YC653苹果装箱机械手设计【含CAD图纸毕业论文】
收藏
资源目录
压缩包内文档预览:
编号:20534600
类型:共享资源
大小:1.49MB
格式:ZIP
上传时间:2019-07-04
上传人:QQ24****1780
认证信息
个人认证
王**(实名认证)
浙江
IP属地:浙江
50
积分
- 关 键 词:
-
含CAD图纸毕业论文
- 资源描述:
-
YC653苹果装箱机械手设计【含CAD图纸毕业论文】,含CAD图纸毕业论文
- 内容简介:
-
南京理工大学泰州科技学院毕业设计说明书(论文)作 者:学 号:学院(系):专 业:题 目:苹果装箱机械手设计指导者: 评阅者: 2016 年 6 月毕业设计说明书(论文)中文摘要本课题最终目的在于研制一套自动装箱机械手用于苹果自动生产线取代人工装箱工作,以实现成型工序参数的稳定性。设计了一种苹果自动装箱机械手,利用步进电动机带动手臂进行上下移动和水平垂直旋转,通过气压驱动机械手抓取和松放,能够实现全自动装箱放各种型式和材料的苹果。本次设计的苹果自动装箱机械手由底座、传送机构、臂部升降机构、臂部摆动机构、吸盘等构成。本次设计首先,通过对苹果自动装箱机械手结构及原理进行分析,在此分析基础上提出了总体结构方案;接着,对主要技术参数进行了计算选择;然后,对各主要零部件进行了设计与校核;最后,通过AutoCAD制图软件绘制了苹果自动装箱机械手装配图及主要零部件图。通过本次设计,巩固了大学所学专业知识,如:机械原理、机械设计、材料力学、公差与互换性理论、机械制图等;掌握了普通机械产品的设计方法并能够熟练使用AutoCAD制图软件,对今后的工作于生活具有极大意义。关键词:苹果,装箱机械手,滚珠丝杠,齿轮,轴毕业设计说明书(论文)外文摘要Title Apple packing manipulator designAbstractThe ultimate goal of this project is to develop a set of automatic packing machine for automatic production line of apple to replace the manual packing, in order to achieve the stability of the forming process parameters. An apple automatic packing manipulator is designed, using step motor drive the arm of under movement and vertical rotation, through the air pressure drive manipulator and release, can realize the automatic packing for various types and materials of apple. The design of Apples automatic packing machine hand by the base, the transmission mechanism, the arm of the lifting mechanism, the arm swing mechanism, sucker, etc.This design first, through apple automatic packing machine for the structure principle and analysis, this analysis is proposed based on the overall structure of the program; then, the main technical parameters were calculated to select; then, of the main parts were designed and checked. Finally, through the AutoCAD drawing software drawn apple automatic packing machine for assembly and major parts of the map.Through the design, the consolidation of the University of the professional knowledge, such as: mechanical principles, mechanical design, mechanics of materials, tolerance and interchangeability theories, mechanical drawing; master the design method of general machinery products and be able to skillfully use AutoCAD drawing software, for the future work in life is of great significance.Key words: apple, packing machine, ball screw, gear, shaft目 录1 绪论11.1 研究背景及意义11.2 机械手简介11.3 机械手国内外研究现状21.4 机械手发展趋势32 方案设计42.1 设计要求42.1.1 功能要求42.1.2 参数要求42.2 机械手的构成42.2.1 执行机构42.2.2 驱动机构52.2.3 控制系统52.3 总体方案设计52.3.1 总体方案拟定52.3.2 升降机构方案62.3.3 摆动机构方案73 升降机构的设计83.1 电动机的选择83.1.1 根据脉冲当量和最大静转矩初选电机型号83.1.2 启动矩频特性校核93.2 滚珠丝杆副的选型与校核93.2.1 型号选择103.2.2 校核计算113.3 导轨的选型与校核113.3.1 导轨的选型113.3.2 滑动导轨副的计算、选择123.4 轴承及键的校核与寿命计算144 摆动机构的设计164.1 电动机的选择164.1.1 电机轴的转动惯量164.1.2 电机扭矩计算174.2 齿轮传动的设计184.2.1 选精度等级、材料和齿数184.2.2 按齿面接触疲劳强度设计184.2.3 按齿根弯曲强度设计204.2.4 几何尺寸计算214.3 旋转轴及轴上零件的设计与校核224.3.1 尺寸与结构设计计算224.3.2 强度校核计算234.3.3 键的校核与寿命计算254.4 摆臂设计254.5 吸盘的选择255 控制系统设计275.1 CPU与存储器285.2 中断处理电路335.3 8279键盘、显示37总 结44参考文献45致 谢46附 录47附录147附录256II 本科毕业设计说明书(论文) 第63页 共 60 页1 绪论1.1 研究背景及意义苹果在运输过程中容易磕碰、挤压等导致破损后腐烂,因此苹果必须装箱运输,我国苹果产量巨大,每年到丰收季节均会有大量苹果等待装箱,如果均靠人力会耗费大量人力及时间,不仅容易使工人作业疲劳而且容易错过最佳上市时间,因此希望设计出苹果装箱机械手,实现苹果自动装箱。在机械工业中,应用机械手的意义可以概括如下:(1)以提高生产过程中的自动化程度:应用机械手有利于实现材料的传送、工件的装卸、刀具的更换以及机器的装配等的自动化的程度,从而可以提高劳动生产率和降低生产成本。(2)以改善劳动条件,避免人身事故:在高温、高压、低温、低压、有灰尘、噪声、臭味、有放射性或有其他毒性污染以及工作空间狭窄的场合中,用人手直接操作是有危险或根本不可能的,而应用机械手即可部分或全部代替人安全的完成作业,使劳动条件得以改善。三、可以减轻人力,并便于有节奏的生产:应用机械手代替人进行工作,这是直接减少人力的一个侧面,同时由于应用机械手可以连续的工作,这是减少人力的另一个侧面。综上所述,有效的应用机械手,是发展机械工业的必然趋势。1.2 机械手简介到目前为止,世界各国对“机械手机械手”还没有做出统一的明确定义。通常所说的“机械手机械手”是一种能模拟人的手、臂的部分动作,按照予定的程序、轨迹及其它要求,实现抓取、搬运或操纵工具的自动化装置。而“机械手”一般具有固定的手部、固定的动作程序(或简单可变程序)、一般用于固定工位的自动化装置。因为国内外称作“机械手机械手”、“机械手”、“操作机”的这三种自动化和半自动化装置,在技术上有某些相通之处,所以有时不易明确区分,就它们的技术特征来看,其大致区别如下。“机械手”(Mechanical Hand):多数是指附属于主机、程序固定的自动抓取、操作装置(国内一般称作机械手或专用机械手)。如自动线、自动线的上、下料,加工中心的自动换刀的自动化装置。1.3 机械手国内外研究现状机械手机械手(Industral Robot ,简称IR)是1960年由美国金属市场报首先使用的,但这个概念是由美国GeorgeCPevol在1954年申请的专利“程序控制物料传送装置“时提出来的。在这专利中所记述的机械手机械手,以现在的眼光来看,就是示教再现机械手。随后,美国的Unimation公司和美国的机械铸造(AMF)公司于1962年分别制造了实用的一号机,并分别取名为Unimate和Versatran。Unimate机械手外形类似坦克炮塔,采用极坐标结构,而Versatran机械手采用圆柱坐标结构。上述两种机械手成为机械手结构的主流,美国通用汽车公司和福特汽车公司在其金属冷热加工中,采用这类机械手进行压、铸、冲压等上、下料,收到了良好的效果。美国的机械手机械手技术的发展,大致经历了以下几个阶段:19631967年为实验定型阶段。19631967年,万能自动公司制造的机械手机械手供用户做工艺实验。1967年,该公司生产的机械手机械手定型为1900台。19681970年为实验应用阶段。这一时期,机械手机械手在美国进入应用阶段。例如美国通用汽车公司1968年订购了68台机械手机械手;1969年又自行研制出SAM型机械手机械手,并用21台组成了点焊小汽车车身的焊接自动线。1970年至今一直出于技术发展和推广应用阶段。19701972年,机械手机械手处于技术发展阶段。1970年4月美国在伊利斯工学院研究所召开了第一届全国机械手机械手会议。据当时统计,美国已采用了大约200台机械手机械手,工作时间共达60万小时以上。与此同时,出现了所谓高级机械手,例如森德斯兰德公司(Sundstrand)发明了用小型计算机控制50台机械手机械手的系统。在欧洲第一台机械手机械手是1963年瑞典Kavieldt公司发表的第一台操作机。日本在六十年代初期就开始研制固定程序控制的机器手,并从其他各国引进了用于不同生产过程的机械手,并获得迅速,很快研制出日本国产华的机械手机械手,技术水平很快赶上了美国并超过了其它国家,目前机械手机械手在日本已得到迅速发展并很快得到普及。我国虽然开始研制机械手机械手仅比日本晚56年,但由于种种原因,机械手机械手的技术发展比较慢。但目前已引起了有关方面的极大关注。除了引进、消化、仿制外,已经具备了一定的独立设计和研制能力。在1958年新疆维吾尔自治区成立30年大庆站展览馆展出了由新疆机械局研制的跳舞机械手阿依古丽。在1986年地十六届广交会上,成都电讯工程学院研制的第三代仿人机械手成蓉小姐已经用汉语或英语向来宾问好,并能简要的介绍的展览产品及回答简单问话。西北电讯工程学院研制的微机控制示教再现式机械手西电I号,也于1985年9月在陕西省科技贸易大会上进行了表演。此外,清华大学自动化系研制的具有视觉手眼系统,北京钢铁学院研制的焊接机械手,均已达到了较高的水平。同时,在机械手学科中的视觉、听觉、语音合成、触觉、计算控制以及人工智能诸领域研究,也取得了一定的进展。近几年来的成就表明,我国机械手技术已经迈出了可喜的一步。相信在不久的将来,我们一定回赶上世界各国前进的步伐。1.4 机械手发展趋势机械手是一种模拟人手操作的自动机械。它可按固定程序抓取、搬运物件或操持工具完成某些特定操作。应用机械手可以代替人从事单调、重复或繁重的体力劳动,实现生产的机械化和自动化,代替人在有害环境下的手工操作,改善劳动条件,保证人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。20世纪40年代后期,美国在原子能实验中,首先采用机械手搬运放射性材料,人在安全间操纵机械手进行各种操作和实验。50年代以后,机械手逐步推广到工业生产部门,用于在高温、污染严重的地方取放工件和装卸材料,也作为机床的辅助装置在自动机床、自动生产线和加工中心中应用,完成上下料或从刀库中取放刀具并按固定程序更换刀具等操作。我国工业机械手的研究与开发起步较晚,比欧美要晚 30 年左右,起步于上世纪 70 年代,1972 年我国第一台机械手 在上海开发成功,随之全国各省都开始研制和应用机械手。从第七个五年计划(19861990 年)开始,我国政府大大加 大了对工业机械手的重视程度,并且为此项目投入大量的资 金,在众多学者及研究人员的参与下,研究开发并且制造了一系列的工业机械手,与此同时,一系列的机械手关键部件也被开发出来,如机械手专用轴承,减震齿轮,直流伺服电机,编码器等等。国外机械手的发展趋势是大力研制具有某种智能的机械手。使它具有一定的传感能力,能反馈外界条件的变化,作相应的变更。重点是研究视觉功能和触觉功能。随着传感技术的发展机械手装配作业的能力也将进一步提高,更重要的是将机械手、柔性制造系统和柔性制造单元相结合,从而根本改变目前机械制造系统的人工操作状态。2 方案设计2.1 设计要求2.1.1 功能要求设计装箱机械手,替代人工,实现苹果装箱的机械化。2.1.2 参数要求原始数据:(1)苹果为近似球型,直径50100mm,重100500g。(2)手爪夹持力(最大)不超过10N。(3)箱体长方形,内腔长宽高最大尺寸分别不超过1000mm.技术要求:(1) 工作行程,水平方向:50160cm,竖直方向:40cm。.(2) 自由度数目不超过3个,选取机械手的坐标形式。(3) 安全型驱动方式,不得有冲击和震动。2.2 机械手的构成机械手是由执行机构、驱动系统和控制系统所组成的,各部关系如图2.1所示。图2-1 机械手的构成2.2.1 执行机构(1)手部 即直接与工件接触的部分,一般是回转型或平移型(为回转型,因其结构简单)。手爪多为两指(也有多指);根据需要分为外抓式和内抓式两种;也可用负压式或真空式的空气吸盘(它主要用于吸取冷的,光滑表面的零件或薄板零件)和电磁吸盘。传力机构型式较多,常用的有:滑槽杠杆式、连杆杠杆式、斜楔杠杆式、轮齿条式、丝杠螺母式、弹簧式和重力式。(2)腕部 是连接手部和手臂的部件,并可用来调整被抓物体的方位(即姿态)。它可以有上下摆动,左右摆动和绕自身轴线的回转三个运动。如有特殊要求(将轴类零件放在顶尖上,将筒类、盘类零件卡在卡盘上等),手腕还可以有一个小距离的横移。也有的机械手没有腕部自由度。