说明书.doc

毕设(带cad和文档)

收藏

资源目录
跳过导航链接。
毕设带cad和文档.zip
毕设
说明书.doc---(点击预览)
论文2.doc---(点击预览)
论文1.doc---(点击预览)
英文原文.doc---(点击预览)
目 录.doc---(点击预览)
毕业设计(论文)封面1.doc---(点击预览)
毕业设计(论文)封面.doc---(点击预览)
开题报告.doc---(点击预览)
实体图.doc---(点击预览)
学士学位论文原创性声明.doc---(点击预览)
外文翻译封面.doc---(点击预览)
图纸清单.wps---(点击预览)
中文翻译.doc---(点击预览)
中英文翻译
CAD
fanlanban.DWG
搅拌罐.dwg
混凝土搅拌车搅拌系统装配图.DWG
焊接曲线图A1.dwg
solidwork
youhuanxinxin1.jpg---(点击预览)
xinzhuangpeis1.jpg---(点击预览)
xinzhuangpei21.jpg---(点击预览)
xinqianzhiczhanpe1.jpg---(点击预览)
xinqianzhiczhane2.jpg---(点击预览)
fanlanban.jpg---(点击预览)
diban4.SLDPRT
fanlanban.SLDPRT
houzuizhuangpt1.SLDASM
liangjie2.SLDPRT
qianlianjiejian2.SLDPRT
qianzhichejian1.SLDPRT
qianzhichexuanzhuangc.SLDPRT
qiuqiu4.SLDPRT
std.out
trail.txt.1
xinqianzhiczhanpe1.SLDASM
xinzhou6.SLDPRT
xinzhuangpeis1.SLDASM
youhuanxinxin1.SLDPRT
新工程图2.1.15.SLDDRW
新工程图纸2.SLDDRW
UG
11.15.exp
budianyong.prt
dengjiao.prt
guanti.prt
heli012.exp
xinshiyan1.exp
xinshiyan1030.exp
图纸
上模.dwg
上模.dwl
上模.dwl2
下模.dwg
下模.dwl
下模.dwl2
模具装配图.dwg
模具装配图.dwl
模具装配图.dwl2
轮毂毛坯图.dwg
轮毂零件图.dwg
边模.dwg
边模.dwl
边模.dwl2
摘要
CAD制图样板.dwg
过程卡1.dwg
过程卡1.dwl
过程卡2.dwg
过程卡2.dwl
压缩包内文档预览:(预览前20页/共40页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:20830228    类型:共享资源    大小:16.41MB    格式:ZIP    上传时间:2019-07-13 上传人:QQ24****1780 IP属地:浙江
30
积分
关 键 词:
cad 文档
资源描述:
毕设(带cad和文档),cad,文档
内容简介:
注塑模具自动装配造型 X. G. Ye, J. Y. H. Fuh and K. S. Lee机械和生产工程部,新加坡国立大学,新加坡注射模是一种由与塑料制品有关的和与制品无关的零部件两大部分组成的机械装置。本文提出了(有关)注射模装配造型的两个主要观点,即描述了在计算机上进行注射模装配以及确定装配中与制品无关的零部件的方向和位置的方法,提出了一个基于特征和面向对象的表达式以描述注射模等级装配关系,该论述要求并允许设计者除了考虑零部件的外观形状和位置外,还要明确知道什么部份最重要和为什么。因此,它为设计者进行装配设计(DFA)提供了一个机会。同样地,为了根据装配状态推断出装配体中装配对象的结构,一种简化的特征几何学方法也诞生了。在提出的表达式和简化特征几何学的基础上,进一步深入探讨了自动装配造型的方法。关键字:装配造型;基于特征;注射模;面向对象。1、简介注射成型是生产塑料模具产品最重要的工艺。需要用到的两种装备是:注射成型机和注射模。现在常用的注射成型机即所谓的通用机,在一定尺寸范围内,可以用于不同形状的各种塑料模型中,但注射模的设计就必须随塑料制品的变化而变化。模型的几何因素不同,它们的构造也就不同。注射模的主要任务是把塑料熔体制成塑料制品的最终形状,这个过程是由型芯、型腔、镶件、滑块等与塑料制品有关的零部件完成的,它们是直接构成塑料件形状及尺寸的各种零件,因此,这些零件称为成型零件。(在下文,制品指塑料模具制品,部件指注射模的零部件。)