尾座体机械加工工艺及夹具设计包含有CAD图纸
收藏
资源目录
压缩包内文档预览:
编号:20561936
类型:共享资源
大小:11.47MB
格式:ZIP
上传时间:2019-07-05
上传人:QQ24****1780
认证信息
个人认证
王**(实名认证)
浙江
IP属地:浙江
25
积分
- 关 键 词:
-
尾座体加工工艺及夹具设计
机械加工工艺
体机械加工工艺及夹具设计
尾座体机械加工工艺及夹具设计
尾座体工艺及夹具设计
尾座体机加工工艺及
机械加工工艺及夹具
- 资源描述:
-
尾座体机械加工工艺及夹具设计包含有CAD图纸,尾座体加工工艺及夹具设计,机械加工工艺,体机械加工工艺及夹具设计,尾座体机械加工工艺及夹具设计,尾座体工艺及夹具设计,尾座体机加工工艺及,机械加工工艺及夹具
- 内容简介:
-
课程设计说明书题目 尾座体钻35H9孔的夹具设计专 业: 学 生 姓 名: 班 级: 学 号: 指 导 教 师: 完 成 时 间: 目 录第1章绪论31.1 机械制造及机床夹具概述31.2 夹具的设计要点41.3 夹具的特点41.4 钻床夹具概述51.5 机床夹具的发展趋势7第2章 尾座体机械加工工艺规程设计92.1 零件的工艺分析及生产类型的确定92.1.1 零件的作用92.1.2 零件的工艺分析92.1.3 零件生产类型的确定102.2零件工艺规程设计112.2.1 零件制造形式的确定112.2.2 基准的选择112.3制定加工工艺路线122.4机械加工余量,工序尺寸及毛坯尺寸的确定132.5确定切削用量及基本工时15第3章 专用夹具的设计213.1 问题的提出213.2夹具设计213.2.1 夹具体材料的确定213.2.2 确定定位方案,选择定位元件213.2.3 定位基准选择223.2.4 切削力及夹紧力计算223.2.5 确定夹紧机构233.2.5 定位误差分析233.2.6 夹具操作的简要说明23第4章 结论24参考文献25I第1章 绪论1.1 机械制造及机床夹具概述1、机械制造工业机械制造工业是国民经济最重要的部门之一,是一个国家或地区经济发展的支柱产业,其发展水平标志着该国家或地区的经济实力、科技水平、生活水准和国防实力。机械制造工业是制造农业机械、动力机械、运输机械、矿山机械等机械产品的工业生产部门,也是为国民经济各部门提供冶金机械、化工设备和工作母机等设备的部门。机械制造业是国民经济的装备部,是为国民经济提供装备和为人民生活提供耐用消费品的产业。机械制造业的生产能力和发展标志着一个国家和地区国民经济现代化的程度,而机械制造也生产能力主要取决于机械制造装备的先进程度,产品性能和质量的好坏则取决于制造过程中工艺水平的高低。2、机械制造工艺机械制造工艺技术是在人类生产实践中产生并不断发展的。在20世纪50年代“刚性”生产模式下,通过大量使用的专用设备和工装夹具,提高生产效率和加工的自动化程度,进行单一或少品种的大批量生产,以“规模经济”实现降低成本和提高质量的目的。在20世纪70年代主要通过改善生产过程管理来进一步提高产品质量和降低成本。在20世纪80年代,较多采用数控机床、机器人、柔性制造单元和系统等高技术的集成来满足产品个性化和多样化的要求,以满足社会各消费群体的不同要求。到了90年代,机械制造工艺技术向着高精度、高效率、高自动化发展。3、机床夹具在机械加工中,为了迅速、准确地确定工件在机床上位置,进而正确地确定工件与机床、刀具的相对位置关系,并在加工中始终保持这个正确位置的工艺装备。机床夹具的种类很多,按机床夹具的通用特性分类有:通用夹具、专用夹具、可调夹具、组合夹具、自动线夹具;按夹具使用的机床分类有:车床夹具、铣床夹具、钻床夹具、镗床夹具和其他机床夹具等;按夹紧动力源分为:气动夹具、液压夹具、气液夹具等。夹具在其发展的200多年历史中,大致经历了三个阶段:第一阶段,夹具在工件加工、制造的各工序中作为基本的夹持装置,发挥着夹固工件的最基本功用。随着军工生产及内燃机,汽车工业的不断发展,夹具逐渐在规模生产中发挥出其高效率及稳定加工质量的优越性,各类定位、夹紧装置的结构也日趋完善,夹具逐步发展成为机床工件工艺装备工艺系统中相当重要的组成部分。这是夹具发展的第二阶段。这一阶段,夹具发展的主要特点是高效率。在现代化生产的今天,各类高效率,自动化夹具在高效,高精度及适应性方面,已有了相当大的提高。随着电子技术,数控技术的发展,现代夹具的自动化和高适应性,已经使夹具与机床逐渐融为一体,使得中,小批量生产的生产效率逐步趋近于专业化的大批量生产的水平。这是夹具发展的第三个阶段,这一阶段,夹具的主要特点是高精度,高适应性。可以预见,夹具在不一个阶段的主要发展趋势将是逐步提高智能化水平。1.2 夹具的设计要点确定各表面加工方案,在选择各表面孔的加工方法时,需综合考虑以下因素:1、要考虑各表面的精度和质量要求,根据各加工表面的技术要求,选择加工方法及分几次加工。2、根据生产类型来选择,在大批量生产中可使用专用的高效率的设备;在单件小批量生产中则使用常用设备和一般加工方法。3、要考虑被加工材料的性质。4、要考虑工厂或车间的实际情况,同时也应考虑不断改进现有的加工方法和设备,推广新技术,提高工艺水平。5、此外,还要考虑一些其他因素,如加工表面的物理机械性能的特殊要求,工件形状和重量等。1.3 夹具的特点1、保证工件的加工精度专用夹具应有合理的定位方案,合适的尺寸,公差和技术要求,并进行必要的精度分析,确保夹具能满足工件的加工精度要求。2、提高生产效率专业夹具的复杂程度要与工件的生产纲领相适应,应根据工件生产批量的大小选用不同复杂程度的高效夹紧装置,以缩短辅助时间,以提高生产效率。3、工艺性好专用夹具的结构简单,合理,便于加工,装配,检验和维修。专用夹具的生产属于小批量生产。4、使用性好专用夹具的操作应简单,省力,安全可靠,排屑应方便,必要时可设置排屑机构。5、经济型好除考虑专用夹具本身结构简单,标准化程度高,成本低廉外,还应根据生产纲领对夹具方案进行必要的经济分析,以提高夹具在生产中的经济效益。1.4 钻床夹具概述一、钻床夹具的特点1、钻床夹具的特点 在一般钻床上对工件进行孔加工,多具有下述特点: (1)、刀具本身的刚性较差(2)、多刀刃的不对称,易造成孔的形位误差(3)、普通麻花钻头起钻时,孔位精度极差综合以上孔加工特点,钻床夹具的主要任务是要解决好工件相对刀具的正确加工位置的严格控制问题。在大批量生产中,为有效地解决钻头钻孔孔位精度不稳定问题,多直接设置带有刀具引导孔的模板,对钻头进行正确引导和对孔位进行强制性限制。尤其是对箱体、盖板类工件的钻孔,往往要同时由多支钻头一次性地钻出众多的孔,为保证加工孔系的位置精度,一定要通过一块精确的模板,把多个孔位由引导孔限制好。这种用来正确引导钻头控制孔位精度的模板,称为钻模板。专业化、高效生产中的钻床夹具,通常具有较精确的钻模板,以正确、快速地引导钻头控制孔位精度,这是钻床夹具的最主要的特点。所以,习惯上又把钻床夹具称为钻模。为防止钻刃破坏钻模板上引导孔的孔壁,多在引导孔中设置高硬度的钻套,以维持钻模板的孔系精度。2、钻模设计和使用中应注意的问题除上述结构特点外,设计和使用钴床夹具,尚需注意以下几个问题:(1)、应正确地确定夹具夹紧力的方向和大小孔加工工序一般轴向力均较大,尤其是钻孔,普通钻头的横刃,极不利于钻削的进行,将产生相当大的轴向抗力,若夹紧工件的夹紧力方向选择不当,将会严重地影响钻削工件夹紧的可靠性,特别是当采用大直径、多钻头高速机动进给时。夹具设计,多把夹紧力与切削轴向力取在相同方向上,并直接指向夹具的主要定位基准面,以借助钻头的轴向切削力增大安装面上的摩擦力,保持工件加工过程中的稳固性。(2)、注意夹具与工作台间的牢固连接问题 当钻头即将钻通工件,钻心横刃不再受工件材料阻碍时,钻头原来所受的巨大轴向抗力由于钻心的穿透会瞬间消失,而此时尚未切出工件的左右钻刃外缘的正前角,由于主轴旋转的作用,使得钻头上所受的轴向力会突然反向,使进给机构的传动间隙反向,造成钻刃进给量的突然增大,从而造成较大的拔钻力(工件孔底材料咬住钻刃,施加给钻头的强大拉力)。这个拔钻力严重时,会把钻头从钻套中强行拉出,若钻头装夹牢固,则旋转着的钻头可能会把夹具中的工件连同模板同时拔出,造成事故。所以,除非是较小型的翻转式夹具,一般钻床夹具在专业化高效生产中,多强调与机床工作台保持牢固的连接,尤其是当钻孔孔径大于20mm,并采用较大进给量机动进给时,更应特别注意钻头即将钻通工件的一瞬间的安全性。二、钻床夹具的结构类型钻床夹具应用广泛,种类较多,常用钻床夹具的结构类型矿大致可分为固定式、回转式、移动式、翻转式、盖板式和滑柱式等几种主要类型。1、固定式钻模固定式钻模是指工件装上夹具后,直至所有孔加工工序内容完成的全过程中,工件及夹具始终保持不动的钻床夹具。夹具相对机床的位置固定不动,工件在夹具中的位置固定不动,钻套相对刀具的精确位置可以通过严格的调装,所以固定式钻模的钻孔位置精度较高。但钻孔的方向和位置不能变动,机动性差。一般情况下,固定式钻模往往由于钻模板的设置使夹具的敞开性变差,装卸工件较麻烦,所以,工件的装夹效率较低。固定式钻模一般多用于机动性较好的摇臂钻床上,以便对多个孔依次换位钻削,或者用于组合多轴钻上,同时对多孔进行钻削,单孔加工可用于普通立钻上。2、回转式钴模在中、小批量生产中,对于分布于同一圆周上的多个等直径孔的加工,往往采用回转式钻模来装夹工件。回转式钻模可以带动工件进行回转,以完成同一圆周上分布的多个孔的依次加工,孔的位置精度由钻套和夹具上的回转分度对定机构来保证。根据钻模板在夹具上不同的设置,可以把回转式钻模分为模板固定式和模板回转式两种。3、移动式钻模移动式钻模是指工件安装到夹具上后,可通过夹具整体的自由移动或夹具局部结构的直线移动来依次完成多个孔的加工的钻模。整体自由移动式钻模一般适用于在台钻、立钻上钻削小尺寸孔的小型多孔工件,由于钻削小孔,钻削扭矩较小,钻模在自身重力及摩擦力作用下,完全可以与钻削扭力矩相平衡,加上手动进给,般不大会发生拔钻危险,所以,夹具与工作台不需固连在一起,这样,可以利用夹具本身的移动来进行孔位的转换而加工多孔。4、翻转式钻模翻转式钻模属于一种活动式钻模,工件一次性安装到夹具中后,可以借助夹具使用过程中的手动翻转,更换夹具相对刀具的加工方向和安装基面,从而可依次完成工件不同加工面上不同方位的孔加工。