2017_2018学年高中物理第七章机械能守恒定律第5节探究弹性势能的表达式教学案新人教版.docx_第1页
2017_2018学年高中物理第七章机械能守恒定律第5节探究弹性势能的表达式教学案新人教版.docx_第2页
2017_2018学年高中物理第七章机械能守恒定律第5节探究弹性势能的表达式教学案新人教版.docx_第3页
2017_2018学年高中物理第七章机械能守恒定律第5节探究弹性势能的表达式教学案新人教版.docx_第4页
2017_2018学年高中物理第七章机械能守恒定律第5节探究弹性势能的表达式教学案新人教版.docx_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第5节探究弹性势能的表达式1弹力对物体做正功,弹簧的弹性势能减少,弹力对物体做负功,弹簧的弹性势能增加。弹力做了多少功,弹性势能就变化多少。2弹簧的弹性势能的大小跟劲度系数和形变量有关,其表达式为Epkl2,其中l表示弹簧的形变量而不是长度。3弹簧的弹性势能也具有相对性,一般取弹簧处于原长时弹性势能为零。一、 弹性势能1弹性势能的概念发生弹性形变的物体的各部分之间,由于弹力的相互作用而具有的势能。2决定弹性势能大小相关因素的猜想(1)猜想依据弹性势能和重力势能同属势能,重力势能大小与物体的质量和高度有关,弹簧弹力与其形变量和劲度系数有关。(2)猜想结论弹性势能与弹簧的形变量l和劲度系数k有关,在弹簧的形变量l相同时,弹簧的劲度系数k越大,弹簧的弹性势能越大。在弹簧劲度系数k相同时,弹簧形变量越大,弹簧弹性势能越大。二、 探究弹性势能的表达式1探究思想:研究弹力做功与弹性势能变化的关系。2“化变为恒”求拉力做功:W总F1l1F2l2Fnln。3“Fl”图像面积的意义:表示F做功的值。1自主思考判一判(1)弹性势能与弹簧的弹性形变量和劲度系数有关。()(2)除了弹力做功之外,其他力做功不影响弹性势能。()(3)不同弹簧发生相同的形变量时弹力做功相同。()(4)弹簧被压缩时,弹性势能为负;弹簧被拉伸时,弹性势能为正。()(5)弹力做正功,弹性势能就增大;弹力做负功,弹性势能就减小。()2合作探究议一议(1)运动员将箭射出,弓恢复原状,此过程中弓的弹性势能怎么变化?图751提示:弓的形变量逐渐减小,弹性势能减小。(2)弹弓是一种儿童玩具,由两根橡皮条和木叉制成。为使石子以较大的速度飞出,就应该把橡皮条拉长些,从能量角度分析这是为什么呢?图752提示:橡皮条拉得越长,储存的弹性势能越大,射出石子时石子的动能就越大,射得就越远。对弹性势能的理解1弹性势能的产生及影响因素2弹性势能与弹力做功的关系如图753所示,O为弹簧的原长处。图753(1)弹力做负功:如物体由O向A运动(压缩)或者由O向A运动(伸长)时,弹性势能增大,其他形式的能转化为弹性势能。(2)弹力做正功:如物体由A向O运动或者由A向O运动时,弹性势能减小,弹性势能转化为其他形式的能。(3)弹力做功与弹性势能变化的关系:弹性势能的变化量总等于弹力对外做功的负值,表达式为W弹Ep。3弹性势能表达式(1)弹簧弹力随形变量x的变化图线及围成面积的意义类比vt图像的面积表示位移,Fx图像与x轴所围的面积表示弹力的功,如图754所示。所以当弹簧的形变量为x时,弹力做功W弹kxxkx2。图754(2)弹性势能的大小:EpW弹kx2。典例如图755所示,在水平地面上竖直放置一轻质弹簧,弹簧上端与一个质量为2.0 kg的木块相连。若在木块上再作用一个竖直向下的变力F,使木块缓慢向下移动0.1 m,力F做功2.5 J时,木块再次处于平衡状态,此时力F的大小为50 N。(取g10 m/s2)求:图755(1)弹簧的劲度系数。(2)在木块下移0.1 m的过程中弹性势能的增加量。