05毕业设计论文.doc

轿车驱动桥设计【含PROE三维、说明书】

收藏

资源目录
跳过导航链接。
轿车驱动桥设计【含PROE三维、说明书】.zip
05毕业设计论文.doc---(点击预览)
04论文目录大纲.doc---(点击预览)
03中英文翻译.doc---(点击预览)
02开题报告.txt---(点击预览)
01任务书(带参考文献).txt---(点击预览)
三维图纸
banzhou.prt.3
banzhouchilun1.prt.3
banzhouchilunhezhou.asm.1
chashuqike.prt.6
luoshuan.prt.3
luoxuanzhichilunda.prt.24
luoxuanzhichilunxiao.prt.22
trail.txt.1
xingxingchilun.prt.22
xingxingzhou.prt.2
zhuangpeitu.asm.2
压缩包内文档预览:(预览前20页/共32页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:20374553    类型:共享资源    大小:4.49MB    格式:ZIP    上传时间:2019-06-29 上传人:机****料 IP属地:河南
50
积分
关 键 词:
含PROE三维、说明书 轿车驱动桥设计 含ProE三维 驱动桥设计【含
资源描述:


内容简介:
毕 业 设 计(论 文)任 务 书 设计(论文)题目:轿车驱动桥设计 学生姓名:发任务书日期:2015年12月30日 任务书填写要求1毕业设计(论文)任务书由指导教师根据各课题的具体情况填写,经学生所在专业的负责人审查、系(院)领导签字后生效。此任务书应在毕业设计(论文)开始前一周内填好并发给学生。2任务书内容必须用黑墨水笔工整书写,不得涂改或潦草书写;或者按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,要求正文小4号宋体,1.5倍行距,禁止打印在其它纸上剪贴。3任务书内填写的内容,必须和学生毕业设计(论文)完成的情况相一致,若有变更,应当经过所在专业及系(院)主管领导审批后方可重新填写。4任务书内有关“学院”、“专业”等名称的填写,应写中文全称,不能写数字代码。学生的“学号”要写全号,不能只写最后2位或1位数字。 5任务书内“主要参考文献”的填写,应按照金陵科技学院本科毕业设计(论文)撰写规范的要求书写。 6有关年月日等日期的填写,应当按照国标GB/T 740894数据元和交换格式、信息交换、日期和时间表示法规定的要求,一律用阿拉伯数字书写。如“2002年4月2日”或“2002-04-02”。毕 业 设 计(论 文)任 务 书1本毕业设计(论文)课题应达到的目的: 1.通过本毕业设计使学生巩固、深化和扩展所学知识,培养和锻炼学生运用所学专业知识和技术解决工程实际问题的能力。2.本设计通过根据所选车型发动机、变速器等参数及动力性要求等,查阅相关资料、书籍,确定驱动桥总体设计方案,设计其主要零部件,并进行装配,使学生学会资料的调研、收集、整理和正确使用工具,掌握实验、测试等科学研究的基本方法;锻炼学生运用现代设计方法分析与解决工程实际问题的能力,树立正确的设计思想。同时培养学生独立分析和处理专业问题的能力,使学生初步具有工程设计和从事科学研究的能力。为从事本专业工作打下坚实的基础。 2本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等): 主要内容和要求:汽车驱动桥基本功用是增扭、降速,改变转矩的传递方向,同时驱动桥还要承受作用于路面和车架或车身之间的垂直力、纵向力和横向力,以及制动力矩和反作用力矩等。汽车驱动桥一般由主减速器、差速器、半轴、驱动桥壳等组成。要求完成:根据所选车型发动机、变速器等参数及动力性要求等,确定驱动桥总体设计方案;校核满载时的驱动力,对汽车的动力性进行验算;对主要零部件如主减速器、差速器等进行设计与强度计算;绘制零件图及装配图。工作要求:结合实习及实验开展,完成设计。所需条件:相关测试工具及手段(仪器、仪表等);相关的手册及文献资料;实验车辆及设备;电脑及相关CAD软件并能上网收集资料。 毕 业 设 计(论 文)任 务 书3对本毕业设计(论文)课题成果的要求包括图表、实物等硬件要求:对本毕业设计课题成果的要求为:1.在调研、收集资料和实验的基础上,确定驱动桥总体设计方案,校核满载时的驱动力,对汽车的动力性进行验算,对主要零部件如主减速器、差速器等进行设计与强度计算。2.符合要求的零件图及装配图。2.符合规范的毕业设计说明书一份。3.翻译一篇1万印刷符以上与课题相关的专业外文资料。 4主要参考文献: 1 陈家瑞.汽车构造(上下册)(第3版)M.北京:机械工业出版社,2009.2 余志生.汽车理论(第5版)M.北京:机械工业出版社,2009.3 王望予.汽车设计(第4版)M.北京:机械工业出版社,2004.4 喻凡,林逸.汽车系统动力学M.北京:机械工业出版社,2005.5 濮良贵,纪名刚.机械设计(第八版)M.北京:高等教育出版社,2006.6 徐石安.汽车构造底盘工程M.北京:清华大学出版社,2008.7 王国权,龚国庆.汽车设计课程设计指导书M.北京:机械工业出版社,2010.8 刘涛.汽车设计M.北京:北京大学出版社.2008.9 汽车工程手册编辑委员会.汽车工程手册(设计篇)M.北京:人民交通出版社,2001.10 王霄峰.汽车底盘设计M.北京:清华大学出版社,2010.11 刘平安.AutoCAD2011中文版机械设计实例教程M.北京:机械工业出版社,2010.12 林清安.完全精通Pro/ENGINEER野火5.0中文版零件设计基础入门M.北京:电子工业出版社,2010.13 王登峰.CATIA V5机械(汽车)产品CAD/CAE/CAM全精通教程M.北京:人民交通出版社,2007.14 陈海,洪桓桓.驱动桥桥壳有限元分析及结构优化J.汽车实用技术,2011,07期.15 申守平.转向驱动桥总成技术J.现代零部件,2011,05期.16 杜正越,徐治.4WD概念车驱动桥的设计与分析J.湖北汽车工业学院学报,2011,03期. 毕 业 设 计(论 文)任 务 书5本毕业设计(论文)课题工作进度计划:2015-11-04至2015-12-31 2016-01-02至2016-03-05 2016-03-06至2016-03-20 2016-03-21至2016-04-20 2016-04-21至2016-05-05 2016-05-06至2016-05-26 选题,查看任务书,收集整理课题相关参考资料; 进行毕业设计调研,完成开题报告,毕业设计外文资料翻译,毕业设计提纲; 完成驱动桥总体方案设计,校核满载时的驱动力,对汽车的动力性进行验算; 对驱动桥主要零部件如主减速器、差速器等进行设计与强度计算,绘制零件图及装配图;提交毕业设计草稿,进行中期检查; 完成毕业设计说明书定稿交由指导老师审阅,指导老师审核通过后,提交毕业设计全套材料,准备答辩; 根据学院统一要求,进行毕业设计(论文)答辩。 所在专业审查意见: 通过 负责人: 2016 年 1 月 22 日毕 业 设 计(论 文)开 题 报 告 设计(论文)题目:轿车驱动桥设计 学生姓名:2016 年 1 月 8 日 开题报告填写要求 1开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效;2开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见;3“文献综述”应按论文的框架成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇(不包括辞典、手册);4有关年月日等日期的填写,应当按照国标GB/T 740894数据元和交换格式、信息交换、日期和时间表示法规定的要求,一律用阿拉伯数字书写。如“2004年4月26日”或“2004-04-26”。5、开题报告(文献综述)字体请按宋体、小四号书写,行间距1.5倍。 毕 业 设 计(论文) 开 题 报 告 1结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写不少于1000字左右的文献综述: 一、前言汽车驱动桥是汽车的重要总成之一,驱动桥处于动力传动系的末端,主要由主减速器、差速器,车轮传动装置和驱动桥壳等组成,其基本功能是增大由传动轴或变速器传递的转矩,并将转矩合理的分配给左右驱动车轮,另外还承受作用于路面和车架或车身之间的垂直力,纵向力和横向力1。