(3)臂部 手臂是支承被抓物、手部、腕部的重要部件。手部的作用是带动手指去抓取物体,并按预定要求将其搬到预定的位置。手臂有三个自由度,可采用直角坐标(前后、上下、左右都是直线),圆柱坐标(前后、上下直线往复运动和左右旋转),球坐标(前后伸缩、上下摆动和左右旋转)和多关节(手臂能任意伸屈)四种方式。直角坐标占空间大,工作范围小,惯性大,其优点是结构简单、刚度高,在自由度较少时使用。圆柱坐标占空间较小,工作范围较大,但惯性也大,且不能抓取底面物体。球坐标式和多关节式占用空间小,工作范围大,惯性小,所需动力小,能抓取底面物体,多关节还可以绕障碍物选择途径,但多关节式结构复杂,所以也不常用。2.2.2 驱动机构有气动、液动、电动和机械式四种形式。气动式速度快,结构简单,成本低。采用点位控制或机械挡块定位时,有较高的重复定位精度,但臂力一般在300N以下。液动式的出力大,臂力可达 1000N 以上,且可用电液伺服机构,可实现连续控制,使机械手的用途和通用性更广,定位精度一般在 1mm 范围内。目前常用的是气动和液动驱动方式。电动式用于小型,机械式只用于动作简单的场合。2.2.3 控制系统有点动控制和连续控制两种方式。大多数用插销板进行点位程序控制,也有采用可编程序控制器控制、微型计算机数字控制,采用凸轮、磁带磁盘、穿孔卡等记录程序。主要控制的是坐标位置,并注意其加速度特征。2.3 总体方案设计2.3.1 总体方案拟定根据以上工作要求,综合考虑机械手的功能实现和通用性,确定采用两自由度关节型结构。整体方案初步确定自动装箱机械手通过方形底座固定,接着利用齿轮的旋转带动机械手做90的回转运动。机械手臂由一个关节相连,通过两个单独的步进电机带动手臂上下移动及回转。手臂末端连接着两个吸盘,通过这个吸盘的动作,将苹果利用气缸吸附在机械手上,然后将其移动到输送带上,如此往复的循环。图2-2 装箱机械手初步机构简图2.3.2 升降机构方案升降机构通常有采用液压缸的液压式、采用气缸的气动式,也有采用丝杠/螺纹传动的机械式。但是通常液压式、和气动式需要比较庞大的液压/气动系统来提供动力源,并且液压式对工作环境污染较严重,而气动式则冲击较大,均不适合用于本次摆苹果机的臂部升降机构。因此本次采用丝杠/螺纹传动的机械式降机构,为了提高工作效率本次采用滚珠丝杠副作为升降机构,其结构如下图示:图2-3升降机构方案2.3.3 摆动机构方案摆动机构,通常可以通过齿轮传动、四杆机构(曲柄摇杆机构)等实现,但是为了保证摆动机构的稳定性以及减小机构尺寸确保机构的紧凑性,本次采用齿轮传动,结构如下图示:图2-4摆动机构方案3 升降机构的设计3.1 电动机的选择步进电动机又称为脉冲电动机,是一种把电脉冲信号转换成与脉冲数成正比的角位移或直线位移的执行元件。具有以下四个特点:转速(或线速度)与脉冲频率成正比;在负载能力允许的范围内,不因电源电压、负载、环境条件的波动而变化;速度可调,能够快速起动、制动和反转;定位精度高、同步运行特性好。摆苹果机臂部升降机构要求电动机电位精度高,速度调节方便快速,受环境影响小,且额定功率小,并且可用于开环系统。而BF系列步进电动机为反应式步进电动机,具备以上的所有条件,我们选用了型号90BF004的反应式步进电动机作为主运动的动力源,该机功率为0.42KW。选用时主要有以下几个步骤:3.1.1 根据脉冲当量和最大静转矩初选电机型号(1)步距角初选步进电机型号,并从手册中查到步距角,由于综合考虑,我初选了,可满足以上公式。(2)距频特性步进电机最大静转矩Mjmax是指电机的定位转矩。步进电机的名义启动转矩Mmq与最大静转矩Mjmax的关系是:Mmq=步进电机空载启动是指电机在没有外加工作负载下的启动。步进电机所需空载启动力矩按下式计算:式中:Mkq为空载启动力矩;Mka为空载启动时运动部件由静止升速到最大快进速度折算到电机轴上的加速力矩;Mkf为空载时折算到电机轴上的摩擦力矩;为由于丝杆预紧折算到电机轴上的附加摩擦力矩。而且初选电机型号时应满足步进电动机所需空载启动力矩小于步进电机名义启动转矩,即:MkqMmq=Mjmax计算Mkq的各项力矩如下:加速力矩空载摩擦力矩附加摩擦力矩3.1.2 启动矩频特性校核步进电机有三种工况:启动,快速进给运行,工进运行。前面提出的,仅仅是指初选电机后检查电机最大静转矩是否满足要求,但是不能保证电机启动时不丢步。因此,还要对启动矩频特性进行校核。步进电机启动有突跳启动和升速启动。突跳启动时加速力矩很大,启动时丢步是不可避免的。因此很少用。而升速启动过程中只要升速时间足够长,启动过程缓慢,空载启动力矩中的加速力矩不会很大。一般不会发生丢步现象。3.2 滚珠丝杆副的选型与校核滚珠丝杆已由专门工厂制造,因此,不用我们自己设计制造,只要根据使用工况选择某种类型的结构,再根据载荷、转速等条件选定合适的尺寸型号并向有关厂家订购。此次设计中滚珠丝杆被三次选用,故本人只选取其中最重要的主轴传动中的滚珠丝杆加于设计和校核。其步骤如下: 首先对于一些参数说明如下: 轴向变载荷,其中i表示第i个工作载荷,i=1、2、3n ;第i个载荷对应的转速(r/min);第i个载荷对应的工作时间 (h) ;丝杆副最大移动速度(mm/min);丝杆预期寿命。3.2.1 型号选择(1)根据使用和结构要求 选择滚道截面形状,滚珠螺母的循环方式和预紧方式;(2)计算滚珠丝杆副的主要参数 根据使用工作条件,查得载荷系数=1.0系数=1.5; 计算当量转速 计算当量载荷 初步确定导程 取4mm计算丝杆预期工作转速计算丝杆所需的额定载荷(3)选择丝杆型号根据初定的和计算的,选取导程为4mm,额定载荷大于的丝杆。所选丝杆型号为CDM2004-2.5。其为外循环双管式、双螺母垫片预紧、导珠管埋入式系列滚珠丝杆。3.2.2 校核计算(1)临界转速校核校核合格。(2)由于此丝杆是竖直放置,且其受力较小,温度变化较小。所以其稳定性、温度变形等在此也没必要校核。(3)滚珠丝杆的预紧预紧力一般取当量载荷的三分之一或额定动载荷的十分之一。即:其相应的预紧转矩3.3 导轨的选型与校核3.3.1 导轨的选型导轨主要分为滚动导轨和滑动导轨两种, 直线滚动导轨在数控机床中有广泛的应用。相对普通机床所用的滑动导轨而言,它有以下几方面的优点:定位精度高直线滚动导轨可使摩擦系数减小到滑动导轨的1/50。由于动摩擦与静摩擦系数相差很小,运动灵活,可使驱动扭矩减少90%,因此,可将机床定位精度设定到超微米级。降低机床造价并大幅度节约电力采用直线滚动导轨的机床由于摩擦阻力小,特别适用于反复进行起动、停止的往复运动,可使所需的动力源及动力传递机构小型化,减轻了重量,使机床所需电力降低90%,具有大幅度节能的效果。可提高机床的运动速度直线滚动导轨由于摩擦阻力小,因此发热少,可实现机床的高速运动,提高机床的工作效率2030%。可长期维持机床的高精度对于滑动导轨面的流体润滑,由于油膜的浮动,产生的运动精度的误差是无法避免的。在绝大多数情况下,流体润滑只限于边界区域,由金属接触而产生的直接摩擦是无法避免的,在这种摩擦中,大量的能量以摩擦损耗被浪费掉了。与之相反,滚动接触由于摩擦耗能小滚动面的摩擦损耗也相应减少,故能使直线滚动导轨系统长期处于高精度状态。同时,由于使用润滑油也很少,大多数情况下只需脂润滑就足够了,这使得在机床的润滑系统设计及使用维护方面都变的非常容易了。所以在结构上选用:开式直线滚动导轨。参照南京工艺装备厂的产品系列。3.3.2 滑动导轨副的计算、选择根据给定的工作载荷Fz和估算的Wx和Wy计算导轨的静安全系数fSL=C0/P,式中:C0为导轨的基本静额定载荷,kN;工作载荷P=0.5(Fz+W); fSL=1.03.0(一般运行状况),3.05.0(运动时受冲击、振动)。根据计算结果查有关资料初选导轨:因系统受中等冲击,因此取根据计算额定静载荷初选导轨:选择汉江机床厂BGX系列滚动直线导轨,其型号为: BGXH25BE基本结构及参数如下:导轨的额定动载荷N依据使用速度v(m/min)和初选导轨的基本动额定载荷 (kN)验算导轨的工作寿命Ln:额定行程长度寿命: 导轨的额定工作时间寿命: 导轨的工作寿命足够.导轨的静安全系数: :静安全系数;:基本静额定负载;:工作载荷导轨寿命计算:3.4 轴承及键的校核与寿命计算(1)轴承1).按承载较大的滚动轴承选择其型号,因支承跨距不大,故采用两端固定式轴承组合方式。轴承类型选为深沟球轴承,轴承的预期寿命取为:Lh29200h由上面的计算结果有轴承受的径向力为Fr1=340.43N,轴向力为Fa1=159.90N,2)初步选择深沟球轴承6202,其基本额定动载荷为Cr=51.8KN,基本额定静载荷为C0r=63.8KN。3)径向当量动载荷动载荷为,查得,则有由式13-5得满足要求。(2)键1)选择键联接的类型和尺寸小带轮处选用单圆头平键,尺寸为2)校核键联接的强度键、轴材料都是钢,由机械设计查得键联接的许用挤压力为键的工作长度,合适4 摆动机构的设计4.1 电动机的选择步进电机是一种能将数字输入脉冲转换成旋转或直线增量运动的电磁执行元件。每输入一个脉冲电机转轴步进一个距角增量。电机总的回转角与输入脉冲数成正比例,相应的转速取决于输入脉冲的频率。步进电机具有惯量低、定位精度高、无累计误差、控制简单等优点,所以广泛用于机电一体化产品中。选择步进电动机时首先要保证步进电机的输出功率大于负载所需的功率,再者还要考虑转动惯量、负载转矩和工作环境等因素。4.1.1 电机轴的转动惯量a、旋转轴的转动惯量上式中:d直径,旋转外径d=8mmL长度=30mmP钢的密度=7800经计算得b、齿轮的转动的惯量上式中:d直径,齿轮外径d=30mmL长度=14mmP钢的密度=7800经计算得c、联轴器的转动惯量查表得 因此4.1.2 电机扭矩计算a、折算至电机轴上的最大加速力矩上式中:J=0.0028kg/m2ta加速时间 KS系统增量,取15s-1,则ta=0.2s经计算得b、折算至电机轴上的摩擦力矩上式中:F0导轨摩擦力,F0=Mf,而f=摩擦系数为0.02,F0=Mgf=32NP丝杆螺距(m)P=0.001m传动效率,=0.90I传动比,I=1经计算得c、折算至电机轴上的由丝杆预紧引起的附加摩擦力矩上式中P0滚珠丝杆预加载荷1500N0滚珠丝杆未预紧时的传动效率为0.9经计算的T0=0.05NM则快速空载启动时所需的最大扭矩根据以上计算的扭矩及转动惯量,选择电机型号为SIEMENS的IFT5066,其额定转矩为6.7N.m。4.2 齿轮传动的设计前述算得,步进电机工作转速能在较大范围变化本次计算取,传动比4.2.1 选精度等级、材料和齿数采用7级精度由表6.1选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS。选小齿轮齿数大齿轮齿数取4.2.2 按齿面接触疲劳强度设计由设计计算公式进行试算,即1) 确定公式各计算数值(1)试选载荷系数(2)计算小齿轮传递的转矩(3)小齿轮相对两支承非对称分布,选取齿宽系数(4)由表6.3查得材料的弹性影响系数(5)由图6.14按齿面硬度查得小齿轮的接触疲劳强度极限大齿轮的接触疲劳强度极限(6)由式6.11计算应力循环次数(7)由图6.16查得接触疲劳强度寿命系数 (8)计算接触疲劳强度许用应力取失效概率为1,安全系数为S=1,由式10-12得(9)计算试算小齿轮分度圆直径,代入中的较小值计算圆周速度v计算齿宽b计算齿宽与齿高之比b/h模数齿高计算载荷系数K根据,7级精度,查得动载荷系数假设,由表查得由于载荷中等振动,由表5.2查得使用系数由表查得查得故载荷系数(10)按实际的载荷系数校正所算得的分度圆直径,由式可得(11)计算模数4.2.3 按齿根弯曲强度设计弯曲强度的设计公式为(1)确定公式内的计算数值由图6.15查得小齿轮的弯曲疲劳强度极限大齿轮的弯曲疲劳强度极限由图6.16查得弯曲疲劳寿命系数 计算弯曲疲劳许用应力取失效概率为1,安全系数为S=1.3,得计算载荷系数(2)查取齿形系数由表6.4查得(3)查取应力校正系数 由表6.4查得(4)计算大小齿轮的,并比较 大齿轮的数据大(5)设计计算对比计算结果,由齿面接触疲劳强度计算的模数m大于由齿根弯曲疲劳强度计算的模数,可取有弯曲强度算得的模数1.32mm,并圆整取第一标准模数值m=1.5mm,并按接触强度算得的分度圆直径算出小齿轮齿数取大齿轮齿数取4.2.4 几何尺寸计算(1)计算分度圆直径(2)计算中心距 (3)计算齿宽宽度取综合整理两级齿轮参数如下表:序号名称符号参数选择小齿轮大齿轮1齿数Z20402模数m1.5mm3分度圆直径4齿顶高5齿根高6全齿高7顶隙8齿顶圆直径9齿根圆直径10齿宽11中心距4.3 旋转轴及轴上零件的设计与校核4.3.1 尺寸与结构设计计算1)传动轴上的功率P1,转速n1和转矩T1,2)初步确定轴的最小直径先按式初步估算轴的最小直径。选取轴的材料45钢,调质处理。根据机械设计表11.3,取,于是得:该处开有键槽故轴径加大510,且传动轴的最小直径显然是安装齿轮轮处的直径。取;。3)根据轴向定位的要求确定轴的各段直径和长度(a)为了满足车轮的轴向定位的要求2轴段左端需制出轴肩,轴肩高度轴肩高度,取故取2段的直径,长度。(b)初步选择滚动轴承。因轴承只受径向力的作用,故选用深沟球轴承。根据,查机械设计手册选取0基本游隙组,标准精度级的深沟球轴承6203,故,轴承采用轴肩进行轴向定位,轴肩高度轴肩高度,取,因此,取。(c)齿轮处由于齿轮分度圆直径,故采用齿轮轴形式,齿轮宽度B=18mm。另考虑到齿轮端面与箱体间距1mm以及两级齿轮间位置配比,取,。4)轴上零件的周向定位查机械设计表,联接车轮的平键截面。4.3.2 强度校核计算1)求作用在轴上的力已知齿轮的分度圆直径为,根据机械设计(轴的设计计算部分未作说明皆查此书)式(10-14),则2)求轴上的载荷首先根据轴的结构图作出轴的计算简图。在确定轴承支点位置时,从手册中查取a值。对于6203型深沟球轴承,由手册中查得a=14mm。因此,轴的支撑跨距为L1=72mm。根据轴的计算简图作出轴的弯矩图和扭矩图。从轴的结构图以及弯矩和扭矩图可以看出截面C是轴的危险截面。先计算出截面C处的MH、MV及M的值列于下表。载荷水平面H垂直面V支反力F,C截面弯矩M总弯矩扭矩图4-1 弯矩图和扭矩图3)按弯扭合成应力校核轴的强度根据式(15-5)及上表中的数据,以及轴单向旋转,扭转切应力,取,轴的计算应力已选定轴的材料为45Cr,调质处理。由表15-1查得。因此,故安全。4)键的选择采用圆头普通平键A型(GB/T 10961979)连接,联接车轮的平键截面,。齿轮与轴的配合为,滚动轴承与轴的周向定位是过渡配合保证的,此外选轴的直径尺寸公差为。4.3.3 键的校核与寿命计算(1)选择键联接的类型和尺寸小带轮处选用单圆头平键,尺寸为(2)校核键联接的强度键、轴材料都是钢,由机械设计查得键联接的许用挤压力为键的工作长度,合适4.4 摆臂设计由于苹果重量较轻,约为M=0.1kg,所以摆臂不需要进行强度计算,摆臂尺寸只需根据需要采用CAD作图法进行匹配,结果如下图示:图4-2 摆臂4.5 吸盘的选择考虑到苹果表面比较平整光滑,选用硅橡胶吸盘,其具有良好的耐热性、耐寒性和极低毒性,是食品行业通常采用的真空吸盘。