除了注射成型外,注射模还必须完成分配熔体、冷却、开模、传输、引导运动等任务,而完成这些任务的注射模组件在结构和形状上往往都是相似的,它们的结构和形状并不取决于塑料模具,而是取决于塑料制品。图1显示了注射模的结构组成。 图1 注射模的结构成型零件的设计从塑料制品中分离了出来。近几年,CAD/CAM技术已经成功的应用到成型零件的设计上。成型零件的形状的自动化生成也引起了很多研究者的兴趣,不过很少有人在其上付诸实践,虽然它也象结构零件一样重要。现在,模具工业在应用计算机辅助设计系统设计成型零件和注射成型机时,遇到了两个主要困难。第一,在一个模具装置中,通常都包括有一百多个成型零部件,而这些零部件又相互联系,相互限制。对于设计者来说,确定好这些零部件的正确位置是很费时间的。第二,在很多时候,模具设计者已想象出工件的真实形状,例如螺丝,转盘和销钉,但是CAD系统只能用于另一种信息的操作。这就需要设计者将他们的想法转化成CAD系统能接受的信息(例如线,面或者实体等)。因此,为了解决这两个问题,很有必要发展一种用于注射模的自动装配成型系统。在此篇文章里,主要讲述了两个观点:即成型零部件和模具在计算机上的防真装配以及确定零部件在模具中的结构和位置。这篇文章概括了关于注塑成型的相关研究,并对注射成型机有一个完整的阐述。通过举例一个注射模的自动装配造型,提出一种简化的几何学符号法,用于确定注射模具零部件的结构和位置。2.相关研究在各种领域的研究中,装配造型已成为一门学科,就像运动学、人工智能学、模拟几何学一样。Libardi作了一个关于装配造型的调查。据称,很多研究人员已经开始用图表分析模型会议拓扑。在这个图里,各个元件由节点组成的,再将这些点依次连接成线段。然而这些变化矩阵并没有紧紧的连在一起,这将严重影响整体的结构,即,当其中某一部分移动了,其他部分并不能做出相应的移动。Lee and Gossard开发了一种新的系统,支持包含更多的关于零部件的基本信息的一种分级的装配数据结构,就像在各元件间的“装配特征”。变化矩阵自动从实际的线段间的联系得到,但是这个分级的拓扑模型只能有效地代表“部分”的关系。自动判别装配组件的结构意味着设计者可避免直接指定变化的矩阵,而且,当它的参考零部件的尺寸和位置被修改的时候,它的位置也将随之改变。现在有三种技术可以推断组件在模具中的位置和结构:反复数值技术,象征代数学技术,以及象征几何学技术。Lee and Gossard提出一项从空间关系计算每个组成元件的位置和方向的反复数值技术。他们的理论由三步组成:产生条件方程式,降低方程式数量,解答方程式。方程式有:16个满足未知条件的方程式,18个满足已知条件的方程式,6个满足各个矩阵的方程式以及另外的两个满足旋转元件的方程式。通常方程式的数量超过变量的数量时,应该想办法去除多余的方程式。牛顿迭代法常用来解决这种方程式。不过这种方法存在两种缺点:第一,它太依赖初始解;第二:反复的数值技术在解决空间内不能分清不同的根。因此,在一个完全的空间关系问题上,有可能解出来的结果在数学理论上有效,但实际上却是行不通的。Ambler和Popplestone提议分别计算每个零部件的旋转量和转变量以确定它们之间的空间关系,而解出的每个零部件的6个变量(3个转变量和3旋转量)要和它们的空间关系一致。这种方法要求大量的编程和计算,才能用可解的形式重写有关的方程式。此外,它不能保证每次都能求出结果,特别是当方程式不能被以可解答的形式重写时。为了能确定出满足一套几何学限制条件的刚体的位置与方向,Kramer开发了一种特征几何学方法。通过产生一连串满足逐渐增长的限制条件的动作推断其几何特征,这样将减少物体的自由度数。Kramer使用的基本参考实体称为一个标识,由一个点和两正交轴构成。标识间的7个限制条件(coincident, in-line, in-plane, parallelFz,offsetFz, offsetFx and helical)都被定了义。对于一个包括独立元件、相互约束的标识和不变的标识的问题来说,可以用动作分析法来解决问题,它将一步一步地最后求出物体的最终的几何构造。在确定物体构造的每一个阶段,自由度分析将决定什么动作能提供满足限制物体未加限制部位的自由度。然后计算该动作怎样能进一步降低物体的自由度数。在每个阶段的最后,给隐喻的装配计划加上合适的一步。根据Shah和Rogers的分析,Kramer的理论代表了注射模具最显著的发展,他的特征几何学方法能解出全部的限制条件。和反复的数值技术相比,他的这种方法更具吸引力。不过要实行这种方法,需要大量的编程。现在虽然已有很多研究者开始研究注射成型机,但仍很少有学者将注意力放在注射模设计上。