汽车车桥的结构形式和设计参数除了对汽车的可靠性和耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性以及操作稳定性等有直接影响4。随着近年来油价上涨,汽车的运输成本也越来越高,因此在保证汽车动力性的前提下,提高其燃油经济性就显得尤为重要。为了降低油耗,不仅要在发动机环节上节油,而且也要在传动系中减少能量损耗。这就必须在发动机的动力输出之后,在从发动机传动轴驱动桥这一动力输送环节中寻找能量的损耗。在这一环节中,发动机是动力输送者,也是整个机器的心脏,而驱动桥则是将动力转化为能量的最终执行部分。因此,采用性能优良且与发动机匹配性比较高的驱动桥便成了有效的节油措施之一2。随着汽车工业的发展及汽车技术的提高,驱动桥的设计、制造工艺都在日益完善。二、课题研究领域的现状、动态及发展方向在新政策汽车产业发展政策中,在2010年前,我国就要成为世界主要汽车制造国,汽车产品满足国内市场大部分需求并批量进入国际市场;2010年,汽车生产企业要形成若干驰名的汽车、摩托车和零部件产品品牌;通过市场竞争形成几家具有国际竞争力的大型汽车企业集团,力争到2010年跨入世界500强企业之列,等等。同时,在这个新的汽车产业政策描绘的蓝图中,还包含许多涉及产业素质提高和市场环境改善的综合目标,着实令人鼓舞。然而,不可否认的是,国内汽车产业的现状离产业政策的目标还有相当的距离。自1994年汽车工业产业政策颁布并执行以来,国内汽车产业结构有了显著变化,企业规模效益有了明显改善,产业集中度有了一定程度提高。但是,长期以来困扰中国汽车产业发展的散、乱和低水平重复建设问题,还没有从根本上得到解决。多数企业家预计,在新的汽车产业政策的鼓励下,将会有越来越多的汽车生产企业按照市场规律组成企业联盟,实现优势互补和资源共享。驱动桥是汽车的一项重要总成,因此加快研究优化驱动桥设计对于改善目前国内的汽车产业具有十分重要的作用。国内生产轮胎式驱动桥的厂家较多,品种和规格也较全,其性能和质量基本上能够满足国产工程机械的使用要求。国内驱动桥多采用蹄式或盘式制动器,盘式制动器又分为钳盘式和全盘式两种类型,与国外先进产品相比,国内驱动桥齿轮传动装置技术水平仍较低,不足之处主要有两方面:一是齿轮,轴类,壳体等零件材料与制造工艺与国外产品相比存在一定差距,存在整体重量和体积较大,使用寿命短等缺陷;二是技术性能相对落后,普遍没有采用自锁式防滑差速器和湿式制动器等先进装置。在轮胎式工程机械驱动桥中推广自锁式防滑差速器和湿式制动器,是提高工程机械驱动桥产品技术水平的途径之一。自锁式防滑差速器能自动实现转矩在左右车轮间的不等分配,以充分利用车辆的牵引力,可以明显提高轮胎驱动工程机械的越野性能和经济性,目前用的最多的是牙嵌式全自动差速锁,这也是国产机械驱动桥技术发展的必然趋势。 参考文献:1 陈家瑞.汽车构造(上下册)(第3版)M.北京:机械工业出版社,2009.2 余志生.汽车理论(第5版)M.北京:机械工业出版社,2009.3 王望予.汽车设计(第4版)M.北京:机械工业出版社,2004.4 喻凡,林逸.汽车系统动力学M.北京:机械工业出版社,2005.5 徐石安.汽车构造底盘工程M.北京:清华大学出版社,2008.6 王国权,龚国庆.汽车设计课程设计指导书M.北京:机械工业出版社,2010.7 刘涛.汽车设计M.北京:北京大学出版社.2008.8 汽车工程手册编辑委员会.汽车工程手册(设计篇)M.北京:人民交通出版社,2001.9 王霄峰.汽车底盘设计M.北京:清华大学出版社,2010.10 黄金陵.汽车车身设计M.北京:机械工业出版社,2007.11 彭莫,刁增祥.汽车动力系统计算匹配及评价M.北京:北京理工大学出版社,2009.12 濮良贵,纪名刚.机械设计(第八版)M.北京:高等教育出版社,2006.13 范钦珊,殷雅俊.材料力学(第2版)M.北京:清华大学出版社,2008.14 刘平安.AutoCAD2011中文版机械设计实例教程M.北京:机械工业出版社,2010.15 林清安.完全精通Pro/ENGINEER野火5.0中文版零件设计基础入门M.北京:电子工业出版社,2010.16 王登峰.CATIA V5机械(汽车)产品CAD/CAE/CAM全精通教程M.北京:人民交通出版社,2007.17 王丰元.汽车驱动桥虚拟设计系统研究J.机械设计与制造,2009,04期.毕 业 设 计(论文) 开 题 报 告 2本课题要研究或解决的问题和拟采用的研究手段(途径): 一、本课题要研究或解决的问题本课题主要研究的对象是家用轿车的驱动桥设计。汽车驱动桥一般由主减速器、差速器、半轴、驱动桥壳等组成。根据发动机、变速器等参数及动力性要求等,并参考相关文献来确定驱动桥总体设计方案,对相关零件的力学特性和驱动桥的动力性进行校核计算,绘制相关零件及其装配图,以此完成本次设计方案。二、拟采用的研究手段(途径) 主要技术路线是:1.查阅轿车驱动桥相关资料,深入了解驱动桥总成,确定驱动桥总体设计方案;2. 熟悉CATIA,Pro/E,CAD等绘图软件;3. 校核驱动桥满载时的驱动力,对汽车的动力性进行验算,对主要零部件如主减速器、差速器等进行设计与强度计算;4.利用计算机辅助绘图软件绘制三维零件及其装配图。毕 业 设 计(论文) 开 题 报 告 指导教师意见:1对“文献综述”的评语:学生能够在收集查阅毕业设计(论文)课题相关文献资料的基础上总结撰写文献综述,文献综述调理清晰、格式规范,符合文献综述的特点与要求。 2对本课题的深度、广度及工作量的意见和对设计(论文)结果的预测:本课题深度广度适中,工作量符合毕业设计要求;经过认真充分的准备工作,应当能够如期完成毕业设计(论文)工作。 3.是否同意开题: 同意 不同意 指导教师: 2016 年 03 月 13 日所在专业审查意见:同意 负责人: 2016 年 04 月 07 日毕 业 设 计(论 文)外 文 参 考 资 料 及 译 文译文题目: 方程式赛车的空气动力制动装置 学生姓名:专业:所在学院:指导教师:职称: 年1月20日Aerodynamic Brake for Formula Cars Abstract:In the last years,in formula racing cars championships, the aerodynamic had reached an ever more important stance as a performance parameter. In the last four seasons, Red Bull Racing Technical Officer had designed their Formula 1 car with the specific aim to generate the optimal downforce, in relation to the car instantaneous setup. However, this extreme research of higher downforce brings some negative effects when a car is within the wake of another car; indeed, it is well known that under these condition the aerodynamic is disturbed, and it makes difficult to overtake the leading car. To partially remedy this problem, Formula 1 regulations introduced the Drag Reduction System (DRS) in 2011, which was an adjustable flap located on the rear wing; if it is flattened, allowing to reduce the downforce, increasing significantly the velocity and, therefore, the chances to overtake the leading car. Vice versa, when the flap is closed, it ensures a higher grip, which is very useful especially in medium-slow speed turns. Keeping the focus on the rear wing, but by shifting attention from the increased top speed to increase the grip in the middle and slow