液压挖掘机工作装置结构设计.docx

液压挖掘机工作装置结构设计含10张CAD图

收藏

资源目录
跳过导航链接。
压缩包内文档预览:(预览前20页/共73页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:20779748    类型:共享资源    大小:4.98MB    格式:RAR    上传时间:2019-07-12 上传人:QQ14****9609 IP属地:陕西
50
积分
关 键 词:
挖掘机工作装置结构设计 含CAD图纸 液压挖掘机工作装置 液压挖掘机工作装置结构设计 液压挖掘机工作装置设计 挖掘机工作装置 挖掘机工作装置设计 张CAD图纸 液压挖掘机结构 CAD 图纸
资源描述:
液压挖掘机工作装置结构设计含10张CAD图,挖掘机工作装置结构设计,含CAD图纸,液压挖掘机工作装置,液压挖掘机工作装置结构设计,液压挖掘机工作装置设计,挖掘机工作装置,挖掘机工作装置设计,张CAD图纸,液压挖掘机结构,CAD 图纸
内容简介:
液压挖掘机工作装置结构设计含10张CAD图需要咨询购买全套设计请加QQ1459919609-图纸预览详情如下:俯视图A0.dwg动臂A0.dwg包络图A0.dwg图纸汇总A0.dwg外文翻译开题报告.doc总装图A0.dwg摇杆.dwg文件清单.txt斗杆.dwg斗齿.dwg设计副本设计说明书.docx轴套.dwg连杆.dwg铲斗A1.dwg摘 要此次毕业设计的题目是挖掘机工作装置的结构设计。根据任务书中给出,要求对液压系统的传动进行计算,那么就应该是设计液压挖掘机。我们知道,依靠液压传动的挖掘机的综合性能要比依靠机械传动的挖掘机好。而且液压挖掘机具有体积小,结构紧凑,传动平稳,挖掘力大,操作简便,以及容易实现无级变速和自动控制等优点。同样地,从任务书中知道,主要参数为:整机质量10吨,反铲斗容量0.18立方米,液压系统的工作压力14。通过上述内容,明确了需要设计小型履带式单斗液压挖掘机的反铲装置。要求实现:最大挖掘深度3.582米,最大挖掘高度5.365米,最大卸载高度2.792米以及最大挖掘半径5.884米。关键字:液压系统,液压挖掘机,反铲装置AbstractThe title of the graduation project is the structural design of the excavator working device. According to the task book given, the requirements of the hydraulic system to calculate the transmission, then it should be designed hydraulic excavator. We know that the overall performance of excavators relying on hydraulic drives is better than that of robots that rely on mechanical drives. And hydraulic excavator has the advantages of small size, compact structure, smooth transmission, large ex- cavation force, easy operation, and easy realization of stepless speed change and automatic control.Similarly, from the task book to know, the main parameters: the whole quality of 10 tons, the anti-bucket capacity of 0.18 cubic meters, the hydraulic system working pressure 14MPa. Through the above, the need to design a small track-type single- bucket hydraulic excavator backhoe device. Requirements to achieve: the maximum excavation depth of 3.582 meters, the maximum excavation height of 5.365 meters, the maximum unloading height of 2.792 meters and the maximum excavation radius of 5.884 meters.Key words: hydraulic system, hydraulic excavator, backhoe device目 录1 绪论11.1 国内外研究状况11.2 论文构成及研究内容22 工作装置总体方案设计22.1 工作装置的构成22.2 动臂及斗杆的结构形式32.3 动臂油缸与斗杆油缸的布置42.4 铲斗与铲斗油缸的连接方式42.5 铲斗的结构选择42.6 液压系统设计方案原则53 工作装置运动分析53.1 动臂运动分析53.2 斗杆的运动分析73.3 铲斗的运动分析83.3.1 铲斗连杆机构传动比i83.3.2 铲斗相对于斗杆的摆角393.3.3 斗齿尖运动分析93.4 特殊工作位置计算113.4.1 最大挖掘深度H1max113.4.2 最大卸载高度H3max123.4.3 水平面最大挖掘半径R1max123.4.4 最大挖掘半径R2max133.4.5 最大挖掘高度H2max134 工作装置挖掘阻力分析144.1 转斗挖掘阻力计算144.2 斗杆挖掘阻力计算155 工作装置基本尺寸的确定165.1 斗形参数的确定165.2 动臂机构参数的选择165.2.1 1与A点坐标的取值165.2.2 l1与l2的选择175.2.3 l41与l42的计算175.2.4 l5的计算175.3 斗杆机构基本参数的选择205.4 铲斗机构基本参数的选择215.4.1 基本计算215.4.2 转角范围225.4.3 在铲斗机构其它基本参数的计算226 工作装置的结构设计计算246.1 斗杆的结构设计246.1.1 斗杆的受力分析246.1.2 结构尺寸的计算296.2 动臂结构设计316.2.1 危险工况受力分析316.2.2 内力和弯矩的求解356.2.3 结构尺寸计算366.3 铲斗的设计386.3.1 铲斗斗形尺寸的设计386.3.2 铲斗斗齿的结构计算397 挖掘机液压传动部分计算397.1 确定液压系统类型407.2 液压系统的传动求解和液压元件的取用407.2.1 液压系统首要参数的确认407.2.2 挖掘机液压缸作用力的确定407.3 液压系统初步计算447.4 工作装置传动计算457.5 液压泵参数选择和发动机功率计算467.6 主油管管径和油箱容量478 回转机构部分计算488.1 回转马达设计计算489 销轴与衬套的设计选用499.1 销轴的设计499.2 销轴用螺栓的设计499.3 衬套的设计49总 结50参考文献51致 谢52通过在线监测液压油污染提高液压挖掘机性能摘要 高价值产品的原始设备制造商(OEM)通常为客户提供维护或服务包,以确保其产品在整个生命周期内保持最高的效率。为了快速高效地规划维护要求,OEM厂商需要有关其产品的使用和磨损的准确信息。近几十年来,航空航天工业尤其成为使用实时数据进行产品监控和维护调度的专家。通常产生大量来自产品监控的实时使用数据,并将其传回OEM,进行诊断和预测分析。