只是工件的这种翻转换面是通过手动翻转夹具实现的,所以要求工件及夹具的总质量不能太重。5、盖板式钻模 钻床夹具最原始的形式就是一块钻模板,这就是盖板式钻模的原形,把模板盖在大型工件上并压紧,就可以把模板上的孔系复制在工件上。为保证模板的孔系相对工件的毛坯间较严格的位置关系,因此在模板上增加相对工件的定位元件及夹紧装置。由于盖板式钻模很适合于小批量生产中大型机体、箱体工件的小孔孔系加工,所以其结构形式被保留下来。6、滑柱式钻模滑柱式钻模是一种应用广泛的中小型通用夹具,它具有能够在两个滑柱的引导下进行上下移动的钻模板,在手动或者气、液动力作用下,能够快速压紧工作,具有工件装夹方便、夹紧动作迅速、操作简便,易于实现自动化控制等优点。尤其适合于一些小型工件的孔加工。所以,在专业化生产和小批量生产中,滑柱式钻模都得到广泛的应用。1.5 机床夹具的发展趋势加工夹具是不可缺少的一部分,由机床制造技术的推动下,以高速,高精度,复合,智能,环保方向发展,夹具移动高精技术,高效率,模块组合,整体经济的方向。1、高精为了减少定位误差,随着加工精度的提高,并提高制造精度要求的夹具的精度。 5m的精密定位夹具高音调的准确性,夹具的垂直支撑面达到0.01mm/300mm ,高平行度0.01mm/500mm 。德国demmeler ( DF戴乐)制造的长4米,宽2米的孔系列组合焊接夹具平台,轮廓误差为 0.03毫米;平行和垂直老虎钳在5m以下;定位夹具重复安装精度高达 5m的;重复瑞士EROWA柔性夹具定位精度可达2 5m的。精密夹具及固定装置已提高到微米级,世界知名的夹具制造公司都是精密机械制造企业。事实上,为了满足不同行业和经济发展的需要,与文件夹不同型号和不同档次的精度标准供选择。2、效率为了提高机器的生产效率,双面, 4枚夹紧夹具和越来越多的产品。为了减少作业的安装时间,各种自动定心夹紧台钳,杠杆夹紧,凸轮夹紧,气动和液压夹紧,以便快速夹紧功能前移。新的电控永磁夹具,加紧和只有1到2秒松开工件,夹具结构简化为多台机器,多方位,多部分的过程创造了条件。为了缩短机器上安装和调整夹具的时间,瑞典3R夹具在短短一分钟内完成安装和校准电火花加工夹具。一分钟之内,美国杰根斯(詹金斯)的球锁装夹系统将能够找到并锁定在机床工作台上的夹具,球锁装夹系统用于柔性生产线更换夹具,起到停机时间,提高生产效率。3、模块、组合组合夹具元件是一个组合的基础。采用模块化设计系列化,标准化夹具元件,快速组装成各种夹具,已成为夹具技术开发的基点。省人工,时间,材料,能源,体现在创新的夹具系统中先进的。计算机辅助设计和装配夹具的模块化设计奠定基础, CAD技术的应用,建库,典型夹具库,标准和用户档案,进行优化夹具设计,三维实体组装夹具的用户。切削过程仿真的工具,既为用户提供正确,合理的夹具和零部件配套方案,而且还积累经验,了解市场需求,不断改进和完善夹具系统。与华中科技大学合作组合夹具分会,正在努力打造一个专业的网站夹具,夹具行业提供信息交流,装置公共平台产品的咨询和开发,力争实现通用夹具的设计和服务,远程信息技术和业务的电子商务技术。4、公共经济夹具的通用性直接影响经济。模块化,组合夹具系统,一次性投资比较大,只有夹具系统的可重构性,可重构性和可扩展性的特点,以及应用范围广,通用性好,夹具利用率,更快的投资回报率,以反映经济性好。焊接夹具,只品种,规格很少套件,可组装成各种焊接夹具的德国demmeler (戴美乐)的孔系列组合。强大的功能元素,使得夹具通用性好,简洁的组件,配套成本低,经济实用的应用程序具有推广价值。26第2章 尾座体机械加工工艺规程设计2.1 零件的工艺分析及生产类型的确定2.1.1 零件的作用本次课程设计的零件是机床尾座体。尾座安装在机床的右端导轨上,尾座上的套筒可以安装顶尖,以支承较长的工件的右端、安装钻头、绞刀,进行孔加工,也可以安装丝锥攻螺纹工具、圆析牙套螺纹工具加工内、外螺纹。尾座可以沿尾座导轨作纵向调整移动,然后压下尾座紧固手轮将尾座夹紧在所需位置,摇动尾座手轮可以实现对工件的顶紧、松开或对工件进行切削的纵向进给。各部分尺寸零件图中详细标注。2.1.2 零件的工艺分析1、零件材料:HT20-40(HT20-40(HT200)。切削加工性良好,只是脆性材料,产生崩碎切屑加工中有冲击。选择刀具参数时可适当减小前角以强化刀刃即可;刀具材料选择范围较大,高速钢及YG硬质合金均可胜任。 2、组成表面分析:260mm和310mm所在的上下端面、240mm所在的左右端面、390mm所在的前后端面、6所在的斜面、25通孔及45X5的沉孔、75的通孔、35的圆孔、6的斜通孔、25的通孔、42的通孔、22通孔及45X2的沉孔、20通孔及60X20的沉孔、倒角、各外圆表面、各外轮廓表面。 3、主要表面分析:零件的地平面为主要定位工作面,表面粗糙度要求Ra1.6m75H6孔左右面为定位基准面,刮研表面粗糙度要求Ra0.8m,亦是该零件的主要基准。 4、主要技术要求:未注铸造圆角R3;未注倒角2X45;75H6孔的轴线相对于零件底平面的平行度公差为0.05;75H6孔的圆柱度公差为0.004;75H6孔的右端面相对于75H6孔轴线垂直度公差为0.04;25H7孔的轴线相对于42H7孔的轴线的同轴度公差为0.02;60内圆柱面轴线相对于75H6孔的轴线的垂直度公差为0.1;零件底平面相对于75H6孔的轴线的平面度公差为0.04,并且要用塞尺进行检查;刮研每25X25面积中有接触点6-8点,并均匀分布;未注尺寸公差按IT14;未注形位公差按C级。2.1.3 零件生产类型的确定零件的生产类型是指企业生产专业化程度的分类,它对工艺规程的制订具有决定性的影响。生产类型一般可分为大量生产、成批生产和单件生产三种类型,不同的生产类型由着完全不同的工艺特征。零件的生产类型是按零件的年生产纲领和产品特征来确定的。生产纲领是指企业在计划期内应当生产的产品产量和进度计划。年生产纲领是包括备品和废品在内的某产品年产量。零件的生产纲领N可按下式计算:根据上式就可以计算求得出零件的年生产纲领,再通过查表,就能确定该零件的生产类型。根据本零件的设计要求,Q=5000台,m=1件/台,分别取备品率和废品率3%和0.5%,将数据代入生产纲领计算公式得出N=5237件/年。根据机械制造技术基础课程设计指导教程可知该零件为重型零件,本设计零件壳体的生产类型为大批量生产。2.2 零件工艺规程设计2.2.1 零件制造形式的确定由于铸铁具有良好的铸造性、吸振性、切削加工性及一定的力学性能,并且价格低廉,生产设备简单,所以在机械零件材料中占有很大的比重,广泛地用来制作各种机架、底座。箱体等形状复杂的零件。又由于灰铸铁具有良好的铸造性、耐磨性、抗振性和切削加工性,所以选择灰铸铁作为铸造的材料。零件材料为HT200,选择砂型铸件。2.2.2 基准的选择基面的选择是工艺规程中的重要工作之一,基面的选择的正确与合理可以使加工的质量得到保证、生产效率得到提高;否则不但使加工工艺过程中的问题百出,更有甚者,还会造成零件大批报废,使生产无法正常进行。定位基准分为粗基准和精基准,用毛坯上未经加工的表面作为定位基准成为粗基准,使用经过加工表面作为定位基准称为精基准。在制定工艺规程时,先进行精基准的选择,保证各加工表面按图纸加工出来,再考虑用什么样的粗基准来加工精基准。1.粗基准的选择原则为保证工件某重要表面的余量均匀,应选重要表面为粗基准。应尽量选光滑平整,无飞边,浇口,冒口或其他缺陷的表面为粗基准,以便定位准确,夹紧可靠。2.精基准的选择原则“基准重合”原则 应尽量选择加工表面的设计基准为定位基准,避免基准不重合引起的定位误差。“基准统一”原则 尽可能在多数工序中采用同一组精基准定位,以保证各表面的位置精度,避免因基准变换产生的误差,简化夹具设计与制造。“自为基准“原则 某些精加工和光整加工工序要求加工余量小而均匀,应选该加工表面本身为精基准,该表面与其他表面之间的位置精度由先行工序保证。“互为基准“原则 当两个表面相互位置精度及尺寸、形状精度都要求较高时,可采用“互为基准”方法,反复加工。根据上述定位基准的选择原则,分析本零件,根据壳体零件图,本零件带有孔的形状稍微复杂的零件。粗基准的选择:底平面及75内孔圆是零件的主要设计基准,也比较适合作零件上众多表面加工的定位基准。精基准的选择:对于精基准而言,主要应考虑基准的重合问题。这里主要以已加工的底面为加工的精基准。当设计基准与工序基准不重合时应该进行尺寸换算,后面对此有专门的计算这里就不重复了。根据基准重合和互为基准原则,选用设计基准作为精基准,当设计基准与工序基准不重合时,应该进行尺寸换算。本次设计采用底平面作为精基准。2.3 制定加工工艺路线制定工艺路线的出发点应当是使零件的几何形状、尺寸精度及位置精度等技术要求能得到合理的保证。在生产纲领已确定为批量生产的条件下,可以考虑采用万能机床配以专用夹具,并尽量使工序集中来提高生产率。除此之外,还应当考虑经济效果,以便使用生产成本下降:工艺路线方案:工序1:铸造工序2:进行热处理工序3:粗铣零件的底平面工序4:半精铣零件的底平面工序5:精铣零件的底平面工序6:粗铣尺寸36所在的平面工序7:粗铣75H6孔所在的两端面工序8:半精铣75H6孔所在的两端面工序9:半精铣75H6孔所在的两端面,保证Ra1.6工序10:粗铣42H7孔所在的右端面工序11:半精铣42H7孔所在的右端面工序12:粗铣25H7孔所在的两端面工序13:半精铣25H7孔所在的两端面工序14:粗铣6斜孔所在的左右端面工序15:半精铣6斜孔所在的左端面,保证Ra6.3工序16:粗铣零件所在的上平面工序17:粗镗75H6的通孔工序18:半精镗75H6的通孔工序19:精镗75H6的通孔工序20:刮研75H6的通孔,保证Ra0.8工序21:钻24的孔工序22:扩、铰25的孔工序23:沉25所在孔的45X5的孔工序24:钻32的孔工序25:扩、铰35的孔工序26:钻32的孔工序27:镗42的孔工序28:钻24的孔工序29:扩、铰25的孔工序30:钻5的斜孔工序31:扩、铰6的斜孔工序32:钻18的孔工序33:扩、铰20的孔工序34:沉20所在孔的60X20的孔工序35:钻20的孔工序36:扩、铰22的孔工序37:铣削22所在孔的45X2的孔工序38:去毛刺工序39:清洗工序40:终检以上工艺过程祥见“机械加工工艺卡片”。