Kruth开发了一个注射模的设计支援系统。这个系统通过高级的模具对象(零部件和特征)支持注射模的成型设计。因为系统是在AUTOCAD的基础上设计的,因此它只适于线和简单的实体模型操作。3.注射模装配概述主要讲述了关于注射模自动装配造型的两个方面:注射模在电脑上的防真装配和确定结构零件在装配中的位置和方向。在这个部分,我们基于特征和面向对象论述了注射模装配。注射模在电脑上的防真装配包含着注射模零部件在结构上和空间上的联系。这种防真必须支持所有给定零部件的装配、在相互关联的零部件间进行变动以及整体上的操作。而且防真装配也必须满足设计者的下列要求:1 支持能表达出模具设计者实体造型想象的高级对象。2 成型防真应该有象现实一样的操作功能,就如装入和干扰检查。为了满足这些要求,可用一个基于特征和面向对象的分级模型来代替注射模。这样便将模型分成许多部分,反过来由多段模型和独立部分组成。因此,一个分级的模型最适合于描述各组成部分之间的结构关系。一级表明一个装配顺序,另外,一个分级的模型还能说明一个部分相对于另一个部分的确定位置。与直观的固体模型操作相比,面向特征设计允许设计者在抽象上进行操作。它可以通过一最小套参数快速列出模型的特征、尺寸以及其方位。此外,由于特征模型的数据结构在几何实体上的联系,设计者更容易更改设计。如果没有这些特征,设计者在构造固体模型几何特征时就必须考虑到所有需要的细节。而且面向特征的防真为设计者提供了更高级的成型对象。例如,模具设计者想象出一个浇口的实体形状,电脑就能将这个浇口造型出来。面向对象造型法是一种参照实物的概念去设计模型的新思维方式。基本的图素是能够将数据库和单一图素的动作联系起来的对象。面向对象的造型对理解问题并且设计程序和数据库是很有用的。此外,面向对象的装配体呈现方式使得“子”对象能继承其“父”对象的信息变得更容易。图形2说明以特性为基础和面向对象的分层的表示一种插入模具。 表示是多重水平的提取的一种分层的结构,从低水平的几何学的实体(形成特性)到高水平的组件。 在盒子中被封入的项目代表“装配对象”; 固体线代表“部分”关系; 同时,猛冲的线代表其它关系。 组件( SUBFA )包括部分( PART )。 一部分能被认为是形式特性( FF )的一种“装配”。 表示把一个以特性为基础的几何学的模型的力与面向对象的模型的那些相结合。 它不仅包含父对象和子对象之间的“部分”关系,也包括富有的套结构的关系和装配对象的一群操作的功能。 在段中3.1,在装配对象之间有有关一种装配对象的定义的较进一步的讨论,而详尽的关系在3.2段中被提出。3.1装配对象的定义在我们的工作中,一种装配对象,O,以如下形式被定义为一个唯一而可辨认的实体:O = ( Oid,A,M,R ) ( 1 )在此式中:Oid是一种装配对象( O )的一个唯一的标识符。A是一套三元组,( t,a,v )。 每一元素a被称为O的一种属性,与每一属性有关是一类型,t,和一种价值,v。M是一套元组,( m,tc1,tc2,%,tcn,tc)。 M中每一个元素都有唯一识别方法。 符号m代表一种方法名称; 同时,方法定义有关对象的操作。 符号tc (i= 1,2,%,n )规定争论类型和符号tc退回的价值类型。3.2形式特性之间的关系模具设计在本质中是一个智力的过程; 模具设计者大多数时间在真实客观的对象诸如金属板,螺丝钉,槽,斜面,和孔等思索设想。因此,用形式特性建设所有产品独立部分的几何学的模型是必要。 模具设计者能容易地改变一部分的大小和形状,因为形式特性之间的关系保持在部分表示中。 图形3(a )显示一个金属板带有一个含有公差等级要求的孔。 这部分被两个形式特性定义,即一个块和含有公差等级要求的孔。 关于块特性计数器开掘洞( FF2 )被放置FF1,使用他们本地分别地协调F2和F1,。 方程( 2) ( 5 )显示计数器开掘洞( FF2 )和块特性( FF1 )之间的空间的关系。 对于形式特性,没有他们之间的空间的约束,因此空间的关系被设计者直接指定。 两形式特性之间的详尽的装配关系被定义如下:4.在装配中推断部分配置一种装配中的若干部分的位置和方向最后通过转换矩阵来表达。为了方便的缘故,空间的关系通常被诸如“伙伴”,“结盟”和“平行”的高水平的铺席子的条件指定。 这样,从含蓄的约束关系自动地引出若干部分之间的清晰明确的转换矩阵是十分重要。推断一种装配中的若干部分的配置三种技术在段2.中已被讨论了因为象征性几何学的接近能以多项式时间复杂性定位所有关于约束方程的解决方案,我们使用这接近来确定位置和一种装配中的若干部分的方向。 为了在装配模拟软件中执行这接近,大量的编写程序被要求。