给条件化为关于前n项和的递推关系或是关于第n项的递推关系,若满足等比数列或等差数列定义,用等比数列或等差数列通项公式求出数列的通项公式,否则适当变形构造等比或等数列求通项公式.注意:利用anSnSn1求通项时,注意n2这一前提条件,易忽略验证n1致误,当n1时,a1若适合通项,则n1的情况应并入n2时的通项;否则an应利用分段函数的形式表示4.等差数列前n项和的最值等差数列的单调性与的最大或最小的关系.(1)若,则等差数列中有,即,所以数列为单调递增;当时,有,所以的最小值为.当时,有则一定存在某一自然数,使或,则的最小值为. (2)若,则等差数列中有,即,所以数列为单调递减;当时,有则一定存在某一自然数,使或,则的最大值为.当时,有,所以的最大值为.例4.数列的前项和为,()(1)为何值时,数列是等比数列?(2)在(1)的条件下,若等差数列的前项和有最大值,且,又,等比数列,求思路分析:(1)先由求出.再利用数列为等比数列,可得,就可以求出的值;(2)先利用求出,再利用公差把和表示出来,代人成等比数列,求出公差即可求. 点评:求等差数列前n项和的最值常用的方法;(1)先求an,再利用或求出其正负转折项,最后利用单调性确定最值(2)利用性质求出其正负转折项,便可求得前n项和的最值利用等差数列的前n项和SnAn2Bn(A,B为常数)为二次函数,根据二次函数的性质求最值二 数列的求和数列求和是高考的热点,主要涉及等差、等比数列求和、错位相减法求和、裂项相消法求和与并项法求和,题目呈现方式多样,在选择题、填空题中以考查基础知识为主,在解答题中以考查错位相减法和裂项相消法求和为主,求解的关键是抓住通项公式的特征,正确变形,分清项数求和数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列求和常见类型及方法(1)anknb,利用等差数列前n项和公式直接求解;(2)anaqn1,利用等比数列前n项和公式直接求解;(3)anbncn,数列bn,cn是等比数列或等差数列,采用分组求和法求an的前n项和(4) anbncn,数列bn,cn分别是等比数列和等差数列,采用错位相减法求和1公式求法直接利用等差数列、等比数列的前n项和公式求和(1)等差数列的前n项和公式:Sn;(2)等比数列的前n项和公式:例5. 【四川省内江市2018届高三第一次模拟】设是数列的前项和.已知, .()求数列的通项公式;()设,求数列的前项和.思路分析:()由可得时, ,两式相减,即可得出是等比数列,从而求出数列的通项公式;()写出数列的通项公式,得出数列是等比数列,进而用等比数列求和公式求出数列的前项和.点评:本题考查等比数列的概念、通项公式及前n项的求和公式,利用方程组思想求解.本题属于基础题,注意运算的准确性.应用基本量法是解决此类问题的基本方法,应熟练掌握.根据等差,等比数列的性质探寻其他解法,可以开阔思路,有时可以简化计算. 2分组求和法有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,可先分别求和,然后再合并例6.【四川省内江市2018届高三第一次模拟】设数列满足.(1)求数列的通项公式;(2)求数列的前项和.思路分析: 根据题意求出当时, ,求出的表达式,然后验证当时是否成立(2)先给出通项,运用分组求和法求前项和点评:分组求和的解题策略:数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列或可求数列的前项和的数列求和,即将一般数列求和问题转化为特殊数列的求和问题,运用这种方法的关键是通项变形3.裂项相消求和法利用通项变形,把数列的通项分裂成两项或几项的差,在求和过程中,中间的一些项可以相互抵消,最后只剩下有限项的和,从而求得数列的和.这种求数列和的方法叫做裂项相消求和法.常见拆项:;nn!=(n+1)!n!;loga (1)loga(n1)logan;等等例7.