2.4 机械加工余量,工序尺寸及毛坯尺寸的确定零件材料为HT20-40(HT200),硬度187220HBS,砂型铸件。根据上述原始资料及加工工艺,分别确定各加工表面的机械加工余量、工序尺寸及毛坯尺寸如下:1、铣削零件的底平面,保证粗糙度为1.6m的加工余量参照机械加工工艺手册(以下简称工艺手册),确定工序尺寸为 Z=3.5 mm,加工余量为:2、铣削尺寸36所在的平面,保证尺寸36mm的加工余量,参照工艺手册,确定工序尺寸为 Z=2.5 mm,加工余量分别为: 铣:36mm Z=2.5mm3、铣削75H6孔所在的两端面,保证尺寸390mm及Ra1.6,参照工艺手册,确定工序尺寸为 Z=2mm,加工余量分别为: 铣:390mm Z=2mm4、铣削42H7孔所在的右端面,保证尺寸36mm的加工余量,参照工艺手册,确定工序尺寸为 Z=2mm,加工余量分别为: 铣:135mm Z=2mm5、铣削25H7孔所在两端面的加工余量,参照工艺手册,确定工序尺寸为 Z=3mm,加工余量分别为:6、铣削6斜孔所在的左右端面,保证左端面Ra6.3的加工余量,参照工艺手册,确定工序尺寸为 Z=2.5mm,加工余量分别为: 铣:25mm Z=2.5mm7、铣削零件所在的上平面,保证尺寸260mm,其加工余量参照工艺手册,确定工序尺寸为 Z=3mm,加工余量分别为: 铣:260mm Z=3mm8、镗削75H6的通孔, 参照工艺孔的加工余量分配手册,确定加工余量分别为: 镗孔:25mm Z=1mm9、刮研75H6的通孔, 保证Ra0.8,参照工艺孔的加工余量分配手册,确定加工余量分别为: 刮研:75mm Z=0.08mm10、钻、扩、铰25的孔,参照工艺孔的加工余量分配手册,确定加工余量分别为: 钻孔:23mm Z=2mm 11、沉25所在孔的45X5的孔, 参照工艺孔的加工余量分配手册,确定加工余量分别为: 沉孔:25mm Z=2mm12、钻、扩、铰35的孔,参照工艺孔的加工余量分配手册,确定加工余量分别为: 钻孔:32mm 2Z=2mm 13、钻32的孔、镗42的孔, 参照工艺孔的加工余量分配手册,确定加工余量分别为: 钻孔:32mm Z=3mm 镗孔:32mm Z=0.5mm14、钻、扩、铰25的孔,参照工艺孔的加工余量分配手册,确定加工余量分别为: 钻孔:23mm Z=2mm 15、钻、扩、铰6的孔,参照工艺孔的加工余量分配手册,确定加工余量分别为: 钻孔:5mm Z=0.5mm 16、钻、扩、铰20的孔,参照工艺孔的加工余量分配手册,确定加工余量分别为: 钻孔:18mm Z=2mm 17、铣削20所在孔的60X20的孔, 参照工艺孔的加工余量分配手册,确定加工余量分别为: 铣削:60mm Z=2mm18、钻、扩、铰22的孔,参照工艺孔的加工余量分配手册,确定加工余量分别为: 钻孔:20mm Z=2mm 19、铣削22所在孔的45X2的孔, 参照工艺孔的加工余量分配手册,确定加工余量分别为: 铣削:45mm Z=2mm由于本设计规定的零件为大批生产,应该采用调整法加工,因此在计算最大、最小加工余量时,应按调整法加工方式予以确定。2.5 确定切削用量及基本工时工序3、4、5:铣削零件的底平面,保证粗糙度为1.6m根据切削手册 mm/z切削速度:根据相关手册 取 m/min 刀具选用高速钢面铣刀 mm (r/min) 现采用X525卧式铣床,根据机床说明书,取n=95r/min。故实际切削速度 (m/min) 当n=95 r/min时,工作台每分钟进给量应为 (mm/min)查机床说明书,取 mm/min 切削工时 (min)工序7、8、9 铣削75H6内圆柱孔的前后端面,保证尺寸390mm,Ra1.6um根据切削手册 mm/z切削速度:根据相关手册 取 m/min 刀具选用高速钢面铣刀 mm (r/min) 故采用X525立式铣床,根据机床说明书,取n=95r/min。故实际切削速度 (m/min) 当n=95 r/min时,工作台每分钟进给量应为 (mm/min)查机床说明书,取 mm/min 切削工时 (min)工序10、11 铣削42所在的两端面,保证尺寸50mm根据切削手册 mm/z切削速度:根据相关手册 取 m/min 刀具选用高速钢面铣刀 mm (r/min) 故采用X525立式铣床,根据机床说明书,取n=95r/min。故实际切削速度 (m/min) 当n=95 r/min时,工作台每分钟进给量应为 (mm/min)查机床说明书,取 mm/min 切削工时 (min)工序12、13 铣削25H7内圆柱孔的前后端面,保证尺寸19mm根据切削手册 mm/z切削速度:根据相关手册 取 m/min 刀具选用高速钢面铣刀 mm (r/min) 故采用X525立式铣床,根据机床说明书,取n=95r/min。故实际切削速度 (m/min) 当n=95 r/min时,工作台每分钟进给量应为 (mm/min)查机床说明书,取 mm/min 切削工时 (min)工序14、15、16 铣削6斜孔所在的左右斜面,保证Ra6.3根据切削手册 mm/z切削速度:根据相关手册 取 m/min 刀具选用高速钢面铣刀 mm (r/min) 故采用X525立式铣床,根据机床说明书,取n=95r/min。故实际切削速度 (m/min) 当n=95 r/min时,工作台每分钟进给量应为 (mm/min)查机床说明书,取 mm/min 切削工时 (min)工序17、18、19 镗削75H6内圆柱通孔1、加工要求:粗镗轴孔,以底面为定位基准,根据文献表面加工方案及其经济精度可得到:镗削时其加工经济精度可达到IT11IT13,表面粗糙度Ra为1.6。具体余量如下: 单边余量2、选用机床:查文献选用TX618卧式铣镗床3、选择切削用量(1)、决定切削深度 由切削余量可知道 (单边)(2)、决定切削进给量 查文献工件是铸铁,刀头切削进给量为 (3)、决定切削速度 查文献工件是铸铁,刀头切削速度为计算主轴转速 按机床说明书可知道机床分18级81000r/min选主轴转速为,所以实际速度为: 计算各孔加工工时 =工序21、22:钻、扩、铰25的孔根据工艺手册查得加工25mm孔的进给量=0.310.37mm/r,按机床规格取=0.35mm/r,切削速度,根据相关手册及机床说明书,取v=31.2m/min,加工孔径=25mm。则 (r/min) 根据机床选取n=400 r/min。 实际切削速度 (m/min)切削工时 (min)工序24、25:钻、扩、铰35的孔根据工艺手册查得加工35mm孔的进给量=0.310.37mm/r,按机床规格取=0.35mm/r,切削速度,根据相关手册及机床说明书,取v=31.2m/min,加工孔径=35mm。则 (r/min) 根据机床选取n=320 r/min。 实际切削速度 (m/min)切削工时 (min)工序28、29:钻、扩、铰25的孔根据工艺手册查得加工35mm孔的进给量=0.310.37mm/r,按机床规格取=0.35mm/r,切削速度,根据相关手册及机床说明书,取v=31.2m/min,加工孔径=25mm。则 (r/min) 根据机床选取n=400 r/min。 实际切削速度 (m/min)切削工时 (min)工序30、31:钻、扩、铰6的孔根据工艺手册查得加工6mm孔的进给量=0.1-0.2mm/r,按机床规格取=0. 5mm/r,切削速度,根据相关手册及机床说明书,取v=31.2m/min,加工孔径=6mm。则 (r/min) 根据机床选取n=1400 r/min。 实际切削速度 (m/min)切削工时 (min)工序32、33:钻、扩、铰20的孔根据工艺手册查得加工20mm孔的进给量=0.310.37mm/r,按机床规格取=0.35mm/r,切削速度,根据相关手册及机床说明书,取v=31.2m/min,加工孔径=20mm。则 (r/min) 根据机床选取n=500 r/min。 实际切削速度 (m/min)切削工时 (min)工序35、36:钻、扩、铰22的孔根据工艺手册查得加工22mm孔的进给量=0.310.37mm/r,按机床规格取=0.35mm/r,切削速度,根据相关手册及机床说明书,取v=31.2m/min,加工孔径=22mm。则 (r/min) 根据机床选取n=450 r/min。 实际切削速度 (m/min)切削工时 (min)第3章 专用夹具的设计专用夹具的设计,方便操作者的加工及装卸,节省时间,提高工作效率。本文设计的题目尾座体钻35H9孔的夹具设计。本夹具用于在卧式钻床上加工。3.1 问题的提出本夹具用于尾座体钻35H9孔。本工序前75H6内圆柱孔及其左右两端面,零件的底平面以及零件的前后端面均已加工过。此外,在本工序加工时还应考虑如何提高劳动生产率,降低劳动强度,而其位置尺寸为自由公差,同时还要保证内孔的Ra0.8um。3.2 夹具设计3.2.1 夹具体材料的确定夹具体可分为以下4类:1、铸造夹具体;2、焊接夹具体;3、锻造夹具体;4、型材夹具体。在本次设计中采用铸造夹具体,盖板、中间板、底板的材料均采用灰铸铁(HT200)。该材料的强度、耐磨性、耐热性、减振性较好,铸造性能也较好,使用前需要进行人工时效处理。3.2.2 确定定位方案,选择定位元件本夹具以圆柱销、75H6孔、固定顶尖及活动顶尖进行定位限制五个自由度,又以工件的底平面进行定位,限制一个自由度,实现完全定位,本夹具在使用时一次只能安装一个工件。夹具采用手动活动顶尖六角螺栓传力,通过固定顶尖、活动顶尖的六角螺栓夹紧工件、夹紧工件时,拧紧六角螺栓,通过六角螺栓推动活动顶尖向工件靠近,在力短作用下使工件紧靠定位支承面。在立柱上采用2个六角螺栓压紧工件,保证与钻孔时的力方向相反。为更有效的夹紧工件在立柱上面又加有2个压板分别压向工件。钻削时,卧式钻床工作台作纵向进给,具体结构详见下图:3.2.3 定位基准选择因需加工的工序是工件35H9的圆柱孔,本夹具采用工件的底平面、左右固定、活动顶尖作为主要基准。为了提高加工效率,采用手动夹紧工件快换装置。3.2.4 切削力及夹紧力计算刀具:硬质合金钻头由实际加工的经验可知,钻削时的主要切削力为钻头的切削方向,即平行于工作台,查切削手册,切削力计算公式为:其中:,与加工材料有关,取0.94;与刀具刃磨形状有关,取1.33;与钻头标准有关,取1.0,则:3.2.5 确定夹紧机构在机械加工工艺设计中,已经确定尾座体的生产类型为大批量生产,在此工序夹具中选择螺旋夹紧机构、立柱上2夹紧螺栓及2块压板夹紧工件。