人教版八年级上册第12章:全等三角形复习讲义_第1页
人教版八年级上册第12章:全等三角形复习讲义_第2页
人教版八年级上册第12章:全等三角形复习讲义_第3页
人教版八年级上册第12章:全等三角形复习讲义_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十二章 全等三角形(一)本章知识结构图性质判定全等形全等三角形角平分线的性质及逆定理其它应用对应边相等、对应角相等SSS,SAS,ASA,AAS,HL(二)基本图形识别:全等三角形的常见图形n 平移型:n 轴对称型:n 旋转型:(三)全等证明过关1、已知:如图,ABED,AB=DE,AF=DC. 求证:BC=EF.2、已知:如图,ABCD,1=2,O为AD中点,EF、AD交于点O. 求证:O为EF的中点.3、已知:如图,AB=AC,ADDC于D,AEBE于E,1=2.求证: AD=AE.4、已知:如图,在ABC中,ACB=90,AC=BC,AE是BC边上的中线,CDAE于F,且CD=AE(1)连接BD,求DBC的度数;(2)若AC=6cm,求BD的值.5、已知:如图,两个大小不同的等腰直角三角板顶点A重合放置,BD与AC、EC分别交于P、F,AD与EC相交于点Q.求证:(1)BADCAE;(2)BDCE.6、已知:如图,在ABC中,C=90,AD平分BAC,DEAB于点E,点F在AC上,BD=DF.求证:CF=EB.7、已知:如图,B、A、C三点共线,并且RtABDRtECA,M是DE的中点(1)判断ADE的形状并证明;(2)判断线段AM与线段DE的关系并证明;(3)判断MBC的形状并证明8、如果满足条件“ABC=30,AC=1, BC=k(k0)”的ABC是唯一的,那么k的取值范围是_.作业一1.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带( )去配A B C D和2. 根据下列已知条件, 不能唯一确定ABC的大小和形状的是( ) . A. AB3, BC4, AC5B. AB4, BC3, A30C. A60, B45, AB4 D. C90, AB6, AC = 53. 如图, 已知ABC, 则甲、乙、丙三个三角形中和ABC全等的是( ) . ABCDOA. 只有乙B. 只有丙C. 甲和乙D. 乙和丙4.如图,正方形的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与交于点F,与延长线交于点E四边形的面积是( )A16B12C8D45. 已知: 如图, AC、BD相交于点O, A = D, 请你再补充一个条件, 使AOBDOC, 你补充的条件是_. 6.如图,已知ABC中,点D为BC上一点,E、F两点分别在边AB、AC上,若BE=CD, BD=CF, B=C,A=50,DABCODABCO则EDF=_.7. 用直尺和圆规作一个角等于已知角,如图,能得出的依据是_ _.8.如图,点E,F在BC上,BECF,AD,BC,AF与DE交于O求证:ABDC.BACDEF1239.如图,点E在ABC外部,点D在边BC上,DE交AC于F,若123, AC=AE.求证:ABCADE.10.如图,ACBD,ADAC,BCBD求证:ADBC(四)角平分线的性质定理与逆定理1. 角平分线的性质定理2. 角平分线的性质定理的逆定理3. 与角平分线相关的常用辅助线1. 如图,AB=AC,BD=CD,DEAB于E,DFAC于F. 求证:DE=DF.2.如图,D、E、F分别是ABC的三边上的点,CE=BF,DCE和DBF的面积相等. 求证:AD平分BAC.ABCDM3.已知,如图,B=C=90,M是BC的中点,DM平分ADC(1)求证:AM平分DAB;与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。金代元好问示侄孙伯安诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。”于是看,宋元时期小学教师被称为“老师”有案可稽。清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。可见,“教师”一说是比较晚的事了。如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。(2)猜想AM与DM的位置关系如何?并证明你的结论ADBCEF4.已知:如图,在ABC中,AD是ABC的角平分线,E、F分别是AB、AC上一点,并且有EDFEAF180试判断DE和DF的大小关系并说明理由5.如图,ABC中,ABAC,BAC=90,点D在线段BC上, EDB=C, BEDE,垂足E ,DE与AB相交于点F。(1) 若D与C重合时,试探究线段BE和FD的数量关系,并证明你的结论,(2)若D不与B,C重合时,试探究线段BE和FD的数量关系,并证明你的结论6. 已知:在ABC和DBE中, BDE=BAC=900,AB=AC,DB=DE,连接EC,取EC的中点P,连接AP、DP. (1)如图1,当B、E、A三点共线时,判断AP与DP的位置关系为AP_DP; (2)如图2,当B、E、C三点共线时,判断AP与DP的位置关系,并证明你的结论; (3)如图3,当DBE绕点B旋转到如图所示位置时,判断AP与DP的位置关系,并证明你的结论.图3图2图1作业二1.三角形中,到三边距离相等的点是( )(A)三条高线交点(B)三条中线交点(C)三条角平分线交点 (D)三角形内任一点2.如图,已知,垂足分别为A,B则下列结论:(1);(2)平分;(3);(4),其中一定成立的有( )个A1 B2 C3D非以上答案3.如图,RtABC中,C=90,ABC的平分线BD交AC于D,若CD=3cm,CB=4cm,则点D到AB的距离DE是( )A5cm B4cm C3cm D2cm 4.如右图,ABC是等腰直角三角形,C=90,BD平分CBA交AC于点D,DEAB于E若ADE的周长为8cm,则AB =_ cm 第2题 第3题 第4题 第5题5. 如图,BDCD,BFAC于F,CEAB于E求证:D在BAC的角平分线上6.已知:ABC的B的外角平分线BD与C的外角平分线CE相交于点P.求证:点P也落在A的平分线上.ABCDE7.如图,ACBD,AE、BE分别平分CAB、ABD.求证:AB=AC+BD.教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死”的缘故。要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。8.如图,D为ABC外一点,DABB,CDAD,要练说,得练看。看与说是统一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论