以普通陶瓷苹果为例,口径大约为190mm,高约为20mm,厚度约为5mm,质量约为M=0.5kg,则提起该苹果吸盘需要的提升力为F=Mg=4.9N。这里选取型号为ZP10DS 的SMC 深形硅橡胶材料的真空吸盘,查该型号真空吸盘的水平提升升力表可知,在真空压力值为-300mmHg 时,准10 真空吸盘的水平提升力为3.2N。TsF式中,T-吸盘水平提升力;F-所需提升力;s-安全系数,取4。故TsF=44.9N=19.6N则至少需要7 个此种型号的吸盘工作,才能达到使用要求,本设计采用12 个吸盘两排轴向均匀分布(如图4 所示),以适应提升其它类别苹果的需要。图4-3 吸盘5 控制系统设计由于微型计算机具有体积小,可靠性高,灵活性强,易于配置,功能丰富及价格便宜等特点,采用微型计算机对工业机械手进行控制,已经成为当今机械手控制技术研究和发展的主流。机械手的控制系统,原则上可分为点位控制与连续轨迹控制两大类。点位控制只要求按规定精度从起始点到达预定点,而对移动路径不做要求。连续轨迹不仅与运动的起点与终点有关,还必须保证运动轨迹与设计轨迹一致。因此,在连续轨迹控制中要进行轨迹设计,并对任意运动轨迹进行补插(补间)运算。为了机械手运动平稳,就必须保证机械手的运动速度、加速度连续,这无疑也需要进行复杂的运算。微型计算机对机械手的控制,一般采用分层控制的方法。第一层为最高层,其任务是识别工作空间,并据此决定如何完成给定的任务;第二层是决策层,其任务是将给定的操作分成基本的运动;第三层是策略层,其工能是将基本的运动转化成各自由度的运动;第四层是执行层,它将控制机械手完成各自由度的运动。其中第一层及第二层属于人工智能的范畴,机械手的控制主要是研究第三、第四层。微型计算机种类很多,一般均由以下三部分组成。A. 中央处理器CPU,或称微处理器MPU。B. 内存储器,即主记忆装置ROM及RAM 。C. 输入输出装置I/O,或称接口装置,联系这些装置的为三条总线,即数据总线DB,地址总线AB及控制总线CB。不同型号的微型计算机主要是中央处理器CPU的内容的功能不同,因而有不同的指令系统和汇编语言。由于外部设备之不同以及是否用于实时控制,其I/O接口装置因而很大差异。RAM和ROM 的存储量大小直接影响计算机的应用范围。但一般微型计算机都可以在原有存储量的基础上加以扩充。本机械手的控制系统它由主CPU板、I/O板、控制面板、示教盒、伺服板、和稳压电源板等组成。主CPU板是本控制器的核心,其上有CPU、存储器、多级中断控制电路、脉冲分配电路、读位置电路以及串行通讯电路等,完成系统的管理、控制运算、伺服系统控制和仿置检测等控制功能以及与示教盒、控制板的通讯。I/O接口板主要负责输入输出和监测各种故障报警的输入信号。伺服板共8块,负责完成四个轴的位置环速度环和电流环的伺服控制。本次控制系统设计主要设计CPU、ROM和RAM中断处理电路示教盒以及串行通讯电路键盘显示电路这几个部分。5.1 CPU与存储器CPU采用8031微处理器地址译码器内存RAM和EPROM以及锁存器组成。5.1.1 8031的结构1)寄存器堆8031中有12个通用寄存器,6个专用寄存器,两个累加器和两个标志寄存器。由于寄存器很多,故称其为堆。它们各个单元不是以序号作为地址号,而是以其名称作为地址号。它们全是静态RAM实现。各寄存器的功能如下:堆栈指示器 SP:它是一个8位的专用寄存器。用以指示堆栈区的最上面的存储单元的地址,即栈顶地址。堆栈指示器是在计算机中接受中断要求而去处理某些外部设备提出的请求时需要用到的寄存器。系统复位后,SP初始化为07H,使得堆栈事实由08H单元开始。考虑到08H1FH单元分属与工作寄存器区13,若程序设计中要用到这些区,则最好把SP值改置为1FH或更大值。由于栈指针是一个8位的专用寄存器,其值可由软件改变,因此在内部RAM中的位置比较灵活。响应中断或子程序调用时,发生入栈操作,入栈的是16位PC值,PSW并不自动入栈。在指令系统中有栈操作指令PUSH(压入)和POP(弹出),如有必要,中断时可用把PSW的内容压入堆栈,加以保护,返回前用POP指令恢复。除用软件直接改变SP值外,在执行PUSH、POP、各种程序调用、中断响应、子程序返回RETI等指令时,SP值将自动增量或减量。 变址寄存器IX及IY:它们能将其内容加减一个称作偏移量的数,以达到一个新的地址。中断向量地址寄存器IV:这个寄存器用以存放中断服务子程序的入口地址。存储器刷新寄存器R:8031可以使用动态存储器。刷新存储器是再生时进行计数用的。特殊功能寄存器SFR:8031单片机片内的SFR与存储器是独立的,但它能像访问内部RAM一样被访问。8031单片机具有21个特殊功能寄存器,可分为3个16位寄存器和15个8位寄存器。这些寄存器分散地分布在片内RAM的高128字节地址80HFFH,访问这些专用寄存器仅允许使用直接寻址的方式。寄存器并未占满80HFFH整个地址空间,对空闲地址的操作是无意义的。片内的SFR能综合的实时反映整个单片机基本系统内部的工作状态及工作方式。因此,它是非常重要的。对单片机应用者来说,掌握个各SFR的工作状态,工作方式,从而实现对整个单片机系统的控制具有重要的意义。表3-1列出了个SFR的名称几地址。ACC累加器0E0HBB寄存器0F0HPSW程序状态字堆栈指针0D0HSP堆栈指针81HDPTR数据指针(包括DPH和(DPL)口083H和82HP0口080HP1口190HP2口20A0HP3口30B0HIP中断优先级控制0B8HIE允许中断控制0A8HTMOD定时器/计数器方式控制89HTCON定时器/计数器控制88H+T2CON定时器/计数器2控制0C8HTH0定时器/计数器控制0(高位字节)8CHTL0定时器/计数器控制0(低位字节)8AHTH1定时器/计数器控制1(高位字节)8DHTL1定时器/计数器控制1(低位字节)8BH+TH2定时器/计数器控制2(高位字节)0CDH+TL2定时器/计数器控制2(低位字节)0CCH+RLDH定时器/计数器控制2自动再装载(高位字节)0CBH+RLDL定时器/计数器控制2自动再装载(低位字节)0CAHSCON串行控制98HSBUF串行数据缓冲器99HPCON电源控制97H数据指针DPTR(83H,82H):数据指针DPTR是一个16位专用寄存器,其高位字节寄存器用DPH表示,低位字节寄存器用DPL表示。即可以作为16位寄存器DPTR来处理,也可以作为2个独立的8位寄存器DPH和DPL来处理 。DPTR主要用来保持16位地址,当64KB外部数据存储空间寻址时,可作为间接寄存器用。这时有两条传送指令MOVX A,DPTR和MOVX DPTR, A。在访问程序存储器时,DPTR可用作基址寄存器,这时采用一条基址+变址寻址方式的指令MOVC A,+DPTR,常用于读取存放在程序存储器内的表格数据。2)8031的引脚功能8031为40引脚芯片如图3-4,按其功能可分为三个部分:I/O口线:P0,P1,P2,P3共4个8位口。 P0(双向I/O)口(3932脚):P0口既可作地址/ 数据总线使用,又可作通用I/O口用。P1(准双向I/O)口(18脚):P1是一个带内部上拉电阻的8位准双向I/O端口。P2(准双向I/O)口(2128脚):在结构上,P2口比P1口多了一个输出转换控制部分。当转换开关倒向左面时,P2口作通用的I/O端口用,是一个准双向口。P3(双功能)(1017脚):P3口是一个多用途的端口。b.控制信号引脚:PSEN(片外取指控制),ALE(地地锁存控制),EA(片外存储器选择),RESET(复位控制)。c.电源及时钟:Vcc,Vss,XTAL1,XTAL2。其应用特性:a. I/O口线不能都用作用户I/O口线。 b. I/O口的驱动能力,P0口可驱动8个TTL门电路,P1、P2、P3则只能驱动4个TTL门。c. P3口是双重功能口,其功能如图3-5所示。 P3.0:RXD(串行输入口); P3.1:TXD(串行输出口); P3.2:INT0(外部中断0输入线); P3.3:INT1(外部中断1输入线); P3.4:T0(T0外部记数脉冲输入线); P3.5:T1(T1外部记数脉冲输入线); P3.6:WR(外部RAM写选通脉冲输出线); P3.7:RD(外部RAM读选通脉冲输出线)。译码器采用74LS138(8205),它具有以下特性:能作为I/O口或存储器地址选择器,扩充简便,有输入选择端,采用了遵肖特基双极型工艺,最大延迟为18ns,连接与TTL逻辑电路兼容,低电平输入负载电流最大为0.25A,是标准TTL输入负载的1/6。INTEL8205译码器可以扩充那些输入口、输出口和带有低电平有效的片选输入存储器件的系统。当8205被片选时,它的八个输出端之一变“低”,于是存储器系统的一行被选中。对于扩大的系统,可把8205级联系起来,使得每一译码器能驱动8个译码器 ,可任意扩充存储器。8205的逻辑符号、引脚排列,选通和译码真值表如下:引脚说明:A0A2为选址输入,E1E3为选通允许输入(既片选),O0O7为译码输出。8205译码真值表如下: 地址 选通允许 输出 A0A1A2 E1E2E30 1 2 3 4 5 6 7 地址 选通允许 输出 A0 A1A2 E0 E1 E20 1 2 3 4 5 6 7 锁存器采用74LS373:它的作用是把输入信号锁存起来,一直保持到选通信号来取出信息。其工作原理:当锁存允许端为高电平时,Q端跟随D端变化;当锁存允许由高变低时,将此变化前一瞬时输入锁存,此后输入(D)不会影响输出(Q)直至锁存允许为高电平,E是读选通脉冲。应当注意在读期间锁存允许不能变化。锁存允许信号通常取自译码器和R/W线,地址译码有时需3到15级门延迟,来防止读锁存。数据存储器采用6264(8K8),一共采用3块6264,故RAM为24K,除了作为系统参数工作区,标志单元外,主要用作用户程序存储区,为了保存RAM的内容,一旦断电,保证RAM中的用户程序不会丢失,故采用电池利用CE2引脚的掉电保护装置在此也得到了应用,具体内容在后详讲,这里不再叙述。6264静态RAM的技术性能为:一组三态输出引脚作为输入/输出公共引脚,输入/输出与TTL电路兼容,A0A12为地址总线,I/O0I/O7为数据输入/输出,CE1为片选1,CE2为片选2,WE为写选通,OE为读选通。WECE1 CE2OE方式D0D7高未选中高阻低未选中高阻高低高高禁止输出高阻高低高低读D输出低低高高写D输入低低高低写D输入6264引脚排列如下:EPROM读存储器采用2764(8K8),一共3块,达到24字节,它的技术性能。存取速度快,功耗低,编程简单,采用双线控制,全静态方式,采用单一+5V电源。EPROM一个很好的特点就是把输出元件控制(OE)和片选控制(CE)分开,保证了其良好接口特性。对于EPROM的工作方式简述说明如下:1).读方式:EPROM有两种控制功能,两者逻辑上部满足能够按次序在输出方面获得数据的要求。片选(CE)是电源控制方面,用于器件的选择。输出允许(OE)是输出控制方面,用作数据到输出引脚的选通信号,它与器件选择无关。2).维持方式:在维持方式时,器件功耗从有效功耗减少到静态维持功能。EPROM时一个TTL高电平信号加到CE输入端而建立维持方式的。当处于维持方式时,输出端均为高阻状态与OE输入无关。3).编程方式:2764进入编程方式时,Vpp在12.5V且OE和PGM都在TTL低电平、被编程的8位数据以并行方式送到数据输出引脚。地址和数据输入所需电平都为TTL。在主机2764()的起始地址为0000H1FFFH;2764()的起始地址为2000H3FFFH;2764()的起始地址为4000H5FFFH;6264()的起始地址为6000H7FFFH;6264()的起始地址为8000H9FFFH;6264()的起始地址为8000H9FFFH;在示教盒中,2764的起始地址为0000H1FFFH;2764的引脚图:5.2 中断处理电路本控制系统中采用8259中断控制器来实现系统多重中断的优先排队和中断申请处理。8259具有多中工作方式,可通过编程设定或变更它的工作方式。CPU响应中断时,8259A能自动提供中断入口地址,而使CPU转问相应的中断处理程序。中断入口地址可由用户设定,入口地址可以选定在任何存储单元。 CS 片选 WR写 RD读CAS0CAS2级联线SP/EN从片/开启缓冲器 INT中断IR0IR7中断请求 INTA中断响应 A0地址线8259A的引脚,功能说明如下:(1).数据总线缓冲器:是三态,双向8位缓冲器,外部引脚D0D7用于和CPU的数据总线相连,CPU通过数据缓冲器向8259A传送命令码,成从8259A读联状态字。在中断响应时,8259通过数据总线缓冲器问CPU提供CALL指令的操作码(11001101)和调用子程序入口地址高8位和低8位。(2).中断申请寄存器(IRR):用来寄存所有从中断申请输入线(IR0IR7)输入的中断申请信号,当IR0IR7中任何一条申请线上开为高电平时,IRR中相应的位置位。(3).优先级分辨器(PR):用于确定中断申请寄存器(IRR)中个中断申请位的优先级。IR0IR7的优先级可由CPU编程设定。(4).控制逻辑根据CPU对8259编程设定的工作方式产生8259A控制信号,并在适当的时候对CPU发生中断申请信号INT请求CPU响应。INTA是来自CPU的中断响应信号。当CPU进入中断响应周期,送来第一个INTA脉冲时,8259的控制逻辑一方面把CALL指令操作码(11001101)经D0D7送上数据线供CPU读入指令寄存器。另一方面又把优先级分辨器从IRR中选出的具有最高优先级的中断中请存入服务状态寄存器(ISR)。以确定对应的服务程序入口地址,CPU在读到CALL指令操作码后,由于这是一条3字节指令,因此继续发来两个INTA的脉冲信号,在第二个INTA脉冲到来时,控制逻辑把被响应的中断申请所对应的服务程序入口地址的低8位送上数据总线,当第三个INAT脉冲到来时,则提供服务的程序入口地址高8位,然后CPU执行调用指令CALL,转到相应的服务程序入口地址。在中断服务结束,CPU送来的中断结束(EOL)和特殊中断结束(SEOL)命令码时,控制逻辑服务状态寄存器中的IS位复位。(3).读、写逻辑晕高来接受CPU的控制信号,使来自CPU的初始化命令字(ZCW)和操作命令字(OCW)存入8259A内部相应的寄存器中,用以规定8259的工作方式,也CPU读取8259A内部状态信息,有关引脚功能如下:CS:片选线。当CS=0时,8259A被选中,允许CPU对8259A进行读、写操作。WR:写信号。当WR=0时允许CPU把命令字(ICW和OCW)写入8259。RD:读信号RD=0时,允许8259A将中断申请寄存器(IRR),服务状态寄存器(ISR),中断屏蔽寄存器(IMR)和中断级的BCD码送上数据总线供CPU读取。A0:地址线。这个输入信号同WR、RD信号一起用来确定命令所需写入的各种命令寄存器。或指定CPU要读出的状态信息寄存器。(4).