最近,其他行业,如建筑业和汽车业,也开始发展这些领域的能力,基于条件的维修(CBM)越来越受欢迎,作为满足客户需求的手段。煤层气需要由OEM对实时产品数据进行连续的监控,但是对于这些行业尤其是建筑业来说,最大的挑战在于缺乏准确和实时的了解产品如何被使用可能是因为复杂的供应链存在于建设项目中。本研究重点关注移动液压系统的当前动态数据采集技术,在这种情况下使用移动在线粒子污染传感器;目的是评估适应性以达到条件维护的诊断和预后要求。它得出结论,液压油污染分析,即检测金属颗粒,为测量液压元件的实时磨损提供了可靠的方法。关键字:液压油,污染,粒子传感器,建筑项目,诊断,预后1.移动产品维护策略1.1 介绍 传统上,产品的设计和制造符合客户的要求,但这些都可能发生巨大变化,随着时间的推移。 但是,建筑设备,卡车,公共汽车和飞机等高价值产品预计会有长寿命。 这些产品通常作为舰队数量购买,可能在服役10至30年或更长时间.产品销售协议通常包括一个维护包,这可能是最常见和最有效的方式确保产品保持高可靠性水平1。 出售维修或其他服务产品服务被称为产品服务系统(PSS)。 PSS已被定义为可销售的一组产品服务能够共同满足用户的需求2。 这种制造方法已经被开发为可持续发展替代制造商和消费者的生产和消费的传统概念3。 PSS旨在通过延长现有的寿命来减少制造新产品的原材料消耗4产品5 然而,很难预测复杂产如建筑设备需要多年的维护,特别是当产品工作条件和工作类型未知时。 因此,维护已经成为OEM厂商运营预算的重要组成部分6,并且企业通过降低维护计划中目前存在的复杂性和不确定性来寻求解决这一负担。更大的实时数据采集和处理应使他们能够对现场的产品状况进行更准确的评估(即在退回工厂进行维护和修理之前)。 Madenas表示,对服务和维护系统开发的研究对研究人员的兴趣不大,而且这种有限的研究往往侧重于航空航天领域7。然而,其他具有高数据交易的行业,以及汽车和建筑行业等重大保修和维护成本也应受到实时数据采集和处理驱动的预防性维护方案的好处。本文报告的研究集中在通常用于移动液压系统(即建筑和采矿机械)上的动态数据采集技术。 它利用22吨液压挖掘机进行1900小时油污监测研究,以确定改善液压系统维护方式的方法,即通过有效的金属污染检测。1.2维护方法维护经常被认为是关于固定不再能够实现其设计功能的产品; 这也称为运行失败(RTF)。 英国标准将维护定义为:“所有技术和行政行为,包括监督行动,旨在保留项目或恢复其能够执行所需功能的状态的组合”,8。澳大利亚维护工程学会(MESA)指出,“维护是工程决策和相关行动,必须和足够的优化指定的能力”,9。 在这个定义中,“指定功能的优化”意味着产品的功能应该是以高水平的性能和可靠性进行交付。曾俊华表示,维护的主要目标是以成本有效的方式维护系统功能10,但维护已被描述为在任何给定系统的整个产品生命周期中所需的昂贵和令人生畏的支持元素11。 凯利进一步表示,维护应以最低资源成本达到约定的产出水平和运行模式,并在系统的状况和安全性的限制之内12。 总之,维护必须确保所需的可靠性,可用性,效率和物理能力产品13。 基于条件的维护(CBM)是基于对其状况和维护物流的非侵入性测量来维护工程资产的理念14。西南研究所(SRI)的研发经理苏珊祖比克说,航空航天工业认为,煤层气是一种维护理念,主动管理资产的健康状况,以便在需要时进行维护,而对设备的影响最小(Zubik 2010)。 CBM旨在防止故障发生10,因此设备状况通过检查和诊断进行评估,维护操作只在必要时进行15。美国空军(USAF)将CBM定义为从嵌入式传感器获得的武器系统状况的实时评估和/或使用便携式设备的外部测试和测量得到的一组维护过程和功能16。诊断和预后是CBM计划中的两个重要组成部分,其诊断涉及故障检测和预测,在发生故障和退化预防之前处理17。以前的研究证实,机器组件,传感器数据采集,数据提取,转换和分析都是预后维护的关键方面18。Rausch(2008)指出了几种常用的监测方法,如振动分析,工艺参数建模,摩擦学,热成像和目视检查。 传感器通常嵌入到系统的关键部分,以获得与系统健康有关的数据1。 例如,劳斯莱斯公司使用引擎健康管理(EHM)提供其“由电力供应”监控服务。 Rolls Royce Trent发动机永久安装约25个传感器,它们提供数据(即发动机各个位置的压力,涡轮机气体温度和冷却空气温度)19。 有了这样的真实时间数据,OEM可以诊断产品的状况,同时仍然在现场运行。 分析技术包括网络和基于概率的自主系统,用于实时失败预测预测20。煤层气是基于降级系统的状态启动的,因此,只有在出现降级已经达到临界水平时,组件才被更换。 因此,可以将设备的非计划停机时间最小化。 此外,预测组件故障时间的能力意味着可以大大降低生命周期成本(LCC),因为组件和设备的寿命可以充分利用。 因此,原始设备制造商或服务提供商也可以通过更准确地了解维护所需的内容来更准确地制定服务计划表20。1.3 维护中的挑战关于现场运行的产品的现状的不确定性使得OEM厂商难以有效和成本有效地计划维护计划。 这导致维护不足的产品的风险更大,这可能导致故障和更长的计划外停机时间,这两者都是客户不能接受的。 为了减少这种不确定性,需要获取和处理与产品使用特别相关的准确产品数据,以确定所需的维护/服务的频率和类型。 Scheidt将数据分类为静态和动态生命周期数据21。静态数据包括在产品设计阶段创建的产品信息,如产品规格,物料清单(BOM)和维修手册。 动态数据在产品操作阶段收集,通常在客户使用(而不是由OEM)使用时,包括使用模式,维修操作,环境工作条件和组件磨损率等数据。 数据通常存储在板载数据记录器和处理器中。 OEM也使用问卷调查来获取产品性能,使用模式和客户满意度。一些较大的OEM厂商邀请其经销商和客户进行为期一周的会议,分享他们的产品体验22。虽然可以以这种方式收集大量关于产品性能的第一手反馈信息,但这种信息变得过早迅速,可能会出现错误,歧义和主观性。原始设备制造商从产品中收集准确和实用的实时(动态)数据是很困难的。 当设计产品时,假设在特定条件和方法中使用,如设计规范中所述,但是某些客户(用户)可能会滥用产品,从而降低运营寿命。 在施工设备行业,产品经常受到非正统的恶劣使用和日常维护保养的不足,这可能导致零件加速磨损,缩短寿命。 为了解决这个问题,OEM可以考虑根据航空航天工业来监测产品的实时使用情况。 监控系统使服务提供商能够立即安排必要的维护,检测到异常事件。 还可以提取和分析任何相关的实时数据,以确定所需的工作和部件23。然而,涉及产品使用数据的生成,处理和管理的数据监控系统是复杂和昂贵的,并且可能超过被监视的组件的成本。 沃尔沃建筑设备北美远程技术经理比尔索伯(Bill Sauber)表示,OEM厂商倾向认为,如果收集更多动态的实时操作数据,将会获得更多的信息。 然而,这个数据大多只是噪音。 Caterpillar的技术应用专家Johnathan Metz还表示,客户很可能被数量庞大的数据所淹没,与客户的需求无关24。 因此,如果没有系统及时分析收集的数据,只能获得有限的价值25。因此,为了具有成本效益和竞争力,建筑设备OEM厂商将设计监控系统作为整体产品设计的一部分非常重要。 要做到这一点,有必要了解在不同运行模式下产品的状况如何受到影响,以及如何检测出这种情况的变化。 这是至关重要的,因此监控系统,包括传感器的位置和数量可以被设计为通过实时数据分析来最大化他们可以提供的有用知识,同时最大限度地降低传感器安装和操作所带来的成本。 本文的其余部分介绍了通过1900 h油污染监测研究进行的CBM移动在线颗粒污染传感器的适用性评估。2.监测液压系统预测故障建筑行业OEM如Caterpillar Inc.(CAT),Komatsu有限公司和J C Bamford挖掘机有限公司为各行业生产重型设备,如反铲装载机,轮式装载机和液压挖掘机,用于处理各种行业的大型和重型材料。 