speed curves, we decided to study a similar device to the DRS, but with the opposite effect. The aim is to design an aerodynamic brake integrated with the rear wing. In particular, the project idea was to sculpt, on the upper surface of the wing (pressure side), a series of C shaped cavity, nor-mally covered by adequate sliding panels. These cavities, when they are discovered, at the begin-ning of the braking phase, produce a turbulence and additional increase downforce, lightening the load on the braking system and allowing the pilot to substantially reduce slippage and to delay the braking. Since it seems that the regulations adopted by the FIA Formula 1 Championship do not allow such a device, it has been decided to apply the concept on a Formula 4 vehicle. This paper describes the design and analyzes the effects of these details on a standard wing cavity, using acommercial CFD software.Keywords: Aerodynamic Brake, Cavity, Dynamic Effects, Fluid Dynamic Simulation1 Problem FormulationIn this paper, the realization of an aerodynamic brake integrated in a rear wing of a formula car has been consi-dered. The first step consists in the choice of an appropriate aerodynamic appendix. In particular, it was decided to study an Italian Formula 4 race car 1, being a category in the first stages of development. Also, the regula-tion of this championship is easy to find and the car is characterized by uniformity of the mechanics and the air-foils. Therefore, taken note of the technical regulation on FIA website, it was decided to study the upper airfoil, of which was shown a dimensioned drawing (Figure 1). It is an aluminum alloy wing, with a chord line of 237.9 mm and a height of 54.2 mm.Formula 4 championship will provide the use of a 4T heat engine(Otto/Beau de Rochas cycle): it can be na-turally aspirated or turbocharged, with maximum power in the order of 120 kW (160 HP). Considering the weight of the car and the race tracks of the championship, it is predicted a maximum speed of 230 km/h (64 m/s). Regarding the operating conditions, an air temperature of 300K was assumed at atmospheric pressure.Briefing Description of Airfoil BehaviorConsidering an airfoil, there are several elements that have a specific nomenclature:1) Mean camber line: locus of points halfway between the upper and lower surface as measured perpendicular to the mean chamber line itself;2) Leading edge: the most forward point of the mean camber line;3) Trailing edge: the rearmost point of the mean camber line;4) Chord: the straight line joining the leading edge with the trailing edge; 5) Upper surface: the upper boundary of the profile; 6) Lower surface: the lower boundary of the profile; 7) Thickness: the distance between the lower surface and the upper surface.The different airfoil shapes are marked by a logical numbering system which was introduced by the U.S. federal agency NACA. This system consists of four digits which have a definite meaning: the first digit indicates the maximum camber in hundredths of chord; the second digit represents the location of maximum camber along the chord from leading edge in tenths of chord; the third and fourth give the maximum thickness in hundredths of chord.When an airfoil is moving relative to the air, it generates an aerodynamic force, in a rearward direction at an angle with the direction of relative motion. This aerodynamic force is commonly resolved into two components: lift and drag. Lift is the force component perpendicular to the direction of relative motion while Drag is the force component parallel to the direction of relative motion. These forces are studied at different angles of attack which is the angle at which an airfoil cleaves fluid. The