级联缓冲器/比较器: 当8259A为主器件时(SP=1),CAS0CAS2为输出线,在CPU响应中断时,用来表示级联代码,选出申请中断的从器件,这是被选的从器件将在下两个接连出现的INTA脉冲期间,把预先编好的中断服务程序入口地址代送上数据总线。当8259A为从器件时(SP=0),CAS0CAS2为输入线,接收主器件送来的选择代码。8259A的操作控制和工作原理:A0、WR、RD、CS的控制作用,表3-2表示了在控制引脚不同的电平状态下的操作控制状态。表 A0、WR、RD、CS的控制作用 A0 D4 D3 RD WR CS输出操作 0 0 1 0IRR、ISR或中断级 BCD码数据总线 1 0 1 0IMR 数据总线输入操作 0 0 0 1 0 0数据总线 OCW2寄存器 0 0 1 1 0 0数据总线 OCW3寄存器 0 1 1 0 0数据总线 ICW1 1 1 0 0数据总线 OCW1,ICW2,ICW3对IRRISR或中断级的BCD码的选择,决定于在此读出操作之前,CPU写入的操作命令OCW3的内容。这写命令的输入顺序由芯片的时序逻辑以适当的时序加以排列。8259A的工作过程及中断应答时序:8259按下列顺序管理外围设备的中断申请:(1)当在IR0IR7的中断申请输入端上由一个或多个输入出现高电平时,IRR中的个对应为被置1,表明已经由外围设备提出中断申请。(2)8259A在接受这些中断申请,并分辨优先级的同时,向CPU发出INT脉冲作为应答。(3)若CPU处于“中断允许”的情况下,在收到INTA信号后应向8259A发出INTA脉冲作为应答。(4)当8259A接收来自CPU的第一个脉冲(INTA)时,便使ISR的最高优先级相应位置1,而将IRR中于之对应的位置0,并送一条CALL指令码(11001101)至数据总线。(5)当CPU读到这个CALL指令后便发出两个INTA脉冲至8259A。(6)这后两个INTA脉冲促使8259把一个预先编程的16位地址传到数据总线上(分两次送出,先低8位后高位)。这个地址就是中断服务程序的入口地址。(7)当执行完上述的3字节调用指令后,便转移至执行外设中断服务子程序。在子程序执行期间,其相应的ISR位一直保持位1,只有在子程序的末尾,在8259A收到一个EOL(中断结束)命令时,才使相应的ISR复位。 中断应答时序如图所示:IRINTINTADB8259的编程与命令控制字:8259编程时,要设定初始化命令字ICW和操作命令字OCW。在8259启动之前,必须送入24个字节的ICW1、ICW2用来设置中断服务程序的16位入口地址。ICW的D4位时特征位,当D4=1,且A0=0时,8259就会识别出它时初始化命令字ICW1,将其存入相当的寄存器,并启动初始化时序。在初始化命令字进入8259A之后,8259A就准备好接收来自IR输入线的中断申请信号。但是,在8259A工作期间CPU可以通过操作命令OCW命令8259A完成不同方式的操作。8259A共有三种操作命令字:OCW1、OCW2、OCW3,这三个操作命令字是依靠A0和OCW中的D4、D3特征位来区别的。OCW命令字可在初始化后的任何时刻写入,下面分别介绍在不同的操作命令字的控制下8259A的工作方式:(1)无OCW的操作方式。在完成初始化程序命令送入后,如果没有任何OCW操作命令字写入,则8259A以全嵌套的操作方式响应来自IR输入线的中断申请信号,中断申请的优先级被定位IR0IR7(IR0的优先级最高)。当中断被响应时,中断申请寄存器IRR中优先级最高的申请信号被选出,并被存入服务状态寄存器,ISR相应的IS位(IS0IS7)被置位。在CPU有服务程序返回之前,保持置位直到CPU发出一个中断结束命令(EOL)为止。(2)OCW1的操作方式:CPU可以通过操作命令字OCW1来分别屏蔽每一个中断申请。OCW1的格式如图:当Mn=1则相应的IRn被屏蔽。(3)OCW2的操作方式:OCW2操作命令字用于控制8259A的循环优先方式和中断结束,OCW2中的R位用来设定循环优先方式。当R=0时,8259A以不循环的优先方式操作。IR0IR7的优先权时固定的。当R=1时,8259A被设定以循环优先方式操作。(4)OCW3的操作方式:操作命令字OCW3用来设定特殊屏蔽方式和指定将要读出的寄存器。5.3 8279键盘、显示8279芯片是一种通用的可编程序的键盘、显示接口器件,单个芯片就能完成键盘输入和LED显示控制两种功能,键盘部分提供的扫描方式,可以和具有64个按键成传感器的阵列相连,能自动消除开关抖动以及n键同时按下的保护。显示部分按扫描方式工作,可以显示8或16位LED显示块。8279电路工作原理如下:(1).I/O控制及数据缓冲器,数据缓冲器是双向缓冲器,连接内、外总线,用于传送CPU和8279之间的命令或数据。I/O控制线是CPU对8279进行控制的引线。CS是8279的片选信号,当CS=0时,8279才被允许读出或写入信息。WR、RD为来自CPU的读、写控制信号。A0用于区别信息特性:A0=1时,表示数据缓冲器输入为指令,输出为状态字,A0=0时,输入、输出皆为数据。(2)控制与定时寄存器及定时控制,控制与定时器用来寄存键盘及显示的工作方式,以及由CPU编程的其它操作方式。这些寄存器一旦接收并锁存送来的命令就通过译码产生相应的信号,从而完成相应的控制功能。定时控制包含基本订数键。首级计数器是一个可编程的N级计数器。N可以231之间由软件编程,以便从外界时钟CLK分频得到内部所需要的100KHZ时钟,然后再经过分频,为键盘扫描提供适当的逐行扫描频率和显示时间。(3).扫描计数器有两种工作方式,按编程码方式工作时,计数器做二进制计数。4位计数状态从扫描线SL0SL3输出,经外部译码器译码后,为键盘和显示器提供扫描线;按译码器工作方式时,扫描计数器的最后二位被译码后,从SL0SL3输出。因此,SL0SL3提供了4中取1的扫描译码。(4).回复缓冲器:键盘去抖及控制来自RL0RL7的8根回复线的回复信号,由回复缓冲器缓冲并锁存。在键盘工作方式中,回复线作为行列式键盘的行列输入线。在逐行扫描时,回复线用来搜寻每一行列中闭合的键。当某一键闭合时,去抖电路被置位,延时等待100ms后,在检验该键是否闭合,并将该键的地址和附加的位移、控制状态一起形成键盘数据被送入8279内部FIF0(先进先出)存储器。 8279的引脚及功能如图所示:D0D7(数据总线):双向、三态总线和系统数据相连,用于CPU 和8279间的数据/命令传送。CLK(系统时钟):输入线,为8279提供内部时钟的输入端。RESET(复位):输入线,当RESET=1时,8279复位,其复位状态为:16字符显示,编码扫描键盘-双键锁定。CS(片选):输入线,当CS=0时8279被选中,允许CPU对其读、写,否则被显示。A0(数据选择):输入线,当A0=1时CPU写入数据为命令字,读出数据为状态字,A0=0时CPU读、写的字节均为数据。RD、WR(读、写信号):输入线,低电平有效,来自CPU的控制信号,控制8279的读、写操作。IRQ(中断申请):输出线。高电平有效。SL0SL3(扫描线):输出线。用来扫描键盘和显示器,它们可以编程设定为编码(4中取1)或译码输出。RL0RL7(回复线矩阵或传感器矩阵的列(或行)信号输出线。SHIFT(移位信号):输出线,高电平有效,该输入信号是8279键盘数据的次高位。CNTL/STB(控制/选通):输入线,高电平有效。OUTA0OUTA3(A组显示信号):输出线 这两组都是显 OUTB0OUTB3(B组显示信号):输出线 示信号输出线,与多位数字显示的扫描线SL0SL3同步。BD(显示消隐):输出线,低电平有效,该信号在数字切换显示或使用消隐命令时,将显示消隐。LED显示及显示器接口:LED显示器的结构与原理:LED显示块是由发光二极管显示字端的显示器件,在单片机应用系统中通常使用的是七段LED,这种显示块有共阴极与供阳极之分,共阴极LED显示块的发光二极管阴极共地,如图(a)当某个发光二极管的阳极为高电平时,发光二极管点亮共阳极LED显示块的发光二极管阳极并接如图(b)所示通常的七段LED显示块中共有八个发光二极管,故也有人叫做八段显示块,其中七个发光二极管构成七笔字形“8”,一个发光二极管构成小数点。七段二极管与单8279接口很容易,这要将3.8译码器中8位并行口与显示块的发光二极管引脚相连即可。8位并行输出口输出不同的字节数据即可获得不同的数字或字符。通常将控制发光二极管的8位字节数据为段选码。共阳极与共阴极的段选码互为补数。LED在静态显示下,共阴极或共阳极点连接在一起接地或+5V。键盘:是为了控制系统的工作状态,以及向系统中输入数据,行列式键盘又叫做矩阵式键盘。用I/O口线组成行、列结构,按键设置在行、列的交点上。行列线分别连接到按键开关的两端。当航线通过上拉电阻接+5V时,被钳为在高电平状态。键盘中有无按键按下时由列线送如全扫描字、行线读入行线状态来判断的,当有键按下时,8279送出中断信号,请求CPU进行按键处理。机械手的示教系统:系统采用示教盒示教机械手的作业信息,通过串行通行将示教信息送到CPU进行处理,形成用户程序,供再现解释执行。(1)用户程序的记述为了尽可能使系统简化,将作业任务以规定的字符表示,通过示教盒的按键输入到主机中。(2)示教信息的表示和存储机械手的作业任务是以步为单位示教的,在一步中,可能示教一种或12种功能,在执行时,执行哪一步需要根据当前步的内容和条件加以判断因此一步中的内容属于随机文件,应以定长结构存储。(3)示教系统的硬件示教盒体积很小,重量轻,时最小的微机系统,电路简单,有与主件的硬件相似,有微机处理器8031、内存RAM和EPROM以及存器组成ROM为2764A,占有空间8K8,RAM为6264占有空间8K8,锁存器为74LS373,除了有键盘扫描与显示电路之外,还有串行通讯电路,实现与主CPU板串行通讯,采用RS-232C接口电平调整芯片完成串行通行电路。RS-232信号线提供15m以内单端线路的单间数据传输,最大数据传输速率为20KB/s,逻辑口电平必须超过5V,不能高于15V。逻辑1电平必须低于-5V,但不能低于-15V。目前,RS-232C与TTL的电平转换最常用的芯片是1488、1489,其作用除了电平调整外,还实现正负逻辑电平的转换。1488由于3个与非门和1个反相器构成,供电电压为15V或12V,输入为TTL电平,输出为RS-232C电平。1489由4个反相器组成,输入为RS-232C电平,输出为TTL电平,电源电压为+5V。1489中每一个反向器都由一个控制端,既可以作为RS-232C操作的控制端,也可以把它接到电压源上,用来改变输入门限特性。器作用除了电平调整外还实现正负逻辑电平的转换。如果一旦停电,主机里面的程序就会丢失,为了避免这一结构,故采用6264芯片的CE2引脚,进行掉电保护,通常正常工作时,须将此引脚保持高电平,当把该引脚拉至小于或等于0.2V时,RAM进入保护状态,利用CE2引脚进行掉电保护的电路图如下:图中U1、U2为电压比较器,稳压管提供了一个基准电压Vr(Vr=3.5V)。故当Vcc为+5V时,在R4上的分压大于Vr,使U2输出高电压,这时U4输出高电平,故CE2输出为高电平,使6264RAM处于工作状态,主机即可对RAM进行存取。当电源掉电时,Vcc开始下降,当满足以下条件时: R4*Vcc(R4+R3)(R5+R6)VrU2输出低电平,通过U5、U6使CE输出0.2V,RAM进入数据保护状态,按图中所给参数计算,当Vcc降到4.7V时,U3输出为低电平。若Vcc继续下降到小于E时,使D2截止,D1导通,这时E作为备用电池使用。当单片机系统重新加电时,Vcc由零变到+5V,U2的输出端会出现瞬间干扰脉冲,由于U3和U4间电路的积分延时(约0.7RC),CE不会立即开到高电平。从而抑制了干扰脉冲,抵挡延时结束时,电源电压已稳定在+5V,使CE2成为高电平,6264转为工作状态,单片机可对其进行读/写。图中U3U6为一块CMOS回旋密特与非门(CD4093),该芯片直接由备用电源供电,这样才能保证掉电后使CE20.2V,并且重新上电时CE2不受电源电压缺变的干扰。比较器U1、U2由Vcc供电,U1为后备电源E的电压监测电路,当备份电池耗至3.5V以下,发光二极管发亮,表示要更换电池,备份电源可用5号电池或锂电池。另则主机8031上采用了掉电保护,用555与P1.0,RST与Vcc连接起来实现。对于8259A可编程中断控制器编程实例:设8259A为完全嵌套工作方式。中断入口地址间隔为4个字节,IR0的入口地址为0260H时,则8259A的初始化程序如下:CLR EA 8031CPU禁止中断MOV R0 ,#00H 送ICW1(A0=0,CS=0A0=0)MOV A ,#76H(0111011013),设ICW1命令字 MOVX R0,A ICW1命令字送入8259AMOV R0 ,#01H , 送ICW2(A0=1,CS=A0=0)MOV A,#02H , 中断入口的高8字节地址为02HMOVX R0,A , 送ICW2命令字入8259ASETB EA , 8031CPU中断允许 SETB IT0 , 8031选择INT0为负跳变触发SETB EX0 , 8031允许INT0中断8259A中断服务程序流程图如下:程序清单如下: ORG 0003H INTO:PUSH PSW , 保护现场 PUSH A MOV R0 , #00H MOVX A , R0 取CALL码,丢弃 MOV DPL ,A 取中断服务程序入口地 址低8位 INC R0 MOV R0 , #01H MOVX A , R0 MOV DPH , A 取中断服务程序入口地 址高8位 CLR A JMP A+DPTR 转向8259A 、IRx中断 服务子程序ORG I0260H , IR0中断服务子程序LJMP IR0NOPLJMP IR7NOPORG IR0 IR0:LCALL LAB ,模拟中断返回8259A服务子程序,延时10ms先计算10ms定时所需的定时器初值,采用定时器方式1,即16位计数器方式,计数器的始终频率为6MHZX=M定时值/T T=12/晶振频率=12/6106 =2us =216 (1010-3 /210-6 ) = 6553615000 =50536 =1110110001111000B则TH0初值为ECH TL0初值为78H子程序清单:MOV TMOD ,#01H 定时器方式1MOV TH0 ,#ECH 定时器高8位初值MOV TL0 ,#78H 定时器低8位初值SETB EA 开中断SETB ET0 定时器允许中断SETB TR0 启动计数器POP AccPOP PSWRETI总 结毕业设计是大学学习阶段一次非常难得的理论与实际相结合的学习机会,通过这次对变电站巡检全向移动小车理论知识和实际设计的相结合,锻炼了我的综合运用所学专业知识,解决实际工程问题的能力,同时也提高了我查阅文献资料、设计手册、设计规范能力以及其他专业知识水平,而且通过对整体的掌控,对局部的取舍,以及对细节的斟酌处理,都使我的能力得到了锻炼,经验得到了丰富,并且意志品质力,抗压能力以及耐力也都得到了不同程度的提升。