通过固定顶尖和活动顶尖限制工件5个自由度,利用工件的底平面限制1个自由度,实现完全定位。装夹工件时,先将工件定位孔装入带有圆柱孔里,最后拧紧螺母压紧工件。详见下图:3.2.5 定位误差分析本工序采用固定顶尖、活动顶尖和压块的夹紧装置,工件始终紧贴夹紧体的斜面面,工件自重带来一定的平行于夹具体底板的水平力。因此,工件定位在钻套正后方,进而使加工位置没有转角误差。但是,由于加工的公差是H9,在加只有钻套,故应当能满足定位要求。3.2.6 夹具操作的简要说明35H9孔的加工需钻,扩,铰,因为钻后还要扩,铰,为了我们钻后能及时的的扩,铰,故选用快换钻套以减少更换钻套的辅助时间。根据工艺要求:最后扩孔,铰孔至30H7。夹具结构合理、简单。夹具相对钻头与在水平面的纵向位置平行,一次调好后不需在进行调节,易保证Y轴线的位置精度,但加工时采用手工操作,生产率不高。第4章 结论经过自己的学习和努力,在知道老师的悉心指导和严格要求下,我终于完成了本次设计。从课题选择、方案论证到具体设计,每一步对我来说无疑是巨大的尝试和挑战,也成就了我在大学期间独立完成的最大的项目。记得在刚接到这个课题时,由于夹具设计以及相关知识不是很了解,我都有些茫然不知所措,不知从何入手,于是我给自己提出了一系列问题:如何做毕业设计、做毕业设计的要求、我要设计一个怎样的夹具、要达到什么样的效果、实现什么样的功能、与那些专业知识有关联等。后来,在老师的引导下,我清楚要做好毕业设计,必须了解相关的专业知识,去图书馆查阅相关资料、上网去了解钻床夹具的最新动向。在具体设计的过程中,我遇到了很多问题,比如:加工零件时,我应该如何定位,才能满足要求,又能使工人师傅加工方便、快捷、高效。于是我不断地给自己提出新的想法,然后去论证这种想法的使用性,在这个循环往复的过程中,我学到了很多东西,同时毕业设计也在一天天的完成中。虽然我的设计作品不是很成熟,参考了很多资料仍然还有很多不足之处,但我心里有一种莫大的幸福感,因为我实实在在地走过了一个完整的设计所应该走的每一个过程,并且享受了每一个过程,更重要的是这个设计中我加入了自己鲜活的思想。在这里我要特别感谢我的指导老师。他为人随和热情,治学严谨细心。在闲聊中他总是能像知心朋友一样鼓励我,在论文的写作和措辞等方面他也总会以“专业标准”严格要求我,从选题、定题开始,一直到最后论文的反复修改、润色,刘老师始终认真负责地给予我深刻而细致地指导,帮助我开拓研究思路,精心点拨、热忱鼓励。正是刘老师的无私帮助与热忱鼓励,我的毕业论文才能够得以顺利完成。在此祝愿全天下所有老师身体健康,全家幸福!参考文献1 候洪生主编,董国耀主审.机械工程图学.北京:科学出版社,20012 肖继德,陈宁平主编.机床夹具设计.北京:机械工业出版社,19973 孙已德主编.机床夹具图册.北京:机械工业出版社,19834 李名望主编.机床夹具设计实例教程.北京:化学工业出版社,2009.85 李家宝主编.夹具设计.北京:中国工业出版社,1961.56 傅成昌,傅晓燕主编.公差与配合问答.北京:机械工业出版社,2007.17 虞自奋主编.AutoCAD2008高级案例解析.北京:中国电力出版社,2008.58 HIRAMEGRANT主编.夹具-非标准夹紧装置.北京:机械工业出版社,1974.59 曹岩主编.机床夹具手册与三维图库.北京:化学工业出版社,2010.310 东北重型机械学院、洛阳农业机械学院、长春汽车厂工人大学编.机床夹具设计手册.上海科学技术出版社,1979.711胡凤兰主编.互换性与技术测量.高等教育出版社,2005.212周开勤主编.机械零件手册(第五版).高等教育出版社,200113孙志礼、冷兴聚、魏延刚、曾海泉主编.机械设计.东北大学出版社,2000年附录Basic Machining Operations and Cutting TechnologyMachine tools have evolved from the early foot-powered lathes of the Egyptians and John Wilkinsons boring mill. They are designed to provide rigid support for both the workpiece and the cutting tool and can precisely control their relative positions and the velocity of the tool with respect to the workpiece. Basically, in metal cutting, a sharpened wedge-shaped tool removes a rather narrow strip of metal from the surface of a ductile workpiece in the form of a severely deformed chip. The chip is a waste product that is considerably shorter than the workpiece from which it came but with a corresponding increase in thickness of the uncut chip. The geometrical shape of workpiece depends on the shape of the tool and its path during the machining operation. Most machining operations produce parts of differing geometry. If a rough cylindrical workpiece revolves about a central axis and the tool penetrates beneath its surface and travels parallel to the center of rotation, a surface of revolution is produced, and the operation is called turning. If a hollow tube is machined on the inside in a similar manner, the operation is called boring. Producing an external conical surface uniformly varying diameter is called taper turning, if the tool point travels in a path of varying radius, a contoured surface like that of a bowling pin can be produced; or, if the piece is short enough and the support is sufficiently rigid, a contoured surface could be produced by feeding a shaped tool normal to the axis of rotation. Short tapered or cylindrical surfaces could also be contour formed. Flat or plane surfaces are frequently required. They can be generated by radial turning or facing, in which the tool point moves normal to the axis of rotation. In other cases, it is more convenient to hold the workpiece steady and reciprocate the tool across it in a series of straight-line cuts with a crosswise feed increment before each cutting stroke. This operation is called planning and is carried out on a shaper. For larger pieces it is easier to keep the tool stationary and draw the workpiece under it as in planning. The tool is fed at each reciprocation. Contoured surfaces can be produced by using shaped tools. Multiple-edged tools can also be used. Drilling uses a twin-edged fluted tool for holes with depths up to 5 to 10 times the drill diameter. Whether the drill turns or the workpiece rotates, relative motion between the cutting edge and the workpiece is the important factor. In milling operations a rotary cutter with a number of cutting edges engages the workpiece. Which moves slowly with respect to the cutter. Plane or contoured surfaces may be produced, depending on the geometry