experimental data show that CL varies with the angle of attack: more precisely, at low angles of attack the lift coefficient CL varies linearly with . In a region characterized by a linear trend, the flow moves smoothly over the airfoil and is attached to the back of the wing. As soon as increases, the flow tends to separate from the surface of the airfoil, creating a region of “dead air” behind the profile. A briefing flow analysis of the physical phenomenon in question in order to understand better what is happening in the latter case is reported. It is clear from Figure 2 that the speed at the trailing edge tends to increase, with a strong reduction of the pressure, while in the stagnation point the speed tends to be zero and pressure rises sharply. It creates an adverse pressure gradient, thus particles of fluid move from the trailing edge to the stagnation point, and then it has a rapid separation of the boundary layer below. Stagnation point does not have a stable position in these conditions because there is not pressure recovery. The recirculation generated by the detachment of the boundary layer creates first vortex that causes a wake vortex. It is necessary to study the turbulent behavior of the fluid that meets the wing, through the Navier-Stokes equations in order to consider the stall of the wing:where u(x, t) is the instantaneous velocity, the medium density, the viscosity and f the applied force.This system of equations is a system of partial differential equations that describe the behavior of a Stokesian fluid: the fluid can be considered to be continuous. There is an analytical solution only in simplified cases, while solutions in the other cases can be obtained using simplified methods of numerical analysis. The most straightforward method for the numerical simulation of turbulent flows is direct numerical simulation DNS which discretizes the Navier-Stokes equations. It resolves the entire range of turbulent length scales thus the description of the flow is so detailed that the validity of the simulation is similar to an experiment. The computational cost is proportional to Re3, thus it is necessary to use a different solution studying turbulent flows at high Reynolds, because the computational resources required by a DNS would exceed the capacity of the most powerful computer currently available. In practical applications, the knowledge of the average quantities is enough to solve the problem of a turbulent flow; the basic idea of the technique RANS (Reynolds Averaged Navier-Stokes Equations) is to derive only the average parameters (mediated in time) from Navier-Stokes equations, reducing the enormous computational cost required by DNS. In practice, the turbulent motion consists of a mean motion and fluctuation over time. Using the decomposition of Reynolds:Where u( x, t) is the instantaneous velocity, u( x, t) is the average velocity u( x, t) is the speed fluctuating, through Navier-Stokes equations its possible to obtain the Reynolds averaged equations. The equations for the mean motion obtained are similar to Navier-Stokes equations with the exception of the divergence of the stress tensor Reynolds: the system resulting from the Navier-Stokes equations is closed, while the system resulting from the RANS simulation is not open because Reynolds tensor introduces 6 additional unknowns. The problem mentioned is known as the problem of closure of turbulence which is solved by introducing models for the turbulent fluctuations which have to reproduce the action of fluctuating terms on mean motion.The K- model is one of the most common models of turbulence, even if it is not appropriate in the case of strong adverse pressure gradients. It is a model with