井下搜救探测机器人结构设计【含CAD图纸、说明书】
收藏
资源目录
压缩包内文档预览:(预览前20页/共40页)
编号:20991946
类型:共享资源
大小:3.29MB
格式:ZIP
上传时间:2019-07-18
上传人:机****料
认证信息
个人认证
高**(实名认证)
河南
IP属地:河南
50
积分
- 关 键 词:
-
含CAD图纸、说明书
结构设计【含
CAD图纸】
机器人结构设计【含
救援机器人结构设计【CAD图纸
设计说明书】
机器人结构设计【含CAD图纸
含CAD图纸
救援机器人结构设计【
救援机器人结构设计
- 资源描述:
-








- 内容简介:
-
毕业设计(论文)任务书题目 井下搜救探测机器人结构设计 学生姓名学 院专 业班 级学 号起讫日期指导教师发任务书日期 课题的内容和要求(研究内容、研究目标和解决的关键问题)研究内容: 设计一用于煤矿等井下搜救探测机器人研究目标:井下环境的特殊性和复杂性为井下搜救机器人的机构设计提出了要求:(1)机器人整体机构不宜过大;(2)有很好的越障能力,能穿越泥泞、水坑、陡坡以及一定大小的石块、炭块等障碍;(3)节能、防水、防爆。关键问题:能使机器人对煤矿井下复杂环境具有很强的适应能力、很好的移动能力和可靠性,为环境探测、避障控制等功能的完成搭建一个机动性好、可靠性高的机械移动平台。课题的研究方法和技术路线研究方法:在对同类产品分析、比较的基础上,设计本课题。技术路线:1机器人功能原理设计;2机器人的机构设计和运动分析;3机器人结构设计。基础条件1指导老师已收集了部分相关资料;2学生已有机械原理、机械设计等课程的学习,具有分析问题和解决问题的能力;3具有一定的计算机制图的能力。参考文献1李东晓.机器人技术在煤矿自动化中的应用J.煤炭科学技术,2007(5):62-642钱善华,葛世荣.救灾机器人的研究现状与煤矿救灾的应用J.机器人,2006(5):350-3543肖俊君,尚建忠,罗自荣.一种多姿态便携式履带机器人传动和结构设计J.机械设计,2007(3):10-12 4罗庆生,韩宝玲,徐嘉,等.小型四履带移动机器人驱动装置:中国,B62D55/065P.2007-08-01. 5熊友伦,丁汉,刘恩沧.机器人学M.北京:机械工业出版社,1993 6王贺燕.轮履式救援机器人远程监控平台的设计D.天津:天津 工业大学理学院,2013 7司癸卯,刘军伟,罗铭,等.智能拆除机器人的研究现状及发展趋 势J.筑路机械与施工机械化,2010(12):83-85,88 8刘金国,王越超,李斌,等.灾难救援机器人研究现状、关键性能及展望J.机械工程学报,2006,42(12):1-12 9刘亢,尚红.地震救援机器人在芦山7.0级地震中的应用J.减灾技术与方法,2013(5):26-28 10司戈.机器人在“911”救援行动中的应用J.消防技术与产品信息,2003(7):44-47 11李磊,叶涛,谭民,等.移动机器人技术研究现状与未来J.机器人,2002,24(5):475-480 12谭民,王硕.机器人技术研究进展J.自动化学报,2013,39(7): 963-972. 13董晓坡,王绪本.救援机器人的发展及其在灾害救援中的应用J.防灾减灾工程学报,2007,27(1):112-117本课题必须完成的任务1.机器人功能原理设计;2.机器人机构设计和运动分析;3.机器人结构设计;4.翻译英文(机械专业)资料一份;5.设计计算说明书一份(字数不少于10000字)成果形式1井下搜救探测机器人结构设计图纸;2设计计算说明书1份。进度计划起讫日期工作内容备 注2018.03.192018.03.30查询资料,了解井下搜救探测机器人的使用场合及作用,撰写开题报告和英文文献阅读翻译2018.04.022018.04.13完成开题报告、开题答辩;机器人功能原理设计2018.04.162018.04.27机器人机构设计2018.04.302018.05.11机器人运动分析2018.05.142018.05.25机器人结构设计;撰写设计计算说明书;递交设计计算说明书2018.05.282018.06.08完善相关资料;准备答辩;完成答辩2018.06.112018.06.15二次答辩系 审 核意 见该课题符合机械工程专业培养目标和要求,任务书计划合理,工作量适中,研究方法可行,难易程度适中,成果明确,满足本科毕业设计要求。同意下达任务书!系主任签章: 2018 年 03 月 19 日学院意见同意 教学院长签章: 2018 年 03 月 19 日System and Walking Gait Designfor Hexapod Search and Rescue RobotChen Yang-Yang and Huang YingyingAbstract In order to adapt to the complex disaster environment, this paper con-siders the system design of hexapod search and rescue robot. Such hexapod robot issuitable to different kinds of roads and obstacle, which can avoid to the short-comings of crawler robots. This hexapod search and rescue robot includes the sixfoot body, voice modular, obstacle avoidance and remote monitoring function.Based on the relationship between the center of gravity and the supporting polygon,the design of the hexagon robots walking gait is presented. The feasibility of thehexapod search and rescue robot is verified by the prototype experiment.Keywords Hexapod search and rescue robotThe design of walking gaitPrototype experiment1IntroductionRobotics is an important signs to measuring a countrys science and technologyinnovation and high level of manufacturing development. In 2016, “robot industrydevelopment plan” is promulgated by National Development and Reform Com-mission. As a main direction of robotics, search and rescue robot has receivedextensive attention in the past 10 years.C. Yang-Yang ()School of Automation, Southeast University, Nanjing 210096, Chinae-mail: yychenC. Yang-YangKey Laboratory of Measurement and Control of Complex Systems of Engineering,Ministry of Education, Southeast University, Nanjing 210096, ChinaH. YingyingSchool of Electronic Science and Engineering, Southeast University,Nanjing 2017514, Chinae-mail: 213131866 