




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
向量的直角坐标运算,广饶一中吴兴昌,2,复习,3,引入:,1.平面内建立了直角坐标系,点A可以用什么来 表示?,2.平面向量是否也有类似的表示呢?,A,(a,b),a,b,4,平面向量基本定理,5,平面向量坐标的引入,那么当| |=| |=1且 与 垂直时,就可以 建立直角坐标系,不共线的向量 叫做这一平面内 所有向量的一组基底.,特殊的基底;,正交,6,其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标.,(1)取基底: 与x轴方向,y轴方向相同的两个单位向量i、j作为基底.,式叫做向量的坐标表示.,注:每个向量都有唯一的坐标.,(一)平面向量坐标的概念,在直角坐标系内,我们分别,7,平面向量的坐标表示:,把 = (x, y)叫做向量的坐标表示,以下三个特殊向量的坐标是:,=,=,=,(1,0),(0,1),(0,0),a,O,Y,X,两个向量相等的等价条件 是两个向量坐标相等,8,例1.用基底 i , j 分别表示向量a,b,c,d,并求出它们的坐标.,-4 -3 -2 -1 1 2 3 4,A,B,1,2,-2,-1,x,y,问 1 :设 的坐标与 的坐标有何关系?,4,5,3,9,若 则,问2:什么时候向量的坐标和点的坐标统一起来?,问 1 :设 的坐标与 的坐标有何关系?,问3:相等向量的坐标有什么关系?,1,A,B,1,x,y,A1,B1,(x1,y1),(x2,y2),P(x,y),结论1:一个向量的坐标等于表示此向量的有向线段终点的坐标减去始点的坐标。,10,向量的坐标与点的坐标关系,11,小结:对向量坐标表示的理解:,(1)任一平面向量都有唯一的坐标;,(2)向量的坐标等于终点坐标减去起点坐标;当向量的起点在原点时,向量终点的坐标即为向量的坐标.,(3)相等的向量有相等的坐标.,12,练习:在同一直角坐标系内画出下列向量.,解:,13,(二)平面向量的坐标运算:,结论2:两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.,结论3:实数与向量数量积的坐标等于用这个实数乘原来向量的相应坐标.,14,已知 ,求 的坐标.,O,x,y,B(x2,y2),A(x1,y1),结论1:一个向量的坐标等于表示此向量的有向线段终点的坐标减去始点的坐标。,从向量运算的角度,回顾,15,16,解:由题设,得:(3, 4)+ (2, 5)+(x, y)=(0, 0) 即:,17,18,例5:已知平行四边形ABCD的三个顶点A、B、C的坐标分别为(-2,1)、(-1,3)、(3,4),求顶点D的坐标。,x,y,O,A(-2,1),B(-1,3),C(3,4),D(x,y),19,例5:已知平行四边形ABCD的三个顶点的坐标分别是(- 2,1)、(- 1,3)、(3,4),求顶点D的坐标.,20,变式: 已知平面上三点的坐标分别为A(2, 1), B(1, 3), C(3, 4),求点D的坐标使这四点构成平行四边形四个顶点。,A,B,C,解:当平行四边形为ADCB时, 由 得D1=(2, 2),当平行四边形为ACDB时, 得D2=(4, 6),当平行四边形为DACB时, 得D3=(6, 0),21,课堂总结:,1.向量的坐标的概念:,2.对向量坐标表示的理解:,3.平面向量的坐标运算:,(1)任一平面向量都有唯一的坐标;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年保健休闲用品合作协议书
- 2025年真空绝热板合作协议书
- 物流运输行业从业资格证明(7篇)
- 网络技术安全服务保障协议
- 酒店业智能化客房服务系统建设方案
- 股东权益及出资证明书(5篇)
- 现代农业资源管理与技术应用协议
- 工业自动化产品代理经销合同书一
- 健康生活中心合作方案
- 养殖废弃物处理及再利用协议
- 2025年高三高考冲刺主题教育班会:《高三考前心理调适指南:减压赋能 轻松备考》-2024-2025学年高中主题班会课件
- 小学一年级数学20以内进位、退位加减法口算
- 2024年全国高中数学联赛(浙江预赛)试题含参考答案
- 2024年安徽省初中学业水平考试生物试题含答案
- 2024年浙江省中考英语试题卷(含答案解析)
- MOOC 理解马克思-南京大学 中国大学慕课答案
- GB/T 5169.5-2020电工电子产品着火危险试验第5部分:试验火焰针焰试验方法装置、确认试验方法和导则
- 绿城集团精装修验收标准-
- 大数据时代对会计的影响
- 特灵-RTHD水冷螺杆式冷水机组_图文
- 送教上门学生教案(生活适应和实用语数共17篇)
评论
0/150
提交评论