two equations: it includes two additional transport equations to represent properties of the turbulent flow and effects such as convection and diffusion of turbulent energy. The first variable transported is the turbulent kinetic energy, k. The second variable transported is the turbulent dissipation, ; the second variable determines the scale of turbulence, while the first variable k determines the energy in the turbulence. There are two formulations of the K- models: the standard k-epsilon model and the RNG k-epsilon model.In the standard k-epsilon model, eddy viscosity is determined by single length scale turbulence, so the turbulent diffusion is calculated only through a specified scale, whereas in reality all scales of motion will contribute to turbulent diffusion.The approach RNG (Re-Normalisation Group), a mathematical technique that can be used to obtain a model similar to the k-epsilon turbulence, presents a modified equation , which attempts to explain the different scales of turbulence through changes at the term of production of turbulence. The equations used are: a) Kinematic Eddy Viscosity b) Turbulence Kinetic Energyc) Dissipation RateClosure coefficient for standard k-epsilon model:1. Project DescriptionThe purpose of this project is to improve the race performance, reducing the breaking distance and increasing the bending speed.So, we decided to intervene on the drag generated by the wing during the breaking, and also on the grip provided by downforce, function of velocity. To explain the lift, and then the downforce, reference may be made to the wing of an airplane, observing its section. The latter is asymmetric, the top has a profile longer than the bottom: when the wing moves, it separates the relative flow in two parts, so the air layers scroll faster in the top. The outflow over the wing undergoes a boost and then is aerodynamic brake for formula cars accelerated towards the tail at a higher velocity than the air under the wing, which follows a shorter path. So the two currents are reunited in the tail after a same time interval, without creating imbalances. This is not just the facts, but as a first approximation, we can refer to this model. In reference to the Bernoulli trinomial law, since in the lower flow velocity is lower than in the upper, the pressure under the wing has to be greater than that above the wing. Therefore, the difference between the two pressures generates a resultant directed upwards, that is the lift, which holds the aircraft in the air. In detail, lift can be expressed as:where: is the medium density; V is the air velocity; A is the reference surface; Clis a lift dimensionless coefficient; is the wing angle of attack.In racing cars, the wing is mounted upside down and the vertical thrust towards the ground (downforce): this is correlated to the tires grip coefficient. The running resistance depends on its front section, its forward speed, the density of the medium and a drag coefficient. The drag coefficient (Cd) depends on the object shape and size of the object, the medium density and viscosity, the surface roughness, and the object velocity. The aerodynamic resistance (in general fluid dynamics), or drag, is related to a large number of factors, as shown by the formula:where: is the medium density of the; V is the air velocity; A is the reference surface (in case of aircraft is the wing surface, the car front surface); Cd is a drag dimensionless coefficient; is the wing angle of attack.The overall resistance opposed by a fluid medium to the object forward movement is given, in first approximation, by the sum of the frictional resistance, the wake resistance and the induced resistance of lift. In particular, for a