这是我们都希望看到的也正是我们进行毕业设计的目的所在,提高是有限的但却是全面的,正是这一次毕业设计让我积累了许多实际经验,使我的头脑更好的被知识武装起来,也必然让我在未来的工作学习中表现出更高的应变能力,更强的沟通力和理解力。顺利如期的完成本此毕业设计给了我很大的信心,让我了解专业知识的同时也对本专业的发展前景充满信心,但同时也发现了自己的许多不足与欠缺,留下了些许遗憾,不过不足与遗憾不会给我打击只会更好的鞭策我前行,今后我更会关注新科技新设备新工艺的出现,并争取尽快的掌握这些先进知识,更好的为祖国的四化服务。参考文献1 张宪民.工业机械手应用基础M.北京:机械工业出版社,20152滕洪春. 工业机械手与机械手M. 北京: 电子工业出版社, 20153 龚振邦. 机械手机械设计M. 北京: 电子工业出版社, 19954 吴瑞祥. 机械手技术及应用M. 北京:北京航空航天大学出版社,1994. 5 熊有伦.机械手技术基础M.武汉:华中理工大学出版社,19966 李刚.工业用码垛机械手J.现代制造,2005(24):40-417 刘光起.PLC技术及其应用M.北京:化学工业出版社,20078 王乘义.机械手及其应用M.北京:机械工业出版社,19859 李瑞琴.机械原理M.北京:国防工业出版社,200810 孙兵.物料搬运机械手研制J.机电一体化,2005(2):43-4511 李哲.冲压机自动上下料机械手研制J.机械设计与制造工程2001(3):35-3612 刘红兵.装出料机械手设计J.机械设计与制造2003(2):61-6213 韩思音.煤饼装箱机械手电气故障自动诊断系统 江苏工学院报199214 凌俊杰.装箱机械手控制系统的设计电气自动化2006年第28卷第3期15 赵德安.装箱机械手及其控制系统的设计江苏工学院学报 198816 黄卫庭. 基于西门子S7_200PLC的机械手控制1007-9416(2014)01-0009-0217 杜玉红.生产线组装单元气动搬运机械手的设计 天津30016018 ZhouLanfeng,HongBingrong.Real-time acquisition of compact volumetric maps.High Technology Letters.2006.1致 谢大学生活即将结束,在这短短的四年里,让我结识了许许多多热心的朋友、工作严谨教学相帮的教师。毕业设计的顺利完成也脱离不了他们的热心帮助及指导老师的精心指导,在此向所有给予我此次毕业设计指导和帮助的老师和同学表示最诚挚的感谢。首先,向本设计的指导老师表示最诚挚的谢意。在自己紧张的工作中,仍然尽量抽出时间对我们进行指导,时刻关心我们的进展状况,督促我们抓紧学习。老师给予的帮助贯穿于设计的全过程,从借阅参考资料到现场的实际操作,他都给予了指导,不仅使我学会书本中的知识,更学会了学习操作方法。也懂得了如何把握设计重点,如何合理安排时间和论文的编写,同时在毕业设计过程中,她和我们在一起共同解决了设计中出现的各种问题。其次,要向给予此次毕业设计帮助的老师们,以及同学们以诚挚的谢意,在整个设计过程中,他们也给我很多帮助和无私的关怀,更重要的是为我们提供不少技术方面的资料,在此感谢他们,没有这些资料就不是一个完整的论文。另外,也向给予我帮助的所有同学表示感谢。总之,本次的设计是老师和同学共同完成的结果,在设计的一个月里,我们合作的非常愉快,教会了大我许多道理,是我人生的一笔财富,我再次向给予我帮助的老师和同学表示感谢!附 录附录1:英文原文Basic Machining Operations and Cutting TechnologyBasic Machining Operations Machine tools have evolved from the early foot-powered lathes of the Egyptians and John Wilkinsons boring mill. They are designed to provide rigid support for both the workpiece and the cutting tool and can precisely control their relative positions and the velocity of the tool with respect to the workpiece. Basically, in metal cutting, a sharpened wedge-shaped tool removes a rather narrow strip of metal from the surface of a ductile workpiece in the form of a severely deformed chip. The chip is a waste product that is considerably shorter than the workpiece from which it came but with a corresponding increase in thickness of the uncut chip. The geometrical shape of workpiece depends on the shape of the tool and its path during the machining operation. Most machining operations produce parts of differing geometry. If a rough cylindrical workpiece revolves about a central axis and the tool penetrates beneath its surface and travels parallel to the center of rotation, a surface of revolution is produced, and the operation is called turning. If a hollow tube is machined on the inside in a similar manner, the operation is called boring. Producing an external conical surface uniformly varying diameter is called taper turning, if the tool point travels in a path of varying radius, a contoured surface like that of a bowling pin can be produced; or, if the piece is short enough and the support is sufficiently rigid, a contoured surface could be produced by feeding a shaped tool normal to the axis of rotation. Short tapered or cylindrical surfaces could also be contour formed. Flat or plane surfaces are frequently required. They can be generated by radial turning or facing, in which the tool point moves normal to the axis of rotation. In other cases, it is more convenient to hold the workpiece steady and reciprocate the tool across it in a series of straight-line cuts with a crosswise feed increment before each cutting stroke. This operation is called planning and is carried out on a shaper. For larger pieces it is easier to keep the tool stationary and draw the workpiece under it as in planning. The tool is fed at each reciprocation. Contoured surfaces can be produced by using shaped tools. Multiple-edged tools can also be used. Drilling uses a twin-edged fluted tool for holes with depths up to 5 to 10 times the drill diameter. Whether the drill turns or the workpiece rotates, relative motion between the cutting edge and the workpiece is the important factor. In milling operations a rotary cutter with a number of cutting edges engages the workpiece. Which moves slowly with respect to the cutter. Plane or contoured surfaces may be produced, depending on the geometry of the cutter and the type of feed. Horizontal or vertical axes of rotation may be used, and the feed of the workpiece may be in any of the three coordinate directions. Basic Machine Tools Machine tools are used to produce a part of a specified geometrical shape and precise I size by removing metal from a ductile material in the form of chips. The latter are a waste product and vary from long continuous ribbons of a ductile material such as steel, which are undesirable from a disposal point of view, to easily handled well-broken chips resulting from cast iron. Machine tools perform five basic metal-removal processes: I turning, planning, drilling, milling, and grinding. All other metal-removal processes are modifications of these five basic processes. For example, boring is internal turning; reaming, tapping, and counter boring modify drilled holes and are related to drilling; bobbing and gear cutting are fundamentally milling operations; hack sawing and broaching are a form of planning and honing; lapping, super finishing. Polishing and buffing are variants of grinding or abrasive removal operations. Therefore, there are only four types of basic machine tools, which use cutting tools of specific controllable geometry: 1. lathes, 2. planers, 3. drilling machines, and 4. milling machines. The grinding process forms chips, but the geometry of the abrasive grain is uncontrollable. The amount and rate of material removed by the various machining processes may be I large, as in heavy turning operations, or extremely small, as in lapping or super finishing operations where only the high spots of a surface are removed. A machine tool performs three major functions: 1. it rigidly supports the workpiece or its holder and the cutting tool; 2. it provides relative motion between the workpiece and the cutting tool; 3. it provides a range of feeds and speeds usually ranging from 4 to 32 choices in each case. Speed and Feeds in Machining Speeds, feeds, and depth of cut are the three major variables for economical machining. Other variables are the work and tool materials, coolant and