审题指导(1)根据平衡条件可以求出木块初始平衡状态和加力F后平衡状态时弹簧的压缩量。(2)木块缓慢下移的距离为弹簧压缩量的变化量。(3)弹簧弹性势能的增加量等于木块下移时克服弹力所做的功。解析(1)设木块开始静止时,弹簧的压缩量为l1。后来静止时,弹簧的压缩量为l2,由胡克定律及平衡条件得,未施加力F时,弹力F1mgkl120 N,施加力F后,弹力F2Fmgkl270 N,且l2l10.1 m,联立以上各式得k500 N/m。(2)由以上方程得l10.04 m,l20.14 m,根据以上数据作出Fl图像如图所示。在木块下移0.1 m的过程中,弹力做负功,且WS阴影(2070)0.1 J4.5 J,所以弹性势能的增加量EpW4.5 J。答案(1)500 N/m(2)4.5 J弹性势能变化的确定技巧(1)弹性势能具有相对性,但其变化量具有绝对性,因此,在判断弹性势能的变化时不必考虑零势能的位置。(2)弹性势能的变化只与弹力做功有关,弹力做负功,弹性势能增大,反之则减小。弹性势能的变化量总等于弹力做功的负值。 1关于弹簧的弹性势能,下列说法中正确的是()A当弹簧变长时,它的弹性势能一定增大B当弹簧变短时,它的弹性势能一定变小C在拉伸长度相同时,k越大的弹簧,它的弹性势能越大D弹簧在拉伸时的弹性势能一定大于压缩时的弹性势能解析:选C弹簧弹性势能的大小,除了跟劲度系数k有关外,还跟它的形变量(拉伸或压缩的长度)有关。如果弹簧原来处在压缩状态,当它变长时,它的弹性势能应减小,在原长处最小。C正确。2.一竖直弹簧下端固定于水平地面上,小球从弹簧上端的正上方高为h的地方自由下落到弹簧上端,如图756所示。经几次反弹以后小球最终在弹簧上静止于某一点A处,则()图756Ah越大,弹簧在A点的压缩量越大B弹簧在A点的压缩量与h无关Ch越大,最终小球静止在A点时弹簧的弹性势能越大D小球第一次到达A点时弹簧的弹性势能比最终小球静止在A点时弹簧的弹性势能大解析:选B最终小球静止在A点时,小球受重力与弹簧的弹力相等,故由弹力公式得mgkx,即可得出弹簧在A点的压缩量x,与下落时的高度h无关,A错,B对。对同一弹簧,它的弹性势能大小仅与弹簧的形变量有关,小球静止在A点或经过A点时,弹簧的弹性势能相同,C、D错。3两个不同的弹簧A、B,劲度系数分别为k1、k2,且k1k2。现用相同的力从自然长度开始拉弹簧,则下列说法正确的是()AA弹簧的弹性势能大BB弹簧的弹性势能大C两弹簧的弹性势能相同D无法判断解析:选B以相同的力F拉弹簧A、B,由胡克定律得A弹簧的伸长量l1,B弹簧的伸长量l2,由于k1k2,故l1l2,所以拉力克服弹力对A弹簧做的功W1Fl1小于对B弹簧做的功W2Fl2,即B弹簧的弹性势能大。故选项B正确。弹性势能与重力势能的比较弹性势能重力势能定义发生弹性形变的物体各部分之间由于弹力的相互作用而具有的势能物体由于被举高而具有的势能表达式Epkx2Epmgh相对性弹性势能与零势能位置的选取有关,通常选自然长度时势能为零,表达式最为简洁重力势能的大小与零势能面的选取有关,但变化量与零势能面的选取无关系统性弹性势能是弹簧本身具有的能量重力势能是物体与地球这一系统所共有的功能关系弹性势能的变化等于克服弹力所做的功重力势能的变化等于克服重力所做的功联系两种势能分别以弹力、重力的存在为前提,又由物体的初、末位置来决定。同属机械能的范畴,在一定条件下可相互转化1(多选)关于弹性势能和重力势能,下列说法正确的是()A重力势能属于物体和地球这个系统,弹性势能是弹簧本身具有的能量B重力势能是相对的,弹性势能是绝对的C重力势能和弹性势能都是相对的D重力势能和弹性势能都是状态量解析:选ACD重力势能具有系统性,弹性势能是弹簧本身具有的能量,故A正确;重力势能和弹性势能都是相对的,且都是状态量,故B错,C、D正确。2.