Springer Nature Singapore Pte Ltd. 2018Y. Jia et al. (eds.), Proceedings of 2017 Chinese Intelligent Systems Conference,Lecture Notes in Electrical Engineering 460,/10.1007/978-981-10-6499-9_62647Traditional search and rescue robots are mostly used the crawler robot due to itslow unit pressure on the ground and the traction reserve index on the weak carryingground. United States IRobot company gives Packbot 1 series of crawler robotswhich have finned track structure and first use the modular design. Thus such robotsbecome one of the classic design in the world. In order to develop the robotsenvironmental adaptability, Inuktuns VGTV 2 changes the track shape of thecrawler robot. However, crawler robots often stick and slip even worn in thepractice 3. Also, crawler robots have a larger size and thus have greater damage tothe ground when turning. There is a trend to use the hexapod robot to replace thecrawler type. Compared to the crawler type, the hexapod robot can cross throughmore rugged terrain and higher obstacles due to its discrete contact and it also hasgood mobility, energy consumption and independent isolation. In 1985, Robert B.McGhee et al. developed the adaptive suspension vehicle ASV 4 by using the legstructure, which can be regarded as one of the ancestors of six foot robot. NASAsJet Propulsion Laboratory presents ATHLETE 57 for aerospace cargo transport.The domestic research for walking robots start relatively late. Shanghai Universitydeveloped a spherical wall crawling robot 8. Shanghai Jiao Tong Universityconsidered the design of “six-feet octopus” rescue robot 9. Compared to theforeign application hexapod robot, there are also many technical challenges toovercome in the field of hexapod search and rescue robot at home.In this paper, we consider the system design of hexapod search and rescue robot.In order to achieve the search and rescue mission in the complex environment, wenot only give the hardware and software design of six-legged body, but also addvoice modular and remote monitoring function for human-computer interaction andobstacle avoidance by using ultrasonic and infrared sensors. Note that the robotscenter of gravity is unstable in the slope and step environment, we discuss the initiallayout of the leg at the time of slope travel and the six-legged sequence in the stepaccording the influence of the relationship between the polygon and the center ofgravity to the robot stability. Finally, two the prototype experiments are given toverify the feasibility of the gait in slope and step.2System DescriptionSince the search and rescue robot is required to have excellent adaptability for theenvironment, the design of the six-legged robot should not only have a flexiblesix-legged body, but also include automatically avoid or cross the obstacles andcommunicate with the operator. Therefore, the overall design for our search andrescue robot is listed as Fig. 1. In Fig. 1, the key of system is the embedded board,which includes the gait control algorithm of 18 electric machineries for servicingthe motion of six legs, obstacle avoidance algorithm according to the distancemeasurements by ultrasonic and infrared sensors, voice recognition module fordealing with the decision makers demands and image compression and transmis-sion supplying to the decision makers. From the hardware point of view to achieve648C. Yang-Yang and H. Yingyingthe above functions, we use the wrap-around layout for the