geometry of the cutting tool. The rate of metal removal and power required for machining depend upon these variables. The depth of cut, feed, and cutting speed are machine settings that must be established in any metal-cutting operation. They all affect the forces, the power, and the rate of metal removal. They can be defined by comparing them to the needle and record of a phonograph. The cutting speed (V) is represented by the velocity of- the record surface relative to the needle in the tone arm at any instant. Feed is represented by the advance of the needle radially inward per revolution, or is the difference in position between two adjacent grooves. The depth of cut is the penetration of the needle into the record or the depth of the grooves. Turning on Lathe Centers The basic operations performed on an engine lathe are illustrated. Those operations performed on external surfaces with a single point cutting tool are called turning. Except for drilling, reaming, and lapping, the operations on internal surfaces are also performed by a single point cutting tool. All machining operations, including turning and boring, can be classified as roughing, finishing, or semi-finishing. The objective of a roughing operation is to remove the bulk of the material as rapidly and as efficiently as possible, while leaving a small amount of material on the work-piece for the finishing operation. Finishing operations are performed to obtain the final size, shape, and surface finish on the workpiece. Sometimes a semi-finishing operation will precede the finishing operation to leave a small predetermined and uniform amount of stock on the work-piece to be removed by the finishing operation. Generally, longer workpieces are turned while supported on one or two lathe centers. Cone shaped holes, called center holes, which fit the lathe centers are drilled in the ends of the workpiece-usually along the axis of the cylindrical part. The end of the workpiece adjacent to the tailstock is always supported by a tailstock center, while the end near the headstock may be supported by a headstock center or held in a chuck. The headstock end of the workpiece may be held in a four-jaw chuck, or in a type chuck. This method holds the workpiece firmly and transfers the power to the workpiece smoothly; the additional support to the workpiece provided by the chuck lessens the tendency for chatter to occur when cutting. Precise results can be obtained with this method if care is taken to hold the workpiece accurately in the chuck. Very precise results can be obtained by supporting the workpiece between two centers. A lathe dog is clamped to the workpiece; together they are driven by a driver plate mounted on the spindle nose. One end of the Workpiece is mecained;then the workpiece can be turned around in the lathe to machine the other end. The center holes in the workpiece serve as precise locating surfaces as well as bearing surfaces to carry the weight of the workpiece and to resist the cutting forces. After the workpiece has been removed from the lathe for any reason, the center holes will accurately align the workpiece back in the lathe or in another lathe, or in a cylindrical grinding machine. The workpiece must never be held at the headstock end by both a chuck and a lathe center. While at first thought this seems like a quick method of aligning the workpiece in the chuck, this must not be done because it is not possible to press evenly with the jaws against the workpiece while it is also supported by the center. The alignment provided by the center will not be maintained and the pressure of the jaws may damage the center hole, the lathe center, and perhaps even the lathe spindle. Compensating or floating jaw chucks used almost exclusively on high production work provide an exception to the statements made above. These chucks are really work drivers and cannot be used for the same purpose as ordinary three or four-jaw chucks. While very large diameter workpieces are sometimes mounted on two centers, they are preferably held at the headstock end by faceplate jaws to obtain the smooth power transmission; moreover, large lathe dogs that are adequate to transmit the power not generally available, although they can be made as a special. Faceplate jaws are like chuck jaws except that they are mounted on a faceplate, which has less overhang from the spindle bearings than a large chuck would have. Introduction of Machining Machining as a shape-producing method is the most universally used and the most important of all manufacturing processes. Machining is a shape-producing process in which a power-driven device causes material to be removed in chip form. Most machining is done with equipment that supports both the work piece and cutting tool although in some cases portable equipment is used with unsupported workpiece. Low setup cost for small Quantities. Machining has two applications in manufacturing. For casting, forging, and press working, each specific shape to be produced, even one part, nearly always has a high tooling cost. The shapes that may he produced by welding depend to a large degree on the shapes of raw material that are available. By making use of generally high cost equipment but without special tooling, it is possible, by machining; to start with nearly any form of raw material, so tong as the exterior dimensions are great enough, and produce any desired shape from any material. Therefore .machining is usually the preferred method for producing one or a few parts, even when the design of the part would logically lead to casting, forging or press working if a high quantity were to be produced. Close accuracies, good finishes. The second application for machining is based on the high accuracies and surface finishes possible. Many of the parts machined in low quantities would be produced with lower but acceptable tolerances if produced in high quantities by some other process. On the other hand, many parts are given their general shapes by some high quantity deformation process and machined only on selected surfaces where high accuracies are needed. Internal threads, for example, are seldom produced by any means other than machining and small holes in press worked parts may be machined following the press working operations. Primary Cutting Parameters The basic tool-work relationship in cutting is adequately