tapered body, the flow resistance is given by friction (laminar and/or turbulent), that is the rubbing of the surface against the medium. For this purpose we introduce the concept of boundary layer: its the dynamic range, laminar or turbulent, in which internal current speed is subject to strong gradients (continuous changes), due to the viscosity of the fluid. It can be considered as the area that undergoes a disorder, and the velocity is zero on the layer surface (Figure 3).The thickness of the boundary layer is very small, and it is of one order of magnitude lower than the overall dimensions of the object, that generates the viscose perturbation. Then, inside the boundary layer, the tangential shear stress is “dense”. For this reason in the layer is exerted an intense dissipative braking action, converting part of the movement in thermal agitation. The dissipative action limits the relative velocity between the object and the fluid, which surrounds it. In a turbulent boundary layer, the viscous stresses are added also the stresses, due to the exchange of transverse momentum; these actions increase with the fluid density. The chaos of the turbulent fluid motions implies higher thermal dissipation, so the braking opposing force, in turbulent flow conditions, is greater than that of the laminar regime. The resistance generated, in this way, is affected by the surface roughness: moreover, the rougher surfaces ignite earlier and more easily the turbulent condition in the flow, and then, determine higher resistances. Therefore, it was decided to design some ducts, on the pressure side of the wing, initially covered by special sliding plates, for increasing the aerodynamic drag and downforce 2.2. Wing DesignThe first phase of the design is to draw the profile of the wing with a CAD software. In this way, it is possible to make a CFD simulation, to evaluate the aerodynamic performance of the wing, in terms of downforce and drag, and estimate the useful angles of attack before stall phenomenon occurs 3. In fluid dynamics the stall is a reduction of the lift coefficient due to an increase of the angle of attack or due to the incident velocity decrease on an aerodynamic profile, such as an airfoil, a propeller blade or a turbomachinery rotor. The minimum value of the angle of attack for which the stall occurs is called critical angle of attack. This value which corresponds to the maximum lift coefficient, changes significantly, depending on the particular profile or on the considered Reynolds number 4. Similarly, the profile of the active cavities has been reported, and appropriate simulations were performed. In this way it was possible to estimate the sizes and configurations to achieve the project target. Based on the data collected, the application of these cavities on the wing is studied, evaluating the performance on the different possible arrangements of these cavities. At this moment only 2D simulations have been performed, and a 3D series is considered as future improvement of the project. The models, the different configurations and the results obtained from all the cases mentioned above, will be shown in detail in the following paragraphs.Geometry ModelingTo approximate the operating conditions of the wing, a control conduit with the dimensions shown in Figure 4(a)has been chosen. Regarding to the active cavity, the geometry is illustrated in Figure 4(b). The space surrounding the geometry of the aerodynamic and the cavities was discretized using a special dedicated software available as ANSYS package. Furthermore, to observe the progress of the boundary layer, it was built on a reference mesh of 5 layers, with growth factor 1.1, starting from the adjacent profiles