如图757所示,质量为m的物体静止在地面上,物体上面连着一个轻弹簧,用手拉住弹簧上端上移H,将物体缓缓提高h,拉力F做功WF,不计弹簧的质量,则下列说法正确的是()图757A重力做功mgh,重力势能减少 mghB弹力做功WF,弹性势能增加WFC重力势能增加mgh,弹性势能增加FHD重力势能增加mgh,弹性势能增加WFmgh解析:选D可将整个过程分为两个阶段:一是弹簧伸长到m刚要离开地面阶段,拉力克服弹力做功WF1W弹,等于弹性势能的增加;二是弹簧长度不变,物体上升h,拉力克服重力做功WF2WGmgh,等于重力势能的增加,又由WFWF1WF2可知A、B、C错,D对。3.(多选)图758甲是玩家玩“蹦极”游戏的真实照片,玩家将一根长为AB的弹性绳子的一端系在身上,另一端固定在高处,然后从高处跳下,图乙是玩家到达最低点时的情况,其中AB为弹性绳子的原长,C点是弹力等于重力的位置,D点是玩家所到达的最低点,对于玩家离开跳台至最低点的过程中,下列说法正确的是()图758A重力对人一直做正功B人的重力势能一直减小C玩家通过B点之后,绳子具有弹性势能D从A到D,弹性绳子的弹性势能一直增加解析:选ABC整个过程中,重力一直做正功,重力势能一直减小;人从高空落下到弹性绳子达到原长的过程中,弹性绳子不做功,此后弹性绳子一直做负功,弹性势能一直增加。1(多选)下列物体中,具有弹性势能的是()A被拉长的橡皮筋B在空中自由下落的球C被拉细的铜丝D被弯曲的钢片解析:选AD拉伸的橡皮筋、弯曲的钢片具有弹性势能,自由下落的小球具有重力势能,被拉细的铜丝无弹性势能。2(多选)关于弹力做功与弹性势能变化的关系,我们在进行猜想时,可以参考对重力做功与重力势能变化的关系的讨论,则下面的猜想有道理的是()A弹力做功将引起弹性势能的变化,当弹力做正功时,弹性势能将增加B弹力做功将引起弹性势能的变化,当弹力做正功时,弹性势能将减少C弹力做功将引起弹性势能的变化,当弹力做负功时,弹性势能将增加D弹力做功将引起弹性势能的变化,当弹力做负功时,弹性势能将减少解析:选BC弹力做功将引起弹性势能的变化,当弹力做正功时,弹性势能将减少;当弹力做负功时,弹性势能将增加。故选项B、C正确。3.一根弹簧的弹力伸长量图像如图1所示,那么弹簧由伸长量8 cm到伸长量4 cm的过程中,弹力做的功和弹性势能的变化量为()图1A3.6 J,3.6 JB3.6 J,3.6 JC1.8 J,1.8 JD1.8 J,1.8 J解析:选CFx图像中梯形的“面积”表示弹力做的功。W0.0860 J0.0430 J1.8 J,此过程弹力做正功,弹簧的弹性势能减小1.8 J,故只有C选项正确。4在光滑的水平面上,物体A以较大速度va向前运动,与以较小速度vb向同一方向运动的、连有轻质弹簧的物体B发生相互作用,如图2所示。在相互作用的过程中,当系统的弹性势能最大时()图2AvavbBvavbCvavb D无法确定解析:选B只要vavb,A、B就有相对运动,弹簧就会被压缩,弹力做负功,弹性势能增加,当vavb时,A、B相距最近,弹簧的形变量最大,弹性势能最大,故选项B正确。5.如图3所示,轻弹簧下端系一重物,O点为其平衡位置(即重力和弹簧弹力大小相等的位置),今用手向下拉重物,第一次把它直接拉到A点,弹力做功W1,第二次把它拉到B点后再让其回到A点,弹力做功W2,则这两次弹力做功的关系为()图3AW1W2BW12W2CW22W1 DW1W2解析:选D弹力做功的特点与重力做功一样,不用考虑路径,只看起始与终止位置,故D项正确。6弹簧原长l015 cm,受拉力作用后弹簧逐渐伸长,当弹簧伸长到l120 cm时,作用在弹簧上的力为400 N,问:(1)弹簧的劲度系数k为多少?(2)在该过程中弹力做了多少功?(3)弹簧的弹性势能变化了多少?解析:(1)据胡克定律Fkx得k N/m8 000 N/m。