因此,一种简化的几何学的接近被建议确定位置和一种装配中的若干部分的方向。在象征性几何学的接近中,确定位置和若干部分的方向被产生一系列行动执行符号满足每一逐渐增长的约束。被要求来满足每一逐渐增长的约束的信息储存在“计划片段”的一个表格中。 每一计划片段是规定一系列测量方法和行动的一个过程按照这样一种方式移动部分对于满足相应的约束。 计划片段也记录新的自由度和联系不变量的几何不变式。 由于这些限制约束序列,我们的计划片段桌子中的输入的数字基本上被减少。 为了为了一,两或者三个约束解决在我们的系统中允许,九种输入仅仅被要求。 为了交互式的增加组成部分装配,更多约束类型和自由的序列将为了用户增加灵活性。 然而,在为了一种插入模具模拟的自动装配中,当空间的关系被预先规定在装配对象中时,一些序列限制不有关系。 有了上述的定义的合成约束,一个组成部分部分的结构的关系能指定在组成部分的数据库中。 当把一个组成部分部分添加到模具装配时,系统将首先分解进入原始的约束的合成约束,然后产生一群片段计划将组成部分指明方向并且定位在装配中。5.注射模的自动装配任何注射模具的装配都由产品的局部和整体两部分组成。产品的局部依赖产品的整体设计基于塑料的部分 1,2 的几何学。 产品依赖部分通常有与那个同样的方向顶端水平装配,而他们的位置被设计者直接指定。 对于产品独立部分的设计,常规,模具设计者从目录中选择结构,为了产品若干部分的选择的结构建设几何学的模型,而然后把产品独立部分添加到插入模具的装配。 这设计过程是时间消耗的和差错容易倾向于。 在我们的系统中,一个数据库为了所有产品独立部分根据装配表示被建造,而对象定义在段3.中不仅描述这数据库包含产品独立部分的几何学的形状和大小,也包括他们之间的空间的约束。 此外,一些日常事务发挥作用诸如干扰检查和装在衣袋内被封装在数据库中。 因此,模具设计者必须从用户接口中选择产品独立部分的结构类型,而然后软件将为了这些部分自动地计算方向和位置矩阵,而把他们添加到装配。5.1模具基础组件 正如图1所示,产品的独立部分可以更进一步被分为摸具基础和标准部分。摸具基础是由一群金属板,插脚,导套等等组成的。除了塑型产品,模具必须具有一系列功能,诸如,箝位,校准,冷却,注塑等等。大多数产品不得不合并相同的功能,这导致了相似结构的树立。一些模具建筑形成的标准已经被采用了。模具基础起因于这个标准。 根据以特性为基础和面向对象的装配表示,模具基础组成部分的以特性为基础的固体模具首先被建造;其次,装配对象被定义为在成分和压缩功能一部分功能在组成零件之间建立关系;然后,利用这些组装对象,一个分层的组装对象模具基础能被形成。这些模具基础对象能通过目录数据库被例示。表4列出了模具基础对象来产生指定的模具基础的例子。这个指定的模具基础实例能自动地添加到模具装配。模具基础部件和最高装配的结构关系能通过Eqs被表达。Mp和Mr所在的(8)和(9)式是单元矩阵。5.2 标准零件的自动增加 一个标准零件是一个组装对象。它可以通过章节3.1的公式(1)来定义。在数据库中,空间约束用 mate,平面aling和轴align,而不像模具基础,标准件的位置和方向的矩阵是未知的。在示例中,软件通过利用单一的符号几何来自动推断章节4中描述的结构关系。5.3 装配对象的包装 自动装配设计的一个重要问题是自动包装过程。包装是一个在相应组成部分提供附着成分的真空区的操作。当一个驱动者被添加到装配时,一个空的空间被要求在EA盘上调节驱动者,如表5所示。 由于面向对象的表示法被采取,每一个装配对象能被描述为两个实体,实物和虚拟物。虚拟物通过被实物占据的空间模仿。只要一个装配对象被添加到装配中,它的虚拟对象也被添加到装配中。操作发挥作用中的pocketFplate( ) M O将从相应的组成部分(参看公式(1)和表1)。此外,因为在相应的组成部分上在虚拟对象和真正的对象之间有联系,包装将随真正的对象的修正而变化。这种自动包装功能更进一步显示了面向对象表示法的优势。6.基于Unigraphics系统 13 ,所提出的以特性为基础和面向对象的装配计划和自动化装配模拟的系统在新加坡的国立大学被开发的IMOLD系统 14 中已被执行。UG系统提供了一个友好的用户应用程序接口。通过这个接口,用户可以调用UG的内部功能,诸如增加装配部件,修正参数等等。 图6显示的是一个注塑模具产品,这个产品的注塑模具组装设计显示在图7(a)。固定一半组件的相应的父子关系图显示在图7(b)。装配是由IMOLD系统设计。每一个模具基础的零件都在装配中自动定位。Unigraphics系统提供一个用户友好应用编写程序接口(应用程序接口)。 