of the cutter and the type of feed. Horizontal or vertical axes of rotation may be used, and the feed of the workpiece may be in any of the three coordinate directions. Basic Machine Tools Machine tools are used to produce a part of a specified geometrical shape and precise I size by removing metal from a ductile material in the form of chips. The latter are a waste product and vary from long continuous ribbons of a ductile material such as steel, which are undesirable from a disposal point of view, to easily handled well-broken chips resulting from cast iron. Machine tools perform five basic metal-removal processes: I turning, planning, drilling, milling, and grinding. All other metal-removal processes are modifications of these five basic processes. For example, boring is internal turning; reaming, tapping, and counter boring modify drilled holes and are related to drilling; bobbing and gear cutting are fundamentally milling operations; hack sawing and broaching are a form of planning and honing; lapping, super finishing. Polishing and buffing are variants of grinding or abrasive removal operations. Therefore, there are only four types of basic machine tools, which use cutting tools of specific controllable geometry: 1. lathes, 2. planers, 3. drilling machines, and 4. milling machines. The grinding process forms chips, but the geometry of the abrasive grain is uncontrollable. The amount and rate of material removed by the various machining processes may be I large, as in heavy turning operations, or extremely small, as in lapping or super finishing operations where only the high spots of a surface are removed. A machine tool performs three major functions: 1. it rigidly supports the workpiece or its holder and the cutting tool; 2. it provides relative motion between the workpiece and the cutting tool; 3. it provides a range of feeds and speeds usually ranging from 4 to 32 choices in each case. Introduction of MachiningMachining as a shape-producing method is the most universally used and the most important of all manufacturing processes. Machining is a shape-producing process in which a power-driven device causes material to be removed in chip form. Most machining is done with equipment that supports both the work piece and cutting tool although in some cases portable equipment is used with unsupported workpiece. Low setup cost for small Quantities. Machining has two applications in manufacturing. For casting, forging, and press working, each specific shape to be produced, even one part, nearly always has a high tooling cost. The shapes that may he produced by welding depend to a large degree on the shapes of raw material that are available. By making use of generally high cost equipment but without special tooling, it is possible, by machining; to start with nearly any form of raw material, so tong as the exterior dimensions are great enough, and produce any desired shape from any material. Therefore .machining is usually the preferred method for producing one or a few parts, even when the design of the part would logically lead to casting, forging or press working if a high quantity were to be produced. Close accuracies, good finishes. The second application for machining is based on the high accuracies and surface finishes possible. Many of the parts machined in low quantities would be produced with lower but acceptable tolerances if produced in high quantities by some other process. On the other hand, many parts are given their general shapes by some high quantity deformation process and machined only on selected surfaces where high accuracies are needed. Internal threads, for example, are seldom produced by any means other than machining and small holes in press worked parts may be machined following the press working operations. Primary Cutting Parameters The basic tool-work relationship in cutting is adequately described by means of four factors: tool geometry, cutting speed, feed, and depth of cut. The cutting tool must be made of an appropriate material; it must be strong, tough, hard, and wear resistant. The tool s geometry characterized by planes and angles, must be correct for each cutting operation. Cutting speed is the rate at which the work surface passes by the cutting edge. It may be expressed in feet per minute. For efficient machining the cutting speed must be of a magnitude