联轴器的选型指南_第1页
联轴器的选型指南_第2页
联轴器的选型指南_第3页
联轴器的选型指南_第4页
联轴器的选型指南_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

联轴器的选型指南newmaker联轴器品种、型式、规格很多,在正确理解品种、型式、规格各自概念的基础上,根据传动的需要来选择联轴器,首先从已经制订为标准的联轴器中选择,目前我过制订为国际和行标的联轴器有数十种,这些标准联轴器绝大多数是通用联轴器,每一种联轴器都有各自的特点和适合范围,基本能够满足多种工况的需要,一般情况下设计人员无需自行设计联轴器,只有在现有标准联轴器不能满足需要时才自行设计联轴器。标准联轴器选购方便,价格比自行设计的非标准联轴器要便宜很多。在众多的标准联轴器中,正确选择适合自己需要的最佳联轴器,关系到机械产品轴系传动的工作性能、可靠性、使用寿命、振动、噪声、节能、传动效率、传动精度、经济性等一系列问题,也关系到机械产品的质量。 设计人员在选用联轴器时应立足于从轴系传动的角度和需要来选择联轴器,应避免单纯的只考虑主、从动端联接选择联轴器。 一、选择联轴器应考虑的因素 (一)动力机的机械特性 动力机到工作机之间,通过一个或数个不同品种型式、规格的联轴器将主、从动端联接起来,形成轴系传动系统。在机械传动中,动力机不外乎电动机、内燃机和气轮机。由于动力机工作原理和机构不同,其机械特性差别较大,有的运转平稳,有的运转时有冲击,对传动系统形成不等的影响。根据动力机的机械特性,将动力机分为四类。见表 1 。 表 1 动力机系数 Kw 动力机类别代号 动力机名称 动力机系数 Kw 动力机类别代号 动力机名称 动力机系数 Kw 电动机、透平 1.0 二缸内燃机 1.4 四缸及四缸以上内燃机 1.2 单缸内燃机 1.6 动力机的机械特性对整个传动系统有一定的影响,不同类别的动力机,由于其机械特性不同,应选取相应的动力机系数 Kw ,选择适合于该系统的最佳联轴器。动力机的类别是选择联轴器品种的基本因素,动力机的功率是确定联轴器的规格大小的主要依据之一,与联轴器转矩成正比。 固定的机械产品传动系统中的动力机大都是电动机,运行的机械产品传动系统(例如船舶、各种车辆等)中的动力机多为内燃机,当动力机为缸数不同的内燃机时,必须考虑扭振对传动系统的影响,这种影响因素与内燃机的缸数、各缸是否正常工作有关。此时一般应选用弹性联轴器,以调整轴系固有频率,降低扭振振幅,从而减振、缓冲、保护传动装置部件,改善对中性能,提高输出功率的稳定性。 (二)载荷类别 由于结构和材料不同,用于各个机械产品传动系统的联轴器,其载荷能力差异很大。载荷类别主要是针对工作机的工作载荷的冲击、振动、正反转、制动、频繁启动等原因而形成不同类别的载荷。为便于选用计算,将传动系统的载荷分为四类,见表 2 。 表 2 载荷类别 载荷类别 载荷状况 工况系数 K 载荷类别 载荷状况 工况系数 K 载荷均匀,工作平稳 11.5 重冲击载荷,频繁正反转 2.52.75 中等冲击载荷 1.52.5 特重冲击载荷,频繁正反转 2.75 传动系统的载荷类别是选择联轴器品种的基本依据。冲击、振动和转矩变化较大的工作载荷,应选择具有弹性元件的挠性联轴器即弹性联轴器,以缓冲、减振、补偿轴线偏移,改善传动系统工作性能。起动频繁、正反转、制动时的转矩是正常平稳工作时转矩的数倍,是超载工作,必然缩短联轴器弹性元件使用寿命,联轴器只允许短时超载,一般短时超载不得超过公称转矩的 23 倍,即 Tmax 23T n 。 