of height 0.18 mm (Figure 5). To this purpose, a sizeable set of data was created by means of sufficiently accurate numerical simulations, to derive initial values. The simulations were performed on 3-D models in kinematic similarity using a commercial CFD simulation code, ANSYS/Fluent. The turbulence model was the k- realizable, with second order accuracy. Each model was meshed to ensure a y+max 5, a necessary condition for adopting the enhanced wall treatment, since the quality of the grid has a relevant importance on the accuracy and stability of the numerical simulation.Commercial software allows the “plastering” of cell layers to the critical boundaries of the control volume, which are obviously, in this case, the wall surfaces of the hub, casing and blades. In these zones the usual practice is that of creating a completely structured boundary layer, specifying whenever possible both the height of the first row of cells and the “growth ratio”, i.e. the rate that determines the height of the successive cells. In this process, the height of the first row of cells is usually determined via an empirical formula that gives the value of a wall-based local Reynolds number, denoted by y+ (y+ = u*y/v where u*= (wall/)1/2, with wall being the wall shear stress). For the wing analysis control volume was split in several smaller sub-volumes, to achieve a more consistent set of faces and to better exploit the possibility of creating a locally more refined grid. The choice of the boundary conditions was made as follows: it was performed heuristically, starting from the preliminary sizing data, calibrating them by means of a first simulation, adjusting the values by iteratively resetting the outlet static pressure on the near-wake radial area downstream of the trailing edge. Through subsequent simulations the values of the inlet total pressure and temperature were refined as well in order to ensure conservation of the mass flow rate (the so-called “mass flow inlet condition” was adopted). The turbulent parameters were the turbulence intensity I =( k) U . Rotational periodicity was imposed on all lateral channel surfaces. The number of cells is about 65,000 elements. Finally, the starting boundary conditions are: fluid: it is considered air as an ideal gas at constant viscosity; input data: the pressure of 101325 Pa and temperature of 300 K represent the operating conditions. boundary conditions: inlet mass flow rate; outlet pressure outlet; for both, the conditions relating to the model were set on intensity and length scales, with values of 5% and 0.03 m (1/10 of the rope)respectively; on the upper and lower walls of the duct it has set the periodicity condition; for wing, are set on the condition stationary wall and no slip; for the solution a simple high order term and relaxation has been chosen, by setting for all variables a relaxation factor of 0.25.3. Conclusions and Possible ImprovementsThe CFD simulations indicate the effectiveness of active cavities, practiced on a formula car rear wing, in order to achieve an aerodynamic brake. Specifically, we can assert that the configuration with the best balance between downforce and drag is that with extended ducts over the entire top surface of the aerodynamic (Fl= 365.172N, Fd= 65.88N). Finally, by exploiting the selectivity of sliding panels, as previously explained, it can be realized different wing configurations, depending on the needs required by the race and the sensitivity of the driver.As regards any improvements, to be made on the performance testing of the brake (the object of study of this paper), more CFD simulations could perform, using a vertical bulkhead on the terminal part of the wing, as well as 3D