six-legged robot, that issix legs are installed on the hexagonal vertices of octagon and each leg are con-trolled by three digital servos. The ultrasonic (HC-SR04) and infrared sensors arelocated at the front face of the robot and the WIFI camera is mounted at the top ofthe robot. The voice recognition module (LD3320 chip) and the video transmissionmodule (Qualcomm AR9331 chip) line to our main control module (Arduino Promini which core chip is ATmega168). The details can be found in Fig. 2.To make rational use of hardware resources, the responding software flow islisted in Fig. 3. At the beginning, the voice recognition module is in the standbystate. When it receives the command issued by the decision makers, the moduleuses the Voice. Read function to identify whether the instruction command matchwith the library, if not match the module keeps standby, else sends instruction to thesteering control module. Next, the gait algorithms are chosen based on the distancevalues coming from ultrasonic and infrared sensors and then drive the digital servo.At last, the software drives the WIFIcam to record the picture and translates thepicture to the decision markers. It should be emphasized that we determine the slopeor the step by using the different high position between the infrared sensor and theultrasonic sensor and their measurements.Fig. 1 Six-legged robot systemSystem and Walking Gait Design for Hexapod Search 649Fig. 2 Hardware designFig. 3 Software flow650C. Yang-Yang and H. Yingying3Gait ControlAccording to the difference of the supporting feet, the gait of six-legged robot candivide into the triangular, fluctuating and quadruped gait. Triangle gait is the mostflexible and fastest among the three gaits. Fluctuation gait is slowest but in goodstability while quadruped gait has intermediate performance between triangle gaitand fluctuation gait. Considering the practicability of robot, the six-legged robotuses the triangle gait when it moves on the flat ground. Noting that the movementon the ground can also be applied to slopes with the small slope angle 30, wefollow the triangle gait when the six-legged robot moves on some slopes with itsslope angle 0, the robot is stable, otherwise unstable. In the following,we will show the best swing angles of front legs according to the simulation resultsof iG.The wide and high of our prototype are 12 cm and 12 cm, respectively. Thegravity center of robot is 6 cm from the ground, and the distance from the toes tothe center is 14 cm when it stands. The details can be found in Fig. 7.In the slope state, the six-legged robot can improve the stability by changing theposition of the support point relative to the fuselage. It is hard to analyze therelationship between the stability and the position of the support point. Since theposition of the support point depends on the angle of the hip joint, we will show therelationship between the stability and the angle of the hip joint by simulations.Restricted by mechanical structure, the swing angle of each middle leg (that is 2,5) is limited in 60,60 while the swing angle range of each front/rear leg (thatis 1,4/3,6) is 30,90. Taking the triangle formed by 2,4,6 as a example,Figs. 8, 9 and 10 show 2,4G,4,6Gand 6,2G, respectively. From thesepictures, one can see that the best swing angles of legs 1w=6w=15,2w=5w=30and 3w=4w=45.Fig. 7 Prototype of robotSystem and Walking Gait Design for Hexapod Search 6533.3Step Gait DesignWhen the