世界上超过45的建筑机械是液压挖掘机26,因为与其他建筑机械相比,其生产率高,操作简便27。大多数挖掘机由内燃机提供动力。 与传统的汽车不同,传动发动机的动力来驱动在液压系统内提供流动的液压泵(图1)。 液压是通过限制液体的介质传递力和/或运动的科学,并且通过推动该限制液体来传递动力。 泵被安装以推动电路周围的油,有时会对其加压。阀块通常用于控制油的流动和方向。 这些是金属铸件,其中油路机构与阀芯相交,其数量取决于要控制的服务数量。 控制阀的故障可能导致生产损失,比预防成本贵多倍28。 挖掘机,如吊臂,铲斗,铲斗和回转马达的主要结构部件通过液压柱塞移动。 液压马达将流体动力转换为线性力和运动。 由液压油缸产生的线性力是系统压力和有效面积的乘积,减去系统效率低下。非公路挖掘机液压回路的复杂性以及他们必须忍受的艰难的工作条件,意味着这种系统的可靠性始终是认真考虑的29。 液压系统运行分析表明,系统及其部件的可靠性取决于压力,流量,温度,粘度和颗粒污染物等多种因素30。 Muncie Inc. Muncie Power Products的培训和教育主管戴夫道格拉斯(Dave Douglass)声称70-90的液压系统故障可归因于污染的油32。加拿大国家研究委员会还发现,82的磨损问题是由于磨损,侵蚀和疲劳造成的颗粒引起的故障33。 国家流体动力中心(NFPC)也认为,他们的石油污染之一管理课程,无法解决和有效管理污染将导致昂贵的停机时间和部件寿命短34。 CAT Ltd认为,油中磨损颗粒的浓度是潜在组分问题的关键指标。 因此,条件监测的油分析技术为运营商带来了巨大的潜在收益35。 为了澄清,对于DesCase,TBR策略总裁兼可靠性服务副总裁Ingalls和Barnes将油污染物定义为污垢,水,空气,磨损碎片和泄漏的冷却液36。液压回路污染物影响液压设备的性能和使用寿命,导致三种系统故障之一:退化:间隙尺寸的颗粒与两面相互作用,经常引起磨损,腐蚀和曝气问题37。间歇性:污染会导致阀芯上的暂时阻力或防止提升阀移动。尽管微粒很可能被阀芯重复移动而被冲走,但只有完全拆卸才能确保不会再次发生故障38。灾难性的:当几个大颗粒或大量的小颗粒导致运动部件完全缉获时,突然发生这种情况39。有许多不同类型的污染物可能导致系统故障,其中水分可能是最常见的40。 一般来说,液压系统中有三种主要的污染源:内置污染物,也称为主要污染物,来自液压元件的制造,组装和测试41。由于系统的密封不足,例如柱塞42或油层的通气盖过滤不足39,经常会发生压痕污染。 在采矿业中使用的机器在液压系统中倾向于具有高水平的硅,污垢和水。 在维护过程中也可能引起污染,特别是在重新注入液压油时,如果不考虑环境污染38。产生的污染,也称为磨损,是由于液压部件在使用过程中的接触而引起的,并不总是可以避免的44。Improving hydraulic excavator performance through in line hydraulic oil contamination monitoringAbstract It is common for original equipment manufacturers (OEMs) of high value products to provide maintenance or service packages to customers to ensure their products are maintained at peak efficiency throughout their life. To quickly and efficiently plan for maintenance requirements, OEMs require accurate information about the use and wear of their products. In recent decades, the aerospace industry in particular has become expert in using real time data for the purpose of product monitoring and maintenance scheduling. Significant quantities of real time usage data from product monitoring are commonly generated and transmitted back to the OEMs, where diagnostic and prognostic analysis will be carried out. More recently, other industries such as construction and automotive, are also starting to develop capabilities in these areas and condition based maintenance (CBM) is increasing in popularity as a means of satisfying customers demands. CBM requires constant monitoring of real time product data by the OEMs, however the biggest challenge for these industries, in particular construction, is the lack of accurate and real time understanding of how their products are being used possibly because of the complex supply chains which exist in construction projects. This research focuses on current dynamic data acquisition techniques for mobile hydraulic systems, in this case the use of a mobile inline particle contamination sensor; the aim was to assess suitability to achieve both diagnostic and prognostic requirements of Condition Based Maintenance. It concludes that hydraulic oil contamination analysis, namely detection of metallic particulates, offers a reliable way to measure real time wear of hydraulic components.Keywords:Hydraulic oil,contamination,Particle sensors,Construction equipment,Diagnostic, Prognostic1. Maintenance strategy for mobile products1.1. Introduction Traditionally, products are designed and manufactured to meet customers