通过这接口,虽然Unigraphics为了给条件铺席子提供功能,用户能呼叫诸如把部分添加到一种装配的Unigraphics内部的功能,修改参数等等,所提出的接近仍然被需要推断组成部分配置,因为在组成部分能被添加到装配之前,计算自由的度是必要,而检查给条件铺席子的有效性。 图6个展览一种插入铸造产品,因为图被领进来,和设计的插入模具装配这产品7(a )。 固定一半组件的相应的“父与子”关系被领进来图7(b )。 这装配被系统设计。 每一模具基础的盘子自动地被定位在装配中。 诸如定位的圆环和驱逐者的标准的部分自动地被添加到装配,因为这些标准部分也自动地被建立,和口袋。7.结论注射模具装配以所提出的特性为基础和面向对象的分层的表示不仅把特性范例扩展到装配,由于扩展特性范例而给条件,插入和方向限制等等铺席子到装配设计设计,而且是封装操作的功能和几何学的约束,诸如自由的程度,诸如集合的组成部分的模糊变化修正甚至能在完成装配过程之后被制定。 装配对象的封装有如下两种优势: 首先,因为装配的条件被封装在装配对象中,自动装配设计容易执行; 其次,对象装配的封装操作的功能使诸如装在衣袋内与干扰检查的装配设计的日常事务过程自动化。 所提出的简单化的动作分析能基本上减少为了自动检测校对模具装配之内组成部分干扰所需要的规划设计的努力。摩托车后轮轮毂的模具设计 学生姓名:吴昊 班级:078105329 指导老师:罗海泉摘要:轮毂是踏板摩托车上极为重要的行驶部件和安全部件,应具有良好的综合力学性能,在正常行驶过程中不应发生变形和疲劳失效。而轮毂又属于形状复杂的零件,一般采用铸造方法使其成型。现在,广泛采用低压铸造来生产轮毂。模具在铸造成型方法中是至关重要的一部分,因此,它的设计和制造成了铸造质量的关键所在。本文对轮毂进行实体造型更形象的了解轮毂的外形。并主要从摩托车轮毂的发展状况、铝合金的成型与铸造方法、低压铸造的工艺及特点,模具总体方案的选择以及模具结构的设计等方面介绍了轮毂低压铸造的模具设计。该款轮毂的材料采用了铝合金材料(ZL101A),对轮毂的铸造毛坯进行了设计,使其能够满足铸造的工艺要求。设计中将低压铸造与压力铸造、金属型重力铸造、挤压铸造以及差压铸造等铸造方法进行了对比。分析了轮毂零件的特点以及轮辋的主要形式及其特点。另外,主要从铸件收缩率、铸型分型面、冒口的设置以及推出机构等几个方面介绍了模具设计的要点。通过示意图描述了模具的分模与合模的动作方式。并对铸造轮毂的边模进行工艺分析。关键词:轮毂 低压铸造 模具设计 指导老师签名:The mold design of motorcycle rear wheelStudent name :WuHao Class :078105329Supervisor : Luo HaiQuanAbstract: Wheels is an extremely important safety components and moving parts of aPedaling Motorcycle , which should have good mechanical properties, in the normal courseof driving should not be taken deformation and fatigue failure. And Wheel is a part of complex shape. Generally casting method used to shapee. It widely used low-pressure casting to produce wheel currently. Die Casting is a vital part in molding method. So its design andmanufacture is the key of casting quality. This paper making solid mode-ling for wheels in order to understanding more image about the shape of the wheel ,and it mainly introduces the Wheel mold design of low pressure die casting, fromthe development of motorcycle wheelAluminum alloy molding and casting methods, process and characteristics of