




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
线段垂直平分线的几种应用【名师点睛】线段的垂直平分线与线段的两种关系:位置关系垂直,数量关系平分,利用垂直平分线的这些性质可以求线段的长度。角的度数等,还可以解决试剂生活中的选址等问题。类型1线段垂直平分线的性质在求线段中的应用1.如图,ABC中,AB.AC的垂直平分线交BC于点D.E,已知ADE的周长为12cm,则BC=_.解答:DF、EG分别是线段AB.AC的垂直平分线,AD=BD,AE=CE,AD+DE+AE=BD+DE+CE=BC,ADE的周长为12cm,即AD+DE+AE=12cm,BC=12cm.故答案为:12cm.2.如图,在ABC中,C=90,A=15,DE垂直平分AB于点E,交AC于点D.若BC=2cm,求AD的长.解答:连接BD,DE垂直平分AB于点E,交AC于点D,AD=BD,A=ABD.A=15,ABD=15.在BDC中,BDC=A+ABD=15+15=30.C=90,BC=2cm,BD=2CD=4cm,AD=4cm.类型2线段垂直平分线的性质在求角中的应用3.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知ADE=40,则DBC=.解答:AB=AC,DE垂直平分AB,ADE=40,ADE=EDB=40,AE=BE,A=ABD=50.AB=AC,ABC=ACB=12(180-A)=65,DBC=ABC-ABD=154.如图,在RtABC中,C=90,AB边的垂直平分线DE交BC于点D,交AB于点E,连接AD,AD将CAB分成两个角1,2,且1:2=2:5,求ADC的度数.解答:设1=2x,则2=5x.DE是AB的垂直平分线,DA=DB,B=2=5x,ADC=B+2=10x.C=90,ADC+1=90,即10x+2x=90,x=7.5,ADC=10x=75.5.已知:如图,在ABE中,AB,AE边上的垂直平分线m1,m2分别交BE于点C,D,且BC=CD=DE.(1)求证:ACD是等边三角形;(2)求BAE的度数.解答:(1)证明:m1,m2是AB.AE的垂直平分线,BC=AC,AD=DE.又BC=CD=DE,AC=CD=AD,ACD是等边三角形.(2)ACD是等边三角形,CAD=ACD=ADC=60.BC=AC,AD=DE,ACD=2BAC,ADC=2EAD,BAC=EAD=30,BAE=30+30+60=120.类型3线段垂直平分线的性质在实际中的应用6.如图,某城市规划局为了方便居民的生活,计划在三个住宅小区A,B,C之间修建一个购物中心,试问:该购物中心应建于何处,才能使得它到三个小区的距离相等?解答:如图,连接AB.BC,分别作AB.BC的垂直平分线DE.GF,两直线的交点M即为所求.类型4线段垂直平分线的判定在判断两线位置关系中的应用7.如图,AD为ABC的角平分线,AE=AF,请判断线段AD所在的直线是否是线段EF的垂直平分线.如果是,请给予证明;如果不是,请说明理由.解答:线段AD所在的直线是线段EF的垂直平分线.理由如下:AD平分BAC,BAD=CAD.在AED和AFD中,AE=AF,BAD=CAD,AD=AD,AEDAFD,DE=DF,D在EF的垂直平分线上.AE=AF,A在EF的垂直平分线上,线段AD所在的直线是线段EF的垂直平分线.类型7利用线段垂直平分线的性质探究角之间的变化规律8.如图,在ABC中,AB=AC,AB的垂直平分线交AB于N,交BC的延长线于M,A=40.(1)在ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,A=40,求NMB的大小;(2)如果将(1)中的A的度数改为70,其余条件不变,再求NMB的大小;(3)你发现了什么样的规律?试证明你发现的规律;(4)将(1)中的A改为钝角,对这个问题的规律性认识是否需要修改?(不需说明理由)解答:(1)AB=AC,ABM=ACB.BAC=40,ABM=ACB,ABM=(180-BAC)=70.MNB=90,ABM=70,NMB=90-ABM=90-70=20.(2)与(1)同理可得B=(180-BAC)=55,NMB=90-55=35.(3)规律:NMB=A.理由如下:AB=AC,ABM=ACB.ABM=(180-A).ABM=(180-A),BNM=90,BMN=90-ABM=A.(4)如果将A改为钝角,这个规律性的认识也无需修改,仍有等腰三角形一腰的垂直平分线与底边相交所形成的锐角等于顶角的一半.类型8利用线段垂直平分线的判定证明线段的垂直平分线9.如图,四边形ABCD是一只“风筝”的骨架,其中AB=AD,CB=CD.(1)八年级王建同学观察了这个“风筝”的骨架后,他认为四边形ABCD的两条对角线ACBE,垂足为E,并且BE=ED,你同意王建同学的判断吗?请说明理由;(2)设对角线AC=a,BD=b,请用含a,b的式子表示四边形ABCD的面积.解答:(1)王建同学的判断是正确的理由:AB=AD,点A在BD的垂直平分线上CB=CD,点C在BD的垂直平分线上AC为BD的垂直平分线,BE=DE,ACBD(2)由(1)得ACBDS四边形ABCD=SCBD+SABD=BDCE+BDAE=BDAC=ab类型9利用线段垂直平分线的性质和判定探究线段垂直平分线的条件10.如图,在四边形ABCD中,已知ADBC,E为CD的中点,连接AE并延长AE交BC的延长线于点F.(1)求证:CF=AD;(2)若AD=2,AB=8,当BC为多少时,点B在线段AF的垂直平分线上?为什么?解答:(1)证明:ADBC,F=DAE.又FEC=AED,ECF=ADE,E为CD中点,CE=DE,在FEC与AED中,FEC=AED,CE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广西玉林市北流市西埌镇招聘村级网格管理员1人考前自测高频考点模拟试题及答案详解(历年真题)
- 2025河南开封市中心医院住院医师规范化培训基地招收模拟试卷及一套完整答案详解
- 2025广西贵港市覃塘街道储备村(社区)“两委”后备人才128人模拟试卷及一套答案详解
- 2025广西桂林市永福县公安局公开招聘警务辅助人员10人考前自测高频考点模拟试题附答案详解(黄金题型)
- 2025广西南宁宁明县板棍乡卫生院招聘编外药剂人员1人模拟试卷及完整答案详解
- 2025广东“百万英才汇南粤”广州市海珠区招聘事业单位工作人员19人考前自测高频考点模拟试题附答案详解(完整版)
- 2025年度日照市岚山区事业单位高校专场招聘考前自测高频考点模拟试题及答案详解(夺冠系列)
- 2025年芜湖宜居投资(集团)有限公司专业技术招聘2人考前自测高频考点模拟试题及参考答案详解1套
- 2025年网信法规考试题及答案解析
- 2025年春季中国石油大庆炼化分公司高校毕业生招聘5人(黑龙江)考前自测高频考点模拟试题及答案详解(历年真题)
- 湿疮湿疹中医护理查房
- 2025年6月新《中华人民共和国治安管理处罚法》全文+修订宣贯解读课件(原创内容丰富且全)
- DB31/T 1377.4-2022实验鸡和鸭第4部分:设施及环境
- 2025邮储银行面试题目及答案
- 他人借车免责协议书
- 城中村改造项目规划设计(仅供参考)
- 公司代经营合同范例
- 中医减肥合同协议书
- 2025年推土犁司机职业技能鉴定参考试题库(含答案)
- 2025年一级建造师之一建矿业工程实务题库附答案(典型题)
- 癌症疼痛诊疗规范解读2025
评论
0/150
提交评论