six-legged robot crosses the step, the quadruped gait is used. In thequadruped gait, the robot divides the six feet into three groups, that is the front legs(that is 1,4), the middle legs (that is 2,5) and the rear legs (that is 3,6). The threegroups are rotated in the order such the front legs, the middle legs and the rear legs.The phase diagram of the quadruped gait is shown in Fig. 11. From this picture, onecan see that there are always four legs in the support phase at one time. During thegait cycle, the support phase occupies 2T/3 and the swing phase occupies T/3,which means the coverage factor is 2/3.Fig. 8 Plot of 2,4GFig. 9 Plot of 4,6G654C. Yang-Yang and H. YingyingWhen the six-legged robot moves in the quadruped gait, the worst body stabilityappears in the situation that the front or hind legs lift up. Let the front legs in theswing phase as a case. If the middle and rear legs are in the support phase robot andthe quadrilateral consisting of four vertices corresponding to legs cannot exceed thecenter line of the body, then the robot body is stable (see Fig. 12). From abovediscussion, the step gait design is given as follows:(a) Front leg swings to the head, middle foot remain intact, and rear foot rotates totail in support phase to promote the body forward;(b) Front foot down, middle foot rotates to tail in support phase to promote theforward, and rear foot swings to the head;(c) Front foot rotates to tail in support phase to promote the body forward, middlefoot swings to the head, and rear foot down to support.Fig. 10 Plot of 6,2GFig. 11 Quadruple gaitphase diagramSystem and Walking Gait Design for Hexapod Search 6554Experimental ResultsIn this section, two experimental results are given. One is the movement of pro-totype on the outdoor slope, the other is the movement of prototype on the steps.In case 1, the slope angle is about 30 and its height is less than 1 cm that has noeffectonthesix-leggedrobot.Theinitialanglesofsixlegsare1w=6w=15, 2w=5=30, 3w=4w=45. The movement of prototype onthe outdoor slope is given in Fig. 13. From this picture, one can obviously see thatour prototype robot can move on the outdoor slope smoothly and rapidly.In case 2, we use the table to build a step such that the step height is 3 cm and itswidth 5 cm. The movement of prototype on the steps is shown in Fig. 14. From thispicture, it is obvious that our prototype robot can cross the steps easily.Fig. 12 Six-foot robotssupport polygonsFig. 13 The movement on the outdoor slope656C. Yang-Yang and H. Yingying5ConclusionThis paper presents the software and hardware design of the six-legged robot. Wegive experimental results for proving the gait design. In ongoing research, we willdevote to the feedback control of the gaits.Acknowledgements This work is supported by National Natural Science Foundation (NNSF) ofChina under Grant 61673106, Natural Science Foundation of Jiangsu Province under GrantBK20171362, the Fundamental Research Funds for the Central Universities and in part by aProject Funded by the Priority Academic Program Development of Jiangsu Higher EducationInstitutions.References1. Yamauch IB. Packbot: a versatile platform for military roboticsC, Unmanned Ground VehicleTechnology VI. Proc SPIE. 2004;(5422):228237.2. Jeehong K, Chan GL, Gunho K. Study of machine design for a transformable shapesingle-tracked vehicle system J. Mech Mach Theory. 2010;(45):10821095.3. Liu J. Mine rescue robot key technology research D. China Univ Min Technol. 