Low-Pressure Casting,the choice of the overall program dies the design of die structure Introduced die casting the wheel design by low pressureMaterials of this wheel used alloy material (ZL101A) .The paper Analyses the wheel parts and wheels characteristics of the main forms and characteristicsduring the program design the low-pressure casting and pressure casting, metal-gravity casting, pressure squeeze casting and pressure casting, and other methods are compared. . The Casting blank of the wheel enables it to meet the technological casting requirements. In addition, to introducethe principal Mold design elements, it covers several aspects including the contraction rate of type-casting, Riser set up the institutions and the launch. The actions of Die-Die and mold are described by the cess analysis he side-mode for casting wheel Keywords: Wheels low-pressure casting mold design Signature of Supervisor :新拌混凝土的性能 作者:H.-J. Wierig 新拌混凝土为水、水泥、集料和外加剂(如果有的话)的混合物。搅拌后,新拌混凝土的操作如输送、浇注、密实和终饰也会显著影响硬化混凝土的性能。组成材料在施工的不同时期保持在混凝土中的均匀分布及完全密实是很重要的。若这些条件不理想,成品硬化混凝土的性能如强度和耐久性就有不利影响。 新拌混凝土影响完全密实的特性是其稠度、流动性和密实性。在混凝土实践中这些一起被称为和易性。混凝土维持其均匀性的能力由其稳定性控制,稳定性又取决于稠度和粘聚性。由于对混凝土拌和物运输、浇注和捣固采用的方法与浇注构件的性质一样随工程不同而异,因此相应的和易性和稳定性要求也会改变。对特定工作新拌混凝土的适应性的评定在某种程度上总存在人为判断的问题。尽管很重要,但塑性混凝土的行为通常被忽视。建议学生应学会鉴定塑性状态混凝土的不同特性的重要性,了解在包括浇注混凝土结构的施工操作时如何去改变它们。和易性 混凝土的和易性从未被准确定义。实践时一般认为是指混凝土拌和物从搅拌机施工到其最终密实形状的容易程度。和易性的三个主要特性是稠度、流动性和密实性。稠度指湿润度或流度的度量。流动性指拌和物流进并完全充满模板或模具的容易程度。密实性指给定拌和物完全密实,排除所有截留空气的容易程度。本章要求的拌和物和易性不仅取决于组成材料的特性和相应比例,而且取决于(1)运输和密实采用的方法,(2)模板或模具的尺寸、形状和表面粗糙度,(3)钢筋的数量和间距(布筋)。 另一个普遍接受和易性的定义指产生完全密实所必须的有用内功的数量。应认识到必需功又取决于被浇注构件的性质。内功的确定存在许多困难,为此已发展了几种方法,但没有一种能给出和易性的绝对确定。通常用于确定和易性的实验不能确定和易性的单一特性(稠度、流动性和密实性)。然而它们的确给出了拌和物和易性的一个有用、实际的指导。和易性影响混凝土的质量,并直接影响成本,如和易性不好的混凝土拌和物完全密实要求更多时间和劳力。最重要的是在对适宜的混凝土配比下任何结论之前要求对给定现场条件的和易性作出现实评定。和易性的确定三个广泛应用确定和易性的实验是坍落度、密实系数和V-B稠度计实验(图13.1),是英国的标准实验,详细描述在英标1881第2部分。在实施法规110第1部分也推荐使用。重要的是注意到不同混凝土的坍落度、密实系数和V-B值间没有单一关系。下列章节讨论了这些实验的突出特点及其优点和局限性。坍落度实验此实验由美国Chapman于1913年发展的。