(2)由于Fkx,作出Fx图像如图所示,求出图中阴影面积,即为弹力做功的绝对值,由于在伸长过程中弹力F方向与位移x方向相反,故弹力F在此过程中做负功。所以W10 J。(3)弹力F做负功,则弹簧弹性势能增加,且做功的多少等于弹性势能的变化量。EW10 J。答案:(1)8 000 N/m(2)10 J(3)增加10 J7.如图4所示,质量相等的两木块间连有一弹簧。今用力F缓慢向上提A,直到B恰好离开地面。开始时A静止在弹簧上面。设开始时弹簧的弹性势能为Ep1,B刚要离开地面时弹簧的弹性势能为Ep2,则关于Ep1、Ep2的大小关系及弹性势能的变化Ep,下列说法中正确的是()图4AEp1Ep2 BEp1Ep2CEp0 DEp0解析:选A设开始时弹簧的形变量为x1,B刚要离开地面时弹簧的形变量为x2,则有kx1mg,kx2mg,可得x1x2,所以Ep1Ep2,Ep0,选项A正确。8.如图5所示,一轻弹簧一端固定于O点,另一端系一重物,将重物从与悬点O在同一水平面且弹簧保持原长的A点无初速释放,让它自由摆下。不计空气阻力,在重物由A点摆向最低点B的过程中()图5A重力做正功,弹力不做功B重力做正功,弹力做正功C若用与弹簧原长相等的细绳代替弹簧后,重力做正功,弹力不做功D若用与弹簧原长相等的细绳代替弹簧后,重力做功不变,弹力不做功解析:选C用细绳拴住小球向下摆动时重力做正功,弹力不做功,C对。用弹簧拴住小球下摆时,弹簧要伸长,重力做正功,小球轨迹不是圆弧,弹力做负功,A、B、D错。9.如图6所示,a、b两条斜线分别表示两根劲度系数不同的弹簧所受拉力F和弹簧伸长量之间的关系。设它们的劲度系数分别为ka、kb,拉力都为F1时的弹性势能分别为Ea、Eb。则下列说法正确的是()图6AkakbEaEbBkakbEaEbCkakbEaEb DkakbEaEb解析:选C由Fkl可知,Fl图线的斜率为弹簧的劲度系数,由图可知,kakb,当拉力为F1时,两弹簧的形变量为la,lb,可得:Eakala2,Eb,可得EaEb。故C正确。10.一个小孩在蹦床上做游戏,他从高处落到蹦床上后又被弹起到原高度,小孩从高处开始下落到弹回的整个过程中,他运动的速度v随时间t变化的图像如图7所示,图中只有Oa段和cd段为直线。则根据该图像可知,蹦床的弹性势能增大的过程所对应的时间间隔为()图7A仅在t1到t2的时间内B仅在t2到t3的时间内C在t1到t3的时间内D在t1到t5的时间内解析:选C小孩从高处落下,在0t1时间内小孩只受重力作用;在t1t2时间内加速度减小,说明小孩又受到了弹力作用,蹦床受到压力;t3时刻,小孩的速度为零,蹦床受到的压力最大,弹性势能也最大;t3时刻后小孩反弹,蹦床的弹性势能减小。故选项C正确。11.通过探究得到弹性势能的表达式为Epkx2,式中k为弹簧的劲度系数,x为弹簧伸长(或缩短)的长度,请利用弹性势能表达式计算下列问题。放在地面上的物体上端系在劲度系数k400 N/m的弹簧上,弹簧的另一端拴在跨过定滑轮的绳子上,如图8所示。手拉绳子的另一端,从轻绳处于张紧状态开始,当往下拉0.1 m物体开始离开地面时,继续拉绳,使物体缓慢升高到离地h0.5 m高处。如果不计弹簧重和滑轮跟绳的摩擦,求整个过程拉力所做的功以及弹性势能的最大值。图8解析:由题意知弹簧的最大伸长量x0.1 m,弹性势能Epkx24000.12 J2 J,此过程中拉力做的功与弹力做的功数值相等,则有W1W弹Ep2 J,刚好离开地面时GFkx4000.1 N40 N物体缓慢升高,F40 N,物体上升h0.5 m时拉力克服重力做功W2Fh400.5 J20 J,拉力共做功WW1W2(220) J22 J。答案:22 J2 J12.如图9所示

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论