described by means of four factors: tool geometry, cutting speed, feed, and depth of cut. The cutting tool must be made of an appropriate material; it must be strong, tough, hard, and wear resistant. The tool s geometry characterized by planes and angles, must be correct for each cutting operation. Cutting speed is the rate at which the work surface passes by the cutting edge. It may be expressed in feet per minute. For efficient machining the cutting speed must be of a magnitude appropriate to the particular work-tool combination. In general, the harder the work material, the slower the speed. Feed is the rate at which the cutting tool advances into the workpiece. Where the workpiece or the tool rotates, feed is measured in inches per revolution. When the tool or the work reciprocates, feed is measured in inches per stroke, Generally, feed varies inversely with cutting speed for otherwise similar conditions. The depth of cut, measured inches is the distance the tool is set into the work. It is the width of the chip in turning or the thickness of the chip in a rectilinear cut. In roughing operations, the depth of cut can be larger than for finishing operations. The Effect of Changes in Cutting Parameters on Cutting Temperatures In metal cutting operations heat is generated in the primary and secondary deformation zones and these results in a complex temperature distribution throughout the tool, workpiece and chip. A typical set of isotherms is shown in figure where it can be seen that, as could be expected, there is a very large temperature gradient throughout the width of the chip as the workpiece material is sheared in primary deformation and there is a further large temperature in the chip adjacent to the face as the chip is sheared in secondary deformation. This leads to a maximum cutting temperature a short distance up the face from the cutting edge and a small distance into the chip. Since virtually all the work done in metal cutting is converted into heat, it could be expected that factors which increase the power consumed per unit volume of metal removed will increase the cutting temperature. Thus an increase in the rake angle, all other parameters remaining constant, will reduce the power per unit volume of metal removed and the cutting temperatures will reduce. When considering increase in unreformed chip thickness and cutting speed the situation is more complex. An increase in undeformed chip thickness tends to be a scale effect where the amounts of heat which pass to the workpiece, the tool and chip remain in fixed proportions and the changes in cutting temperature tend to be small. Increase in cutting speed; however, reduce the amount of heat which passes into the workpiece and this increase the temperature rise of the chip m primary deformation. Further, the secondary deformation zone tends to be smaller and this has the effect of increasing the temperatures in this zone. Other changes in cutting parameters have virtually no effect on the power consumed per unit volume of metal removed and consequently have virtually no effect on the cutting temperatures. Since it has been shown that even small changes in cutting temperature have a significant effect on tool wear rate it is appropriate to indicate how cutting temperatures can be assessed from cutting data. The most direct and accurate method for measuring temperatures in high -speed-steel cutting tools is that of Wright &. Trent which also yields detailed information on temperature distributions in high-speed-steel cutting tools. The technique is based on the metallographic examination of sectioned high-speed-steel tools which relates microstructure changes to thermal history. Trent has described measurements of cutting temperatures and temperature distributions for high-speed-steel tools when machining a wide range of workpiece materials. This technique has been further developed by using scanning electron microscopy to study fine-scale microstructure changes arising from over tempering of the tempered martens tic matrix of various high-speed-steels. This technique has also been used to study temperature distributions in both high-speed -steel single point turning tools and twist drills. Wears of Cutting Tool Discounting brittle fracture and edge chipping, which have already been dealt with, tool wear is basically of three types. Flank wear, crater wear, and notch wear. Flank wear occurs on both the major and the minor cutting edges. On the major cutting edge, which is responsible for bulk metal removal, these results in increased cutting forces and higher temperatures which if left unchecked can lead to vibration of the tool and workpiece and a condition where efficient cutting can no longer take place. On the minor cutting edge, which determines workpiece size and surface finish, flank wear can result in an oversized product which has poor surface finish. Under most practical cutting conditions, the tool will fail due to major flank wear before the minor flank wear is sufficiently large to result in the manufacture of an unacceptable component. Because of the stress distribution on the tool face, the frictional stress in the region of sliding contact between the chip and the face is at a maximum at the start of the sliding contact region and is zero at the end. Thus abrasive wear takes place in this region with more wear taking place adjacent to the seizure region than adjacent to the point at which the chip loses contact with the face. This result in localized pitting of the tool face some distance up the face which is usually referred to as catering and which normally has a section in the form of a circular arc. In many respects and for practical cutting conditions, crater wear is a less severe form of wear than flank wear and consequently flank wear is a more common tool failure criterion. However, since various authors have shown that the temperature on the face increases more rapidly with increasing cutting speed than the temperature on the flank, and since the rate of wear of any type is significantly affected by changes in temperature, crater wear usually occurs at high cutting speeds. At the end of the major flank wear land where the tool is in contact with the uncut workpiece surface it is common for the flank wear to be more pronounced than along the rest of the wear land. This is because of localised effects