appropriate to the particular work-tool combination. In general, the harder the work material, the slower the speed. Feed is the rate at which the cutting tool advances into the workpiece. Where the workpiece or the tool rotates, feed is measured in inches per revolution. When the tool or the work reciprocates, feed is measured in inches per stroke, Generally, feed varies inversely with cutting speed for otherwise similar conditions. The depth of cut, measured inches is the distance the tool is set into the work. It is the width of the chip in turning or the thickness of the chip in a rectilinear cut. In roughing operations, the depth of cut can be larger than for finishing operations. The Effect of Changes in Cutting Parameters on Cutting Temperatures In metal cutting operations heat is generated in the primary and secondary deformation zones and these results in a complex temperature distribution throughout the tool, workpiece and chip. A typical set of isotherms is shown in figure where it can be seen that, as could be expected, there is a very large temperature gradient throughout the width of the chip as the workpiece material is sheared in primary deformation and there is a further large temperature in the chip adjacent to the face as the chip is sheared in secondary deformation. This leads to a maximum cutting temperature a short distance up the face from the cutting edge and a small distance into the chip. Since virtually all the work done in metal cutting is converted into heat, it could be expected that factors which increase the power consumed per unit volume of metal removed will increase the cutting temperature. Thus an increase in the rake angle, all other parameters remaining constant, will reduce the power per unit volume of metal removed and the cutting temperatures will reduce. When considering increase in unreformed chip thickness and cutting speed the situation is more complex. An increase in undeformed chip thickness tends to be a scale effect where the amounts of heat which pass to the workpiece, the tool and chip remain in fixed proportions and the changes in cutting temperature tend to be small. Increase in cutting speed; however, reduce the amount of heat which passes into the workpiece and this increase the temperature rise of the chip m primary deformation. Further, the secondary deformation zone tends to be smaller and this has the effect of increasing the temperatures in this zone. Other changes in cutting parameters have virtually no effect on the power consumed per unit volume of metal removed and consequently have virtually no effect on the cutting temperatures. Since it has been shown that even small changes in cutting temperature have a significant effect on tool wear rate it is appropriate to indicate how cutting temperatures can be assessed from cutting data. The most direct and accurate method for measuring temperatures in high -speed-steel cutting tools is that of Wright &. Trent which also yields detailed information on temperature distributions in high-speed-steel cutting tools. The technique is based on the metallographic examination of sectioned high-speed-steel tools which relates microstructure changes to thermal history. Trent has described measurements of cutting temperatures and temperature distributions for high-speed-steel tools when machining a wide range of workpiece materials. This technique has been further developed by using scanning electron microscopy to study fine-scale microstructure changes arising from over tempering of the tempered martens tic matrix of various high-speed-steels. This technique has also been used to study temperature distributions in both high-speed -steel single point turning tools and twist drills. Wears of Cutting Tool Discounting brittle fracture and edge chipping, which have already been dealt with, tool wear is basically of three types. Flank wear, crater wear, and notch wear. Flank wear occurs on both the major and the minor cutting edges. On the major cutting edge, which is responsible for bulk metal removal, these results in increased cutting forces and higher temperatures which if left unchecked can lead to vibration of the tool and workpiece and a condition where efficient cutting can no longer take place. On the minor cutting edge, which determines workpiece size and surface finish, flank wear can result in