标准条件(英标1881第2部分)下准备的300mm高混凝土圆锥下沉,锥体下沉或高度的降低被确定为和易性的度量。仪器便宜、轻便、结实,是所有确定和易性方法中最简单的。尽管存在一些局限性,坍落度实验的普及是不足为奇的。实验主要确定塑性混凝土的稠度,尽管很难看出坍落度与和易性有象先前定义的任何显著联系,但它适用于检测和易性的改变。如,用水量增加或细集料比例不足会引起坍落度增加。实验适用于质量控制目的,但应记住一般认为不适用于配比设计,因密实需不同工作量的混凝土可能有相似的坍落度数值。实验检测不同拌和物和易性改变的灵敏性和可靠性主要取决于其对稠度的灵敏性。实验不适用于很干或湿的拌和物。坍落度为0或接近0的很干拌和物,和易性的一般改变不会引起坍落度有可测量的变化。对湿拌和物,混凝土的完全崩坍会产生不可信的坍落度值。图13.1仪器对工作性测量 (a) 坍落度, (b) 压缩因子and (c) V-B .浓度测试器通常观察的三种坍落度为真实坍落度、剪切坍落度和崩坍坍落度,见插图13.2。粘性富拌和物可看到真实坍落度,一般对和易性改变较敏感。剪切坍落度通常有很湿拌和物相关,一般表现为差质量的混凝土,最常是由组成材料的离析引起。崩坍坍落度在贫拌和物中比富拌和物更常发生,指缺少粘性,一般与干硬性拌和物(砂浆含量少)相关。只要出现剪切坍落度就应重复实验,若一再重复,就应记载此实验现象和结果,因为获得相差大的不同坍落度值取决于坍落度是真实或是剪切形式。 标准坍落度仪器仅适用于集料最大粒径不超过37.5mm的混凝土。应注意坍落度值随搅拌后时间而改变,因为正常的水化和一些游离水的蒸发,因此在一固定时间内完成实验是比较理想的。 图13.2三种坍落度密实系数实验由英国Glanville(1947)等发展的这个实验确定对于标准工作量下的密实程度,因此给出了如前定义的混凝土和易性的直接而合理可信的评价。仪器是相对简单的机械装置(图13.1),描述在英标1881第2部分中。实验要求确定部分和完全密实混凝土的重量,部分对完全密实重量的比值总小于1,即是密实系数。对于普通范围的混凝土,密实系数为0.800.92。实验尤其适用于坍落度实验不理想的较干拌和物。在普通范围的和易性之外时密实系数灵敏性减小,通常密实系数超过0.92时就是不理想的。也应认识到,严格地说,实验的一些基本假设是不正确的。用于克服检测圆柱体的表面摩擦的工作可能随拌和物的特性而异。Cusens(1956)指出对很低和易性的混凝土,当密实系数保持明显不变时获得完全密实要求的实际工作取决于拌和物的富度。因此通常认为有相同密实系数的混凝土完全密实要求的工作量相同的观念不总是正确的。应注意的另一点是浇注混凝土到检测圆柱体的程序与现场通常采用的方法并不相同。与坍落度实验一样,密实系数的确定必须在某一特定时间内。标准仪器适用于集料最大粒径达37.5mm的混凝土。V-B稠度计实验实验由瑞典Bhrner(1940)发展(看图13.1)。尽管一般将其作为主要用于研究的实验,但其潜力现在正在工业中被更广泛公认,实验逐渐被接受。实验中(英标1881第2部分)记录了通过振动把一个标准混凝土圆锥变成密实的平圆柱体所用的时间,即V-B时间,用s做单位,规定精确到0.5s。与前两个实验不同,此实验处理混凝土与实际密实混凝土方法类似。而且,此实验对稠度、流动性和密实性改变敏感,因此认为在实验结果与现场和易性评定之间存在合理的相关关系。实验适用于大范围拌和物,与坍落度和密实系数实验不同,它对很干和引气混凝土和易性变化很敏感,对集料特性如形状和表面纹理的变化也更敏感。实验结果的复验性好。如其它实验一样,其准确性趋于随集料最大粒径增加而降低,大于19.0mm实验结果有点不可信。对于密实要求很少振动的混凝土V-B时间仅约3s。这样的结果可能可信度比大V-B时间要低,因为估计时间终点(混凝土接触塑料盘的整个下面)比较困难。在和易性范围的另一面,如很干拌和物,记录的V-B时间可能超过真实和易性,因为消除透明盘下截留的气泡要求延长振动。为克服这个困难,可在仪器上附上一个记录相对于时间的盘垂直下沉量的自动装置。这个记录装置也能消除判断终点的人为误差。V-B实验仪器比坍落度和密实系数实验更贵,要求有一电源,操作要更有经验,所有这些使其比普通现场使用,更适于预制混凝土工业和预拌混凝土工厂。影响和易性的因素已知影响新拌混凝土和易性的各种因素见图13.3。从下述讨论看与组成材料相关和易性的改变主要受用水量和水泥与集料的比表面积的影响。水泥和水 图13.3对新拌混凝土的影响因素不同和易性的灰水比(体积计)和水泥体积分数的典型关系见图15.5。对给定变化的灰水比,若改变用水量其和易性的变化比仅改变水泥用量要大些。