


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第19章复习与小结【学习目标】1让学生通过对几种特殊平行四边形的回顾与思考,梳理所学的知识,系统地复习各种特殊平行四边形的定义、性质、判定方法等2让学生正确理解平行四边形与各种特殊平行四边形的联系与区别,逐渐建立知识体系【学习重点】几种特殊平行四边形的性质与判定,联系与区别【学习难点】几种特殊平行四边形的定义、性质、判定的综合运用行为提示:创设问题情景导入,激发学生的求知欲望行为提示:让学生阅读教材,尝试完成“自学互研”的所有内容,并适时给学生提供帮助,大部分学生完成后,进行小组交流知识链接:1在矩形中折纸时,以宽为边长折得的正方形面积最大以长为斜边在后依此类推2勾股定理:a2b2c2.解题思路:解决折叠问题时,一般的方法是:勾股定理与面积法方法指导:例4:由正方形的性质和勾股定理可求得AC的长,由角平分线的性质和平行线的性质可得CAEE,所以CECA.找到CFCA即可情景导入生成问题【旧知回顾】自学互研生成能力【合作探究】范例1:(2016扬州中考)如图,矩形纸片ABCD中,AB4,BC6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是(C)A6B3C2.5D2,(例1题图),(例2题图),(例3题图),(例4题图)范例2:(2016宿迁中考)如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为(B)A2 B. C. D1范例3:(2016淄博中考)如图,正方形ABCD的边长为10,AGCH8,BGDH6,连接GH,则线段GH的长为(B)A. B2 C. D105范例4:(2016丹东中考)如图,正方形ABCD边长为3,连结AC,AE平分CAD,交BC的延长线于点E,FAAE,交CB延长线于点F,则EF的长为_6_.学习笔记:1四边形,平行四边形,矩形,菱形与正方形的集合表示2解决折叠的一般方法:勾股定理和面积法3四边形与三角形的知识的串联4在证特殊平行四边形时,一定要明确证题途径行为提示:教师结合各组反馈的疑难问题分配任务,各组展示过程中,教师引导其他组进行补充、纠错、释疑,然后进行总结评比学习笔记:检测的目的在于让学生掌握几种特殊的平行四边形的性质与判定,根据题意快速地处理问题范例5:(2016临沂中考)如图,将一矩形纸片ABCD折叠,使两个顶点A、C重合若AB4,BC8,则ABF的面积为_6_【自主探究】范例6:(2016宿迁中考)如图,在矩形ABCD中,AD4,点P是直线AD上一动点,若满足PBC是等腰三角形的点P有且只有3个,则AB的长为_4_范例7:(2016青岛中考)已知,如图,在ABCD中,E,F分别是边AD,BC上的点,且AECF,直线EF分别交BA的延长线,DC的延长线于点G,H,交BD于点O.(1)求证:ABECDF;(2)连结DG,若DGBG,则四边形BEDF是什么特殊四边形?请说明理由证明:(1)四边形ABCD是平行四边形,ABCD,BAEDCF,在ABE和CDF中,ABECDF;(2)四边形BEDF是菱形理由:如图,四边形ABCD是平行四边形,ADBC,ADBC.AECF,DEBF,四边形BEDF是平行四边形,OBOD.DGBG,EFBD,四边形ABCD是菱形交流展示生成新知1将阅读教材时“生成的新问题”和通过“自主探究、合作探究”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑2各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”知识模块一矩形、菱形与正方形的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 唐山职业技术学院《英语演讲与辩论专业理论教学》2023-2024学年第二学期期末试卷
- 青海大学昆仑学院《大学体育-跆拳道》2023-2024学年第二学期期末试卷
- 酒泉市肃北县第二人民医院招聘笔试真题2024
- 河南省新乡市长垣市2025年八年级英语第二学期期中综合测试模拟试题含答案
- 广东省珠海市香洲区2025年英语七下期中学业质量监测试题含答案
- 山东省临沂市沂水区2025届七下英语期中教学质量检测模拟试题含答案
- 中医内科学心系病证课件
- 工程师视频教学课件
- 消防疏散培训课件
- 工程师申报课件
- DBJ04T 439-2023 房屋建筑和市政基础设施工程造价指标指数编制标准
- 新版统编版一年级道德与法治下册全册教案(完整版)教学设计含教学反思
- 2025年上半年广东汕尾市城区招聘政府聘员69人易考易错模拟试题(共500题)试卷后附参考答案
- 2024年不动产登记代理人《地籍调查》考试题库大全(含真题、典型题)
- 财务服务协议书
- YC/Z 623-2024烟草商业企业卷烟物流应急作业指南
- GB/T 45098-2024营运纯电动汽车换电服务技术要求
- 物联网安全风险与防护
- 包装产品设计部门规划
- 2024年中国一次性内裤市场调查研究报告
- 克莱德贝尔格曼吹灰器说明书(Jetblower)
评论
0/150
提交评论