demands, but these can change dramatically over time. However, high value products such as construction equipment, trucks, buses and aeroplanes are expected to have long lifespans. These products are often bought in quantity as a fleet and are likely to be in service for 10 to 30 years or moreProduct sales agreements often include a maintenance package and this is perhaps the most common and effective way to ensure that the products maintain a high reliability level 1. Selling maintenance or other services together with the product in a bundle is known as a Product Service System (PSS). A PSS has been defined as a marketable set of products and services capable of jointly fulfilling a users needs 2. This manufacturing approach has been developed as a sustainable alternative to the conventional concepts of production and consumption for both manufacturers and consumers 3. PSS aims to reduce the consumption of raw materials for manufacturing new products 4 by prolonging the life span of existing products 5. However, it is very difficult to predict the maintenance that complex products such as construction equipment will require over many years, particularly when the conditions within which the product is working and the types of work being done are unknown. As a result maintenance has become an important part of operational budgets for OEMs 6, and companies seek to address this burden by reducing the complexity and uncertainty which currently exist in maintenance planning. Greater real time data acquisition and processing should enable them to conduct more accurate assessments of a products condition in the field (i.e. before it is returned to the factory for maintenance and repair). Madenas stated that research into service and maintenance system development attracts little interest from researchers, and furthermore, this limited research tends to focus on the aerospace sector 7. However, other industries with high data transactions, and significant warranty and maintenance costs, such as the automotive and construction industries, should also benefit from preventative maintenance schemes driven by real time data acquisition and processing. The research reported in this paper focused on a dynamic data acquisition technique that is typically used on mobile hydraulic systems (i.e. construction and mining machines). It draws on a 1900-h oil contamination monitoring study of a 22-tonne hydraulic excavator, to identify ways to improve maintenance regimes in hydraulic systems, namely through effective wear metal contamination detection.1.2. Maintenance approaches Maintenance is often perceived as being about fixing products that are no longer able to fulfil their designed functionality; this is also known as run to failure (RTF). British Standards define maintenance as: “The combination of all technical and administrative actions, including supervision actions, intended to retain an item in, or restore it to, a state in which it can perform a required function”, 8. The Maintenance Engineering Society of Australia (MESA) states that“Maintenance is the engineering decisions and associated actions necessary and sufficient for the optimisation of specified capabilities”, 9. In this definition, “the optimisation of specified capabilities” implies that the