simulations. In this way, it would be possible to observe the effects of lift drag which should be minimized. Then the next step would be to achieve physically this device, to install it on a formula car and compare experimental data with those obtained by CFD simulations.References1 2014 Formula 4 Technical Regulations, FIA.2 Gamma, F., Sciubba, E., Zingaro, D. and Farello, G.E. (2002) Fluid Dynamic Behavior of Heat Exchangers with Active Cavities: A Numerical Study. Numerical Heat Transfer Applications, 42, 385-400.3 Chandra, S., Lee, A., Gorrel, S. and Greg Jensen, C. (2011) CFD Analysis of PACE Formula 1 Car. PACE, 1, 1-14.4 Prasad. A.K. and Koseff, J.R. (1989) Reynolds Number and End-Wall Effects on a Lid-Driven Cavity Flow. Physics of Fluids A: Fluid Dynamics, 1, 208-218.5 Chen, C.-L., Chung, Y.-C. and Lee, T.-F. (2012) Experimental and Numerical Studies on Periodic Convection Flow and Heat Transfer in a Lid-Driven Arc-Shape Cavity. International Communications in Heat and Mass Transfer, 39, 1563-1571. 方程式赛车的空气动力制动装置摘要:在过去的几年里,在方程式赛车锦标赛中,空气动力作为一项性能参数已经达到了一个前所未有的更重要的姿态。在过去的四个赛季,红牛赛车技术人员以产生最佳压力为具体目标设计了他们的一级方程式赛车,这关系到汽车的瞬时设置。然而,这种极端的研究更高压力会使当一辆车行驶在另一辆车的后面时带来一些负面影响;事实上,众所周知,在这种情况下,气动是不安全的,而且很难追上领先的汽车。为了简单地解决这个问题,一级方程式赛车引进了减阻系统(DRS)2011,一个位于尾翼的调节瓣;如果它是扁平的,那么可以减少压力,显著增加速度,因此,赶上领先的汽车的机会也会增大。相反,当皮瓣关闭,它保证了更高的抓地力,这是非常有用的,尤其是在中等速度慢转的时候。这虽然可以保持压力在尾翼,但是,通过从增加顶部速度,转移到增加在中间和缓慢的抓地力速度曲线,我们决定研究一个和DRS类似的装置,但会伴随负面影响。目的是设计一套集成在尾翼的空气动力制动装置。需要注意的是,这个项目的理念是在机翼上表面(高压侧)进行雕刻一系列的“C”形腔,通常会被足够的滑动板覆盖。当他们被发现时,在开始制动阶段,这些空洞会产生湍流和额外增加的下压力,减轻在制动系统上的负载,并允许驾驶员大幅减少延误和延误制动。因为似乎在被FIA 1级方程式锦标赛采用的规则中规定,不允许使用这样的装置,它已经被应用于四级方程式赛车。本文描述了这个设计,并使用商用计算流体力学软件分析了这些在一个标准的翼腔上的细节的影响。关键词:气动制动器;腔;动效应;流体动力学仿真1 问题规划在本文中,我们考虑将空气动力制动装置集成在方程式赛车的尾翼上。第一步是选择一个合适的气动附件。特别是,这已经决定将它在一个意大利四级方程式赛车1上进行研究,是一个类别的发展的第一阶段。同时,从这次锦标赛的规则中,我们很容易发现赛车的特点是力学和翼型的均匀性。因此,联系到在国际汽联网站的技术法规,本文决定研究上翼型,文中显示了一个尺寸图(图1)。它是铝合金翼,有一条237.9毫米的弦线和54.2毫米的高度线。四级方程式锦标赛将提供一个4T热引擎(奥托/博洛卡斯周期):它可以自然吸气和涡轮增压,可以达到最大功率120 K W(160马力)。考虑到赛车的重量和锦标赛的赛道,我们可以预测最高时速为230公里/小时(64米/秒)。关于操作条件,在常压下,空气温度为300K。机翼行为的简要介绍:机翼有几个元素有一个特定的命名:1)平均中高线:测量垂直于平均分室线的上下表面之间的点的轨迹;2)前缘:最前沿的平均弧线;3)后缘:最后沿的平均弧线;4)弦:连接前缘与后缘的直线;5)上表面:剖面的上边界;6)下表面:剖面的下边界;7)厚度:下表面与上表面之间的距离。不同翼型形状的逻辑编号系统是由美国联邦机构NACA规定标记的。该系统由四个数字组成,具有一定的意义:第一个数字表明曲面弦百分比的最大值;第二个数字表明分弦前缘沿弦线的最大弯度的位置;第三、第四个数字表明百分之弦的最大厚度。当翼型相对空气移动,大气在向后与相对运动方向的夹角上产生气动力。这种气动力通常分为2个部分:升力和阻力。升力是垂直于相对运动方向的力分量,而阻力则是平行于相对运动方向的力分量。实验数据表明,氯离子随攻角的变化而变化:更准确地说,在低攻角下的升力系数随时间变化呈线性变化。在流动平稳的翼型件和连接到后面的机翼这个区域,其特征是一个线性趋势。当一个由一个增加,大气流动倾向于分离的翼型表面,在背后的轮廓创建一个区域的“死空气”。对该问题的物理现象进行分析,可以更好地了解在后一种情况下发生时的具体情况。从图2中可以清楚地看出,在压力增加时,其在后缘的速度会增加,而在停滞点上的速度趋于零,并且压力急剧上升。这会产生一个不利的压力梯度,从而使流体从后缘移动到停滞点。在这些情况下,因为没有压力恢复,故没有一个稳定的位置。边界层脱离产生的循环形成第一个涡流,该涡流可以创建一个涡尾。图1. 一个F4的尾翼图纸尺寸(毫米)图2.具有通用流动方向的翼型特性研究流体的湍流行为是很必要的,为了考虑失速的机翼,我们可以通过离散纳维-斯托克斯方程:其中u(x,t)为瞬时速度,为介质密度、为粘度和f为施加的力。这个系统的方程是偏微分方程,是一个描述斯托克斯流体行为的系统:流体被认为是连续的。只有在简化情况下,才有一个解决方案,而其他情况下的解决方案,可以利用简化情况下来进行数值分析从而得到解决方法。对于湍流流动数值模拟的最简单的方法是直接利用DNS离散纳维-斯托克斯方程。它解决了整个范围内的湍流长度尺度,因此,流动的描述是如此详细以至于仿真的有效性类似于一个实验。计算成本与雷诺兹成正比,因此在高雷诺兹情况下使用一个不同的解决方案来研究湍流是有必要的,因为目前可用的最强大的计算机不能满足DNS所需的计算资源能力。在实际应用中,平均数量的知识足以解决湍流问题;该技术的基本思想(雷诺兹平均的纳斯-斯托克斯方程)在纳维-斯托克斯方程中只有平均参数(介导的时间),这可以减少DNS所需的巨大的计算成本。在实践中,湍流运动包括一个平均运动和随时间波动。利用雷诺兹分解:其中u( x, t)是瞬时速度,平均速度,u( x, t)是速度脉动通过纳斯-斯托克斯方程可以得到雷诺兹平均方程。平均运动方程组的得到类似于纳维-斯托克斯方程,除了应力张量的散度:从纳维-斯托克斯方程形成的系统是封闭的,而从RANS模拟得到的系统不开放是因为雷诺兹张量里面有6个未知数。这个提到的问题被称为湍流的封闭问题,是通过引入湍流波动模型来解决的,这个模型必须再现平均运动波动的作用。k-模型是湍流里面最常见的一种模式,即使在强逆压梯度的情况下不合适。这是一个双方程模型:它包含2个附加的输运方程,这代表湍流流动的特性及其影响,比如对流和湍流能量扩散。第一个变量输送的是湍动能K,第二变量输送的是湍流耗散;第二变量确定湍流的尺度,而第一变量K决定在湍流的能量。有两种K -模型的配方:标准的k-模型和RNG kepsilon模型。在标准的k-模型中,因为涡流粘度是由单尺度的湍流决定的,所以湍流扩散只有通过指定的规
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:轿车驱动桥设计【含PROE三维、说明书】
链接地址:https://www.renrendoc.com/p-20374553.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!