2014;12.4. Espenschied KS, Quinn R, Chiel HJ. Biologically-based distributed control and local reflexesimprove rough terrain locomotion in a hexapod robot. Robot Auton Syst. 1996;18:5964.5. Wilcox BH. Athlete: an option for mobile lunar landers C. In: Proceedings of the aerospaceconference, 2008. IEEE; 2008. p. 18.6. Wilcox BH. Athlete: a cargo-handling vehicle for solar system exploration C. In: Proceedingsof the aerospace conference, 2011. IEEE; 2011. p. 18.Fig. 14 The movement on the stepsSystem and Walking Gait Design for Hexapod Search 6577. Wilcox BH. Athlete: a cargo and habitat transporter for the moon C. In: Proceedings of theaerospace conference, 2009. IEEE; 2009. p. 17.8. Tan S, Wang J. Development of spherical wall crawling robot. Robotics. 2002;24(6):51721.9. Shanghai Jiaotong University research and development “six paw octopus” robot disasterrescue, Peoples Network. /n/2013/1029/c1007-23368017.html.658C. Yang-Yang and H. Yingying本科生毕业设计(论文)开题报告学生姓名学 号专业机械工程课题名称井下搜救探测机器人结构设计阅读文献情 况国内文献 13 篇开题日期国外文献 5 篇开题地点一 文献综述与调研报告:(阐述课题研究的现状及发展趋势,本课题研究的意义和价值、参考文献)1.研究的目的和意义我国已成为世界煤炭开采和消耗的第一大国,也是发生煤矿安全事故最多的国家。 如何及时有效的发现被困幸存者并实施快速的救援是头等大事。然而复杂危险的灾后环境常常会给救援工作带来困难。危险物质、大火、易燃易爆炸气体、不稳定的结构等等危险因素的存在,时常威胁到救援队员的生命安全,阻碍救援工作的快速开展。如何能够在最少人员伤亡的前提下快速高效的开展救援工作一直是重点研究的问题。煤矿也是最复杂、最危险的工作环境之一,在发生安全故事之后,常常会因为井下危险的环境而阻碍救援人员深入井下开展工作。血的事实告诉我们,没有高效的生命搜索定位装备,没有实用的应急救助设备。在灾害发生之后,我们就无力营救被困的矿工,无法为同胞提供应有的帮助。开展应急救灾搜索定位装备的研究是当前亟待解决的重大课题。它关系到建设和谐社会主义的理念能否体现,关系到人权和国际声誉。搜救机器人作为一种高效的搜救定位工具已经开始在灾害救助中崭露头角。像煤矿井下这类环境恶劣的情况下,正是搜救机器人的理想工作场合。2 国内外搜救机器人状况及趋势(1) 我国搜救机器人的现状我国搜救机器人起步较晚,但是近年来引起了越来越多的关注并取得了一定的成果,沈阳自动化研究所、哈尔滨工业大学、国防科技大学、上海交通大学、广东富卫公司等机构都设计了自己的搜救系统。2005年中科院沈阳自动化研究所与日本国际救援系统研究院联合成立的“中日救援与安全机器人技术研究中心”在沈阳揭牌成立,这标志着我国的搜救机器人研究进入了一个更快加速发展的时期,2006年6月22日,由中国矿业大学可靠性与救灾机器人研究所研制的国内首台煤矿搜救机器人在徐州诞生。这台煤矿搜救机器人采用自主避障和遥控引导相结合的行走控制方式,能在煤矿灾害发生后深入事故现场,探测火灾温度、瓦斯浓度、灾害场景、搜救声源等信息,并实时回传采集到的信息和图像,为救灾指挥人员提供重要的灾害信息。同时,机器人还能携带急救药品、生命维持液、视频和千斤顶、撬棍等自救工具以协助被困人员实施自救和逃生。2006年11月8日,山东省科学院自动化研究所联合沈阳新松机器人有限公司申报的山东省2006年自主创新重大科技专项井下探险搜救机器人的研究正式通过审批。该项目将开展适合井下复杂路况和环境的探险搜救机器人的研究,对探险搜救机器人测量瓦斯等气体、环境参数、生命探测等以及防水、防爆和无线通讯等方面的关键技术进行攻克,建立完善的探险搜救机器人开发和实验环境,完成井下搜救机器人和搜救机器人的研制和示范应用。(2)国外搜救机器人的发展过程及现状目前美国及日本的灾害机器人研究机构已经开始大量参加实际灾害救援行动,通过与消防部门、灾害应急机构等部门的合作,不断积累实际救灾经验、从这些实际需要出发来修改和完善搜救机器人的设计,以提高机器人对实际灾害行动的适应能力。另外,为了促进国际间的灾害搜救机器人相互交流,国际机器人联合会每年举报一次搜救机器人大赛。2003年澳大利亚SIMTARS煤矿研究人员与美国机器人辅助救援中心(CRASAR)合作。开发了一个煤矿灾害搜救机器人,并在澳大利亚昆士兰州的15米地下训练场进行了试验。这个机器人专门是为了矿山灾害而研制。它的尺寸大小像一个蜂蜜罐子,它可以通过地面的钻孔进入煤矿井下然后爬过障碍物和泥浆,利用传感器搜寻被困矿工,探测有毒或者可燃性气体,还可以将地面供气供水软管拖到被困矿工身边,给他们新鲜的空气和水。这种机器人在通过钻孔时像一条蛇一样将自己挤过岩石,一旦到达井下地面,它就像一个小型坦克一样移动,搜寻被困矿工。CRASAR希望能够进一步为该机器人添加新型的医学传感器让救援义务人员能够通过观看、交谈、诊断的方式来了解被困矿工的健康状况。综上所述,在科技水平与市场需求的推动下,救援机器人等新式装备正加速发展,日益多样化、专业化,功能也不断增强,为完善救援体系,提升救援作业能力,争取黄金救援时间提供了越发重要的作用。在机器人产业整体加速发展的大势下,救援机器人的优势与前景也正吸引着市场的高度关注。并且,在政府层面,不仅是我国、全球主要国家都在大力发展救援机器人,以更好地应对灾害。虽然我国目前搜救机器人不如其他国家发达,但我们正在努力。本课题就井下搜救探测机器人进行结构设计,所以本课题具有相当大的研究意义。参考文献:1李东晓.机器人技术在煤矿自动化中的应用J.煤炭科学技术,2007(5):62-642钱善华,葛世荣.救灾机器人的研究现状与煤矿救灾的应用J.机器人,2006(5):350-3543肖俊君,尚建忠,罗自荣.一种多姿态便携式履带机器人传动和结构设计J.机械设计,2007(3):10-12 4罗庆生,韩宝玲,徐嘉,等.小型四履带移动机器人驱动装置:中国,B62D55/065P.2007-08-01. 5熊友伦,丁汉,刘恩沧.机器人学M.北京:机械工业出版社,1993 6王贺燕.轮履式救援机器人远程监控平台的设计D.天津:天津 工业大学理学院,2013 7司癸卯,刘军伟,罗铭,等.智能拆除机器人的研究现状及发展趋势J.筑路机械与施工机械化,2010(12):83-85,88 8刘金国,王越超,李斌,等.灾难救援机器人研究现状、关键性能及展望J.机械工程学报,2006,42(12):1-12 9刘亢,尚红.地震救援机器人在芦山7.0级地震中的应用J.减灾技术与方法,2013(5):26-28 10司戈.机器人在“911”救援行动中的应用J.消防技术与产品信息,2003(7):44-47 11李磊,叶涛,谭民,等.移动机器
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。