products functionality should be delivered at a high level of performance and reliability. Tsang stated that the primary objective of maintenance is to preserve system functionality in a cost-effective manner10, yet maintenance has been described as an expensive and daunting element of support required throughout the product lifecycle of any given system 11. Kelly went even further by suggesting that maintenance should achieve the agreed output level and operating pattern at a minimum resource cost, and within the constraints of the systems condition and safety12. In summary, maintenance must ensure the required reliability, availability, efficiency, and capability of a physical product 13. Condition-based maintenance (CBM) is a philosophy for maintaining engineering assets based on non-intrusive measurement of their condition and maintenance logistics 14. The R & D manager of Southwest Research Institute (SRI), Susan Zubik, stated that the aerospace industry considers CBM to be a maintenance philosophy to actively manage the health condition of assets in order to perform maintenance only when it is needed, and with the least disruption to the equipments uptime (Zubik 2010). CBM is designed to prevent the onset of a failure 10, hence equipment condition is assessed by inspection and diagnosis, and maintenance actions are performed only when necessary 15. The United States Air Force(USAF) defines CBM as a set of maintenance processes and capabilities derived from real-time assessment of weapon system conditions obtained from embedded sensors and/or external test and measurement using portable equipment 16. Diagnostic and prognostic are two important components in a CBM programme, where diagnostic deals with fault detection and prognostic deals with fault and degradation prevention before they occur 17. Previous studies confirm that machine components, data acquisition from sensors, data extraction, transformation and analysis are all key aspects of prognostic maintenance 18. Rausch (2008) noted several common monitoring methods, such as vibration analysis, process parameter modelling,tribology, thermography and visual inspection. Sensors are often embedded into critical parts of the system to obtain data relevant to system health 1. For example, Rolls Royce uses Engine Health Management (EHM) to offer its “Power by the Hour” monitoring service. There are about 25 sensors fitted permanently on a Rolls Royce Trent engine, which provide data(i.e. pressure at various locations of the engine, turbine gas temperature and cooling air temperature) 19. With such real time data, OEMs can diagnose the condition of products whilst still operational in the field. Analysis techniques include neural networks and probabilistic-based autonomous systems for real time failure prognostic predictions 20.CBM is initiated based on the state of the degrading system, and therefore components are only replaced when the level of degradation has reached a critical level. As a result, unscheduled down time of the equipment can be minimised. Furthermore, the ability to predict the time to a components failure, means that Life Cycle Cost (LCC) may be greatly reduced because the life of the components and equipment can be utilised fully. OEMs or service providers can therefore