such as a hardened layer on the uncut surface caused by work hardening introduced by a previous cut, an oxide scale, and localised high temperatures resulting from the edge effect. This localised wear is usually referred to as notch wear and occasionally is very severe. Although the presence of the notch will not significantly affect the cutting properties of the tool, the notch is often relatively deep and if cutting were to continue there would be a good chance that the tool would fracture. If any form of progressive wear allowed to continue, dramatically and the tool would fail catastrophically, i. e. the tool would be no longer capable of cutting and, at best, the workpiece would be scrapped whilst, at worst, damage could be caused to the machine tool. For carbide cutting tools and for all types of wear, the tool is said to have reached the end of its useful life long before the onset of catastrophic failure. For high-speed-steel cutting tools, however, where the wear tends to be non-uniform it has been found that the most meaningful and reproducible results can be obtained when the wear is allowed to continue to the onset of catastrophic failure even though, of course, in practice a cutting time far less than that to failure would be used. The onset of catastrophic failure is characterized by one of several phenomena, the most common being a sudden increase in cutting force, the presence of burnished rings on the workpiece, and a significant increase in the noise level. Mechanism of Surface Finish Production There are basically five mechanisms which contribute to the production of a surface which have been machined. These are:(l) The basic geometry of the cutting process. In, for example, single point turning the tool will advance a constant distance axially per revolution of the workpiecc and the resultant surface will have on it, when viewed perpendicularly to the direction of tool feed motion, a series of cusps which will have a basic form which replicates the shape of the tool in cut. (2) The efficiency of the cutting operation. It has already been mentioned that cutting with unstable built-up-edges will produce a surface which contains hard built-up-edge fragments which will result in a degradation of the surface finish. It can also be demonstrated that cutting under adverse conditions such as apply when using large feeds small rake angles and low cutting speeds, besides producing conditions which lead to unstable built-up-edge production, the cutting process itself can become unstable and instead of continuous shear occurring in the shear zone, tearing takes place, discontinuous chips of uneven thickness are produced, and the resultant surface is poor. This situation is particularly noticeable when machining very ductile materials such as copper and aluminum. (3) The stability of the machine tool. Under some combinations of cutting conditions; workpiece size, method of clamping ,and cutting tool rigidity relative to the machine tool structure, instability can be set up in the tool which causes it to vibrate. Under some conditions this vibration will reach and maintain steady amplitude whilst under other conditions the vibration will built up and unless cutting is stopped considerable damage to both the cutting tool and workpiece may occur. This phenomenon is known as chatter and in axial turning is characterized by long pitch helical bands on the workpiece surface and short pitch undulations on the transient machined surface. (4)The effectiveness of removing swarf. In discontinuous chip production machining, such as milling or turning of brittle materials, it is expected that the chip (swarf) will leave the cutting zone either under gravity or with the assistance of a jet of cutting fluid and that they will not influence the cut surface in any way. However, when continuous chip production is evident, unless steps are taken to control the swarf it is likely that it will impinge on the cut surface and mark it. Inevitably, this marking besides looking. (5)The effective clearance angle on the cutting tool. For certain geometries of minor cutting edge relief and clearance angles it is possible to cut on the major cutting edge and burnish on the minor cutting edge. This can produce a good surface finish but, of course, it is strictly a combination of metal cutting and metal forming and is not to be recommended as a practical cutting method. However, due to cutting tool wear, these conditions occasionally arise and lead to a marked change in the surface characteristics. Limits and Tolerances Machine parts are manufactured so they are interchangeable. In other words, each part of a machine or mechanism is made to a certain size and shape so will fit into any other machine or mechanism of the same type. To make the part interchangeable, each individual part must be made to a size that will fit the mating part in the correct way. It is not only impossible, but also impractical to make many parts to an exact size. This is because machines are not perfect, and the tools become worn. A slight variation from the exact size is always allowed. The amount of this variation depends on the kind of part being manufactured. For examples part might be made 6 in. long with a variation allowed of 0.003 (three-thousandths) in. above and below this size. Therefore, the part could be 5.997 to 6.003 in. and still be the correct size. These are known as the limits. The difference between upper and lower limits is called the tolerance. A tolerance is the total permissible variation in the size of a part. The basic size is that size from which limits of size arc derived by the application of allowances and tolerances. Sometimes the limit is allowed in only one direction. This is known as unilateral tolerance.Unilateral tolerancing is a system of dimensioning where the tolerance (that is variation) is shown in only one direction from the nominal size. Unilateral tolerancing allow the changing of tolerance on a hole or shaft without seriously affecting the fit.When the tolerance is in both directions from the basic size it is known as a bilateral tolerance (plus and minus). Bilateral tolerancing is a system of dimensioning where the tolerance (that is variation) is split and is shown on either side of the nominal size. Limit dimensioning is a sys
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。