已知等差数列的前项和为,且成等比数列.()求数列的通项公式;()设,求数列的前项和.思路分析:(1)由等差数列性质,所以,设公差为,则,解得或,由此即可求出通项公式; (2)当时,;当时,然后再根据裂项相消即可求出结果.点评:裂项相消法求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项从而达到求和的目的要注意的是裂项相消法的前提:数列中的每一项均可分裂成一正一负两项,且在求和过程中能够前后相互抵消.4. 错位相减求和法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n项和可用错位相减法 例8.已知等差数列满足:,该数列的前三项分别加上1,1,3后成等比数列,且.(1)求数列,的通项公式;(2)求数列的前项和.思路分析:(1) 用基本量法,即用为等差数列的公差与表示已知条件,列出方程,解出,即可求数列的通项公式;由可得,即可求出数列的通项公式;(2)因为,所以用错位相减法求即可.点评:本题考查等差数列的定义与性质、对数的性质、错位相减法求和,属中档题;错位相减法适合于一个由等差数列及一个等比数列对应项之积组成的数列考生在解决这类问题时,都知道利用错位相减法求解,也都能写出此题的解题过程,但由于步骤繁琐、计算量大导致了漏项或添项以及符号出错等两边乘公比后,对应项的幂指数会发生变化,应将相同幂指数的项对齐,这样有一个式子前面空出一项,另外一个式子后面就会多了一项,两项相减,除第一项和最后一项外,剩下的项是一个等比数列三. 数列的探索性问题处理探索性问题的一般方法是:假设题中的数学对象存在或结论成立或其中的一部分结论成立,然后在这个前提下进行逻辑推理若由此导出矛盾,则否定假设,否则,给出肯定结论,其中反证法在解题中起着重要的作用还可以根据已知条件建立恒等式,利用等式恒成立的条件求解例9. 【江西省南昌市2018届复习训练题】在数列中, ()求数列的通项;()若存在成立,求实数的最大值思路分析:()由可得,两式相减整理得到 ,故数列 为等比数列,求得通项后再验证是否满足即可得到所求()由条件可得存在成立,设,则然后根据的单调性求出最值即可点评:数列中的恒成立或能成立的问题是函数问题在数列中的具体体现,解决此类问题时仍要转化为最值问题处理解题中通过分离参数在不等式的一端得到关于正整数n的函数,然后通过判断函数的单调性得到函数的最值,从而可求得参数的值或其范围解决等差数列与等比数列的综合问题,关键是理清两个数列的关系如果同一数列中部分项成等差数列,部分项成等比数列,要把成等差数列或等比数列的项抽出来单独研究;如果两个数列通过运算综合在一起,要从分析运算入手,把两个数列分割开,弄清两个数列各自的特征,再进行求解从上面三方面可以看出,解答数列综合问题要善于综合运用函数方程思想、化归转化思想等数学思想以及特例分析法,一般递推法,数列求和及求通项
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 孤独症儿童教育康复中的协同创新与实践
- 医学专业临床医学技能测试卷
- 农村综合治理服务保障协议
- 关于环保的演讲演讲稿作文(4篇)
- 物理基础知识检测题
- 酒店账单支付协议
- 全球科研发展现状及趋势分析
- 高校声乐课堂教学创新发展的策略及实施路径
- 2025年心理咨询师资格考试试题及答案
- 2025年文化理论与批评能力测评考试试卷及答案
- GB/T 24328.4-2009卫生纸及其制品第4部分:湿抗张强度的测定
- GB/T 10816-1989紫砂陶器
- 主动脉夹层版本课件
- 房地产估价报告:商业房地产租赁价格估价
- 牡丹的药用价值课件
- kW壳管式干式蒸发器设计
- 最新药店员工手册
- 系列螺杆冷水机组操作培训
- 催化剂对异氰酸酯反应活性的影响
- 国家开放大学《C语言程序设计》综合测试题参考答案
- 老年人生活自理能力评估表
评论
0/150
提交评论