一般水泥用量的影响对较富拌和物更大些。Hughes(1971)指出存在与组成材料的性能无关的类似线性的关系。对给定拌和物,混凝土和易性由于比表面积增加而随水泥细度增加而降低,这种影响在富混合物中更显著。也应注意更细的水泥会改善拌和物的粘聚性。除石膏外,水泥的成分对和易性没有显著影响。不稳定的石膏会产生假凝而削弱和易性,除非对新拌混凝土延长搅拌或重新搅拌。适于配制混凝土的水质量的变化对和易性没有重大影响。外加剂有助于混凝土和易性改善的主要外加剂是减水剂和加气剂。和易性改善的程度取决于所用外加剂的种类和用量及新拌混凝土的常规特性。 和易性外加剂当配比保持恒定时用于增加和易性,或当和易性保持恒定时减少用水量。前者会引起混凝土强度的轻微降低。加气剂是到目前为止最普遍应用的和易性外加剂,因为它们也改善塑性混凝土的粘聚性和成品混凝土的抗冻性。关于加气混凝土的两点实践要点是对于给定加气量时圆形集料或小灰水比(体积计)混凝土的和易性增加趋于更小,并且,一般和易性增加的速度趋于随含气量的增加而降低。然而,原则上可假定含气量每增加1%就会使密实系数增加0.01,使V-B时间降低10%。集料对于给定水泥、水和集料用量,混凝土和易性主要受集料的总表面积影响。集料表面积受最大粒径、级配和形状影响。比表面积增加,和易性降低,因为这要求有更大比例的水泥浆润湿集料颗粒,因此润滑所用浆体数量更少。因此,其它条件相同时当集料最大粒径增加,集料颗粒变圆或综合级配更粗时和易性将增加。然而,和易性这种变化的大小取决于配比,对很富拌和物(集灰比接近2),集料的影响可忽略不计。实际意义指对给定和易性和灰水比,能用于拌和物的集料数量的变化取决于集料的形状、最大粒径和级配,见图13.4和表13.1、表13.2。加气(4.5%)对和易性的影响也见图13.4。Maximum aggregate size(mm)Aggregate-cement ratio (by weight)Low workabilityMedium workabilityHigh workabilityIrregular gravelCrushed rockIrregular gravelCrushed rockIrregular gravelCrushed rock9.519.05.2TABLE 13.1集料的形状、最大粒径和级配Type of aggregateAggregate-cement ratioCoarse gradingFine gradingRounded gravelIrregular gravelCrushed rockTABLE 13.2集料的形状、最大粒径和级配 图13.4对和易性的影响已发展了几种方法评价集料形状,在第12章已讨论了。棱角系数与级配模量和当量平均粒径一起提供了考虑集料形状、粒径和级配的相应影响的方法(看第15章)。因对给定材料和灰水比的完全密实混凝土的强度并不取决于粗集料对细集料的比值,因此对给定水泥用量采用粗集料用量配制最大和易性能获得最大经济效益(Hughes,1960)(看图13.5)。第15章记述了混凝土配比设计中最佳粗集料用量。应注意的是集料的体积分数而不是重量是重要的。 图13.5一个典型的关系的工作性和粗集料混凝土表面纹理对和易性的影响见图13.6。能看出具有光滑纹理的集料比粗糙纹理的集料产生的和易性更高。当采用干或部分干燥集料时集料的吸水性也影响和易性。在这种情况下,和易性降低,降低程度取决于集料用量和其吸水能力。环境条件可能导致和易性降低的环境因素为温度、湿度和风速。对给定混凝土,和易性变化受水泥水化速度和水的蒸发速度的支配。因此从搅拌开始到密实的时间间隔和裸露情况都影响和易性的降低。温度升高加快了水用于水化的速度,也加快了它蒸发损失的速度。同样,风速和湿度由于影响蒸发速度而影响和易性。值得记住的是实际上这些因素取决于天气条件,并不受控制。 图13.6光滑纹理的集料比粗糙纹理的集料产生的和易性更高时间混凝土搅拌到最终密实经历的时间取决于常规施工条件,如搅拌机和浇注点的距离、现场程序和常规管理。相应和易性的降低是游离水随时间蒸发、集料吸收和水泥初始水化而损失造成的直接结果。和易性损失的速度受组成材料的某些特性的影响,如水泥的水化和放
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:毕设(带cad和文档)
链接地址:https://www.renrendoc.com/p-20830228.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!