an oversized product which has poor surface finish. Under most practical cutting conditions, the tool will fail due to major flank wear before the minor flank wear is sufficiently large to result in the manufacture of an unacceptable component. Because of the stress distribution on the tool face, the frictional stress in the region of sliding contact between the chip and the face is at a maximum at the start of the sliding contact region and is zero at the end. Thus abrasive wear takes place in this region with more wear taking place adjacent to the seizure region than adjacent to the point at which the chip loses contact with the face. This result in localized pitting of the tool face some distance up the face which is usually referred to as catering and which normally has a section in the form of a circular arc. In many respects and for practical cutting conditions, crater wear is a less severe form of wear than flank wear and consequently flank wear is a more common tool failure criterion. However, since various authors have shown that the temperature on the face increases more rapidly with increasing cutting speed than the temperature on the flank, and since the rate of wear of any type is significantly affected by changes in temperature, crater wear usually occurs at high cutting speeds. At the end of the major flank wear land where the tool is in contact with the uncut workpiece surface it is common for the flank wear to be more pronounced than along the rest of the wear land. This is because of localised effects such as a hardened layer on the uncut surface caused by work hardening introduced by a previous cut, an oxide scale, and localised high temperatures resulting from the edge effect. This localised wear is usually referred to as notch wear and occasionally is very severe. Although the presence of the notch will not significantly affect the cutting properties of the tool, the notch is often relatively deep and if cutting were to continue there would be a good chance that the tool would fracture. If any form of progressive wear allowed to continue, dramatically and the tool would fail catastrophically, i. e. the tool would be no longer capable of cutting and, at best, the workpiece would be scrapped whilst, at worst, damage could be caused to the machine tool. For carbide cutting tools and for all types of wear, the tool is said to have reached the end of its useful life long before the onset of catastrophic failure. For high-speed-steel cutting tools, however, where the wear tends to be non-uniform it has been found that the most meaningful and reproducible results can be obtained when the wear is allowed to continue to the onset of catastrophic failure even though, of course, in practice a cutting time far less than that to failure would be used. The onset of catastrophic failure is characterized by one of several phenomena, the most common being a sudden increase in cutting force, the presence of burnished rings on the workpiece, and a significant increase in the noise level. Mechanism of Surface Finish Production There are basically five mechanisms which contribute to the production of a surface which have been machined. These are:1The basic geometry of the cutting process. In, for example, single point turning the tool will advance a constant distance axially per revolution of the workpiecc and the resultant surface will have on it, when viewed perpendicularly to the direction of tool feed motion, a series of cusps which will have a basic form which replicates the shape of the tool in cut. 2The efficiency of the cutting operation. It has already been mentioned that cutting with unstable built-up-edges will produce a surface which contains hard built-up-edge fragments which will result in a degradation of the surface finish. It can also be demonstrated that cutting under adverse conditions such as apply when using large feeds small rake angles and low cutting speeds, besides producing conditions which lead to unstable built-up-edge production, the cutting process itself can become unstable and instead of continuous shear occurring in the shear zone, tearing takes place, discontinuous chips of uneven thickness are produced, and the resultant surface is poor. This situation is particularly noticeable when machining very ductile materials such as copper and aluminum. 