also plan their service schedules more accurately, by knowing exactly what is required for the maintenance 20.1.3. Challenges within maintenance Uncertainties about the current condition of products operating in the field make it extremely difficult for OEMs to plan maintenance schedules efficiently and cost effectively. This results in greater risks of under-maintaining products, which can lead to failure and longer, unscheduled down-times, both of which are unacceptable to customers. To reduce such uncertainties, accurate product data, particularly related to product use, needs to be acquired and processed to determine the frequency and types of maintenance/service required. Scheidt categorizes data as static and dynamic life cycle data 21.Static data includes product information created during the product design phase, such as the product specification, Bill of Materials (BOM) and service manuals. Dynamic data is collected during the products operational phase, commonly whilst it is being used by customers (rather than by the OEM), and consists of data such as usage patterns, servicing actions, environmental working conditions and components wear rates. The data is typically stored in an on-board data logger and processor. OEMs also use questionnaires to capture product performance, patterns of use and customer satisfaction levels.Some larger OEMs invite their dealers and customers to a week-long conference to share their product experiences 22.Although a large amount of first-hand feedback on the products performance can be gathered in this way, this type of information becomes out-of-date rapidly, and is can be subject to error, ambiguity and subjectivity. It is challenging for OEMs to collect accurate and useful real time (dynamic) data from a product. When products are designed, assumptions are made that they will be used in particular conditions and methods, as stated within the design specification, however, some customers (users) may misuse the products, thereby reducing operational lifespan. In the construction equipment industry, products are often subjected to unorthodox harsh usage and inadequate daily maintenance care, which can lead to accelerated wear on components, shortening life expectancy. To address this, OEMs may consider monitoring real time usage of the product, as per the aerospace industry. Monitoring systems enable service providers to schedule necessary maintenance immediately an abnormal event is detected. Any relevant real time data can also be extracted and analysed to determine the work and parts that are required 23. However, data monitoring systems which involve the generation, processing and management of the product usage data are complex and expensive, and may even exceed the cost of the components that are being monitored. Bill Sauber, Volvo Construction Equipment North Americas manager of remote technologies, stated that OEMs have a tendency to assume that if more dynamic, real time operational data are collected, more information will be captured. However, this data will mostly be just noise. Johnathan Metz, technology application specialist from Caterpillar also suggested that customers are likely to be overwhelmed by the sheer quantity of data, and its irrelevance to customers needs 24. Hence, if