


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3个附加题综合仿真练(六)(理科)1本题包括A、B、C三个小题,请任选二个作答A选修42:矩阵与变换已知矩阵A,B.(1)求AB;(2)若曲线C1:1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程解:(1)因为A,B,所以AB.(2)设Q(x0,y0)为曲线C1上的任意一点,它在矩阵AB对应的变换作用下变为P(x,y),则,即所以因为点Q(x0,y0)在曲线C1上,则1,从而1,即x2y28.因此曲线C1在矩阵AB对应的变换作用下得到曲线C2:x2y28.B选修44:坐标系与参数方程在平面直角坐标系xOy中,圆C的参数方程为(为参数)以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为,若圆C与直线l相切,求直线l的极坐标方程解:圆的直角坐标方程为x2(y2)21,设直线l对应的直角坐标方程为ykx,因为圆C与直线l相切,所以d1,得到k,故直线l的极坐标方程或.C选修45:不等式选讲已知a,b,c,d为实数,且a2b24,c2d216,证明:acbd8.证明:由柯西不等式可得:(acbd)2(a2b2)(c2d2)因为a2b24,c2d216,所以(acbd)264,因此acbd8.2.如图,在直三棱柱ABCA1B1C1中,ABAC,ABACAA12,D为CC1上任意一点(含端点)(1)若D为CC1的中点,求异面直线BA1与AD所成角的余弦值;(2)当点D与点C1重合时,求二面角A1BDA的正弦值解:建立如图所示的空间直角坐标系,易知A(0,0,0),B(0,2,0),A1(0,0,2),C1(2,0,2),所以(0,2,0),(0,2,2)(1)若D为CC1的中点,则(2,0,1),设直线BA1与直线AD的夹角为,则cos ,因此异面直线BA1与AD所成角的余弦值为.(2)当点D与点C1重合时,易知D(2,0,2),则(2,2,2),设平面A1BD的法向量为m(x,y,z),则即取y1,解得x0,z1,即平面A1BD的一个法向量为m(0,1,1),同理,可得平面ABD的一个法向量为n(1,0,1)设二面角A1BDA的大小为,则|cos |,因为0,所以sin ,因此二面角A1BDA的正弦值为.3已知数列an满足:a11,对任意的nN*,都有an1an.(1)求证:当n2时,an2;(2)利用“x0,ln(1x)x”,证明:an2e (其中e是自然对数的底数)证明:(1)由题意,a212,故当n2时,a22,不等式成立假设当nk(k2,kN*)时不等式成立,即ak2,则当nk1时,ak1ak2.所以,当nk1时,不等式也成立根据可知,对所有n2,an2成立. (2)当n2时,由递推公式及(1)的结论有an1anan(n2)两边取对数,并利用已知不等式ln(1x)x,得ln an1lnln anln an,故ln an1ln an(n2),求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/GDACERCU 0009-2020废旧动力蓄电池回收制取电池级硫酸镍绿色工艺规范
- 高中化学说课课件教学
- 高中化学冶金课件
- 2025学年四川省高三语文秋季入学摸底考试卷附答案解析
- 半导体行业市场前景及投资研究报告:走向更高端国产掩膜版厂商2.0时代
- 高一化学钠课件
- 砂石场物流管理人员劳动合同及供应链管理协议
- 景观园林住宅区物业合同终止及园林景观维护协议
- 体育休闲公园空地租赁及赛事运营管理合同
- 离婚协议书范本:共同债务处理明确责任归属
- 2025秋新部编版一年级上册语文教学计划+教学进度表
- (2025)社区网格员笔试考试题库及答案
- 大学英语四级高频词汇1500+六级高频词汇1500
- GB/T 20841-2007额定电压300/500V生活设施加热和防结冰用加热电缆
- 《智慧农业》的ppt完整版
- LANTEK兰特钣金软件手册(下)
- 测井曲线综合解释(课堂PPT)
- 贮水花盆案例总结-2015天津中心修改
- DB37_T 4496-2022 水工混凝土表面涂层质量检测技术规程
- 技术研发项目成本核算表
- 水库除险加固工程主体工程完工投入使用验收施工管理工作报告
评论
0/150
提交评论