3The stability of the machine tool. Under some combinations of cutting conditions; workpiece size, method of clamping ,and cutting tool rigidity relative to the machine tool structure, instability can be set up in the tool which causes it to vibrate. Under some conditions this vibration will reach and maintain steady amplitude whilst under other conditions the vibration will built up and unless cutting is stopped considerable damage to both the cutting tool and workpiece may occur. This phenomenon is known as chatter and in axial turning is characterized by long pitch helical bands on the workpiece surface and short pitch undulations on the transient machined surface. 4The effectiveness of removing swarf. In discontinuous chip production machining, such as milling or turning of brittle materials, it is expected that the chip (swarf) will leave the cutting zone either under gravity or with the assistance of a jet of cutting fluid and that they will not influence the cut surface in any way. However, when continuous chip production is evident, unless steps are taken to control the swarf it is likely that it will impinge on the cut surface and mark it. Inevitably, this marking besides looking. 5The effective clearance angle on the cutting tool. For certain geometries of minor cutting edge relief and clearance angles it is possible to cut on the major cutting edge and burnish on the minor cutting edge. This can produce a good surface finish but, of course, it is strictly a combination of metal cutting and metal forming and is not to be recommended as a practical cutting method. However, due to cutting tool wear, these conditions occasionally arise and lead to a marked change in the surface characteristics. Limits and Tolerances Machine parts are manufactured so they are interchangeable. In other words, each part of a machine or mechanism is made to a certain size and shape so will fit into any other machine or mechanism of the same type. To make the part interchangeable, each individual part must be made to a size that will fit the mating part in the correct way. It is not only impossible, but also impractical to make many parts to an exact size. This is because machines are not perfect, and the tools become worn. A slight variation from the exact size is always allowed. The amount of this variation depends on the kind of part being manufactured. For examples part might be made 6 in. long with a variation allowed of 0.003 (three-thousandths) in. above and below this size. Therefore, the part could be 5.997 to 6.003 in. and still be the correct size. These are known as the limits. The difference between upper and lower limits is called the tolerance. A tolerance is the total permissible variation in the size of a part. The basic size is that size from which limits of size arc derived by the application of allowances and tolerances. Sometimes the limit is allowed in only one direction. This is known as unilateral tolerance.Unilateral tolerancing is a system of dimensioning where the tolerance (that is variation) is shown in only one direction from the nominal size. Unilateral tolerancing allow the changing of tolerance on a hole or shaft without seriously affecting the fit.When the tolerance is in both directions from the basic size it is known as a bilateral tolerance (plus and minus). Bilateral tolerancing is a system of dimensioning where the tolerance (that is variation) is split and is shown on either side of the nominal size. Limit dimensioning is a system of dimensioning where only the maximum and minimum dimensions arc shown. Thus, the tolerance is the difference between these two dimensions. 基本加工工序和切削技术机床是从早期的埃及人的脚踏动力车和约翰威尔金森的镗床发展而来的。它们为工件和刀具提供刚性支撑并可以精确控制它们的相对位置和相对速度。基本上讲,金属切削是指一个磨尖的锲形工具从有韧性的工件表面上去除一条很窄的金属。切屑是被废弃的产品,与其它工件相比切屑较短,但对于未切削部分的厚度有一定的增加。工件表面的几何形状取决于刀具的形状以及加工操作过程中刀具的路径。大多数加工工序产生不同几何形状的零件。如果一个粗糙的工件在中心轴上转动并且刀具平行于旋转中心切入工件表面,一个旋转表面就产生了,这种操作称为车削。如果一个空心的管子以同样的方式在内表面加工,这种操作称为镗孔。当均匀地改变直径时便产生了一个圆锥形的外表面,这称为锥度车削。如果刀具接触点以改变半径的方式运动,那么一个外轮廓像球的工件便产生了;或者如果工件足够的短并且支撑是十分刚硬的,那么成型刀具相对于旋转轴正常进给的一个外表面便可产生,短锥形或圆柱形的表面也可形成。平坦的表面是经常需要的,它们可以由刀具接触点相对于旋转轴的径向车削产生。在刨削时对于较大的工件更容易将刀具固定并将工件置于刀具下面。刀具可以往复地进给。成形面可以通过成型刀具加工产生。多刃刀具也能使用。使用双刃槽钻钻深度是钻孔直径5-10倍的孔。不管是钻头旋转还是工件旋转,切削刃与工件之间的相对运动是一个重要因数。在铣削时一个带有许多切削刃的旋转刀具与工件接触,工件相对刀具慢慢运动。平的或成形面根据刀具的几何形状和进给方式可能产生。可以产生横向或纵向轴旋转并且可以在任何三个坐标方向上进给。基本机床机床
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。