there is no system in place to analyse collected data in a timely manner, only limited value will be gained 25. Therefore, to be cost effective and competitive, it is very important for construction equipment OEMs to design the monitoring systems as part of the overall product design. To do so, it is necessary to understand how the products condition will be affected under different modes of operation, and how such changes in condition may be detected. This is critical such that monitoring systems, including the location and number of sensors can be designed to maximise the useful knowledge they can provide through real time data analysis, yet minimize costs incurred by sensor installation and operation. The remainder of this paper presents an assessment of the suitability of mobile inline particle contamination sensors for CBM, which was undertaken through a 1900 h oil contamination monitoring study.2. Monitoring hydraulic systems to predict faults Construction industry OEMs such as Caterpillar Inc. (CAT), Komatsu Ltd. and J C Bamford Excavators Ltd. Manufacture heavy equipment for various industries, such as backhoe loaders, wheeled loaders and hydraulic excavators for handling bulky and heavy materials for various industries. More than 45% of the worlds construction machines are hydraulic excavators 26, because of their high productivity and ease of operation compared to other construction machines 27. Most excavators are powered by a combustion engine. Unlike a conventional automobile, the generated power of the engine is transmitted to drive the hydraulic pumps which provide the flow within the hydraulic system (Fig. 1). Hydraulics is the science of transmitting force and/or motion through the medium of a confined liquid, and power is transmitted by pushing on this confined liquid. Pumps are installed to propel the oil around the circuit and, at times, pressurise it. Valve blocks are often used to control the flow and direction of the oil. These are metal castings in which oil-ways orgalleries are intersected by valve spools, the number of which depends on the number of services to be controlled. Failure of control valves can cause a loss of production which is many times more expensive than the cost of prevention 28. The primary structural components of an excavator, such as the boom, dipper arm, bucket and slew motor are moved by hydraulic rams. Hydraulic rams convert fluid power into linear force and motion. The linear force generated by a hydraulic ram is a product of system pressure and effective area, minus system inefficiencies. The complexity of off-highway excavators hydraulic circuits and the tough working conditions they must endure, means that the reliability of such systems is always a serious consideration 29. Analysis of hydraulic system operations indicates that the reliability of the system and its components will depend on a large number of factors 30, including pressure, flow,temperature, viscosity and particulate contaminants 31. Dave Douglass, the director of training and education of Muncie Power Products, Muncie Inc. claims 7090% of hydraulic syst
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:液压挖掘机工作装置结构设计含10张CAD图
链接地址:https://www.renrendoc.com/p-20779748.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!