低速工况应避免选用只适用于中小功率的联轴器,例如:弹性套柱销联轴器、芯型弹性联轴器、多角形橡胶联轴器、轮胎式联轴器等;需要控制过载安全保护的轴系,宜选用安全联轴器;载荷变化较大的并有冲击、振动的轴系,宜选择具有弹性元件且缓冲和减振效果较好的弹性联轴器。金属弹性元件弹性联轴器承载能力高于非金属弹性元件弹性联轴器;弹性元件受挤压的弹性联轴器可靠性高于弹性元件受剪切的弹性联轴器。 (三)联轴器的许用转速 联轴器的许用转速范围是根据联轴器不同材料允许的线速度和最大外缘尺寸,经过计算而确定。不同材料和品种、规格的联轴器许用转速的范围不相同,改变联轴器的材料可提高联轴器许用转速范围,材料为钢的许用转速大于材料为铸铁的许用转速。 用于 n5000r/min 工况条件的联轴器,应考虑联轴器外缘离心力和弹性元件变形等影响因素,并应作动平衡。高速时不应选用非金属弹性元件弹性联轴器,高速时形成弹性元件变形,宜选用高精度的挠性联轴器,目前国外用于高速的联轴器不外乎膜片联轴器和高精度鼓形齿式联轴器。 (四)联轴器所联两轴相对位移 联轴器所联两轴由于制造误差、装配误差、安装误差、轴受载而产生变形、基座变形、轴承受损、温度变化(热胀、冷缩)、部件之间的相对运动等多种因素而产生相对位移。一般情况下,两轴相对位移是难以避免的,但不同工况条件下的轴系传动所产生的位移方向,即轴向( x )、径向( y )、角向()以及位移量的大小有所不同。只有挠性联轴器才具有补偿两轴相对位移的性能,因此在实际应用中大量选择挠性联轴器。刚性联轴器不具备补偿性能,应用范围受到限制,因此用量很少。角向()唯一较大的轴系传动宜选用万向联轴器,有轴向窜动,并需控制轴向位移的轴系传动,应选用膜片联轴器;只有对中精度很高的情况下选用刚性联轴器,各标准挠性联轴器许用补偿量见表 3 。 (五)联轴器的传动精度 小转矩和以传递运动为主的轴系传动,要求联轴器具有较高的传动精度,宜选用金属弹性元件的挠性联轴器。大转矩个传递动力的轴系传动,对传动精度亦有要求,高转速时,应避免选用非金属弹性元件弹性联轴器和可动元件之间有间隙的挠性;联轴器,宜选用传动精度高的膜片联轴器。 (六)联轴器尺寸、安装和维护 联轴器外形尺寸,即最大径向和轴向尺寸,必须在机器设备允许的安装空间以内。应选择装拆方便、不用维护、维护周期长或者维护方便、更换易损件不用移动两轴、对中间调整容易的联轴器。 大型机器设备调整两轴对中较困难,应选择使用耐久和更换易损件方便的联轴器。金属弹性元件挠性联轴器一般比非金属弹性元件挠性联轴器使用寿命长。需密封润滑和使用不耐久的联轴器,必然增加维护工作量。对于长期连续运转和经济效益较高的场合,例如我国冶金企业的轧机传动系统的高速端,目前普遍采用的是齿式联轴器,齿式联轴器虽然理论上传递转矩大,但必须在润滑和密封良好的条件下才能耐久工作,且需经常检查密封状况,注润滑油或润滑脂,维护工作量大,增加了辅助工时,减少了有效工作时间,影响生产效益。国际上工业发达国家,已普遍选用使用寿命长、不用润滑和维护的膜片联轴器取代鼓形齿式联轴器,不仅提高了经济效益,还可以净化工作环境。在轧机传动系统选用我过研制的弹性活销联轴器和扇形块弹性联轴器,不仅具有膜片联轴器的优点,而且缓冲减振效果好,价格便宜。 (七)工作环境 联轴器与各种不同主机产品配套使用,周围的工作环境比较复杂,如温度、湿度、水、蒸汽、粉尘、砂子、油、酸、碱、腐蚀介质、盐水、辐射等状况,是选择联轴器时必须考虑的重要因素之一。对于高温、低温、有油、酸、碱介质的工作环境,不宜选用以一般橡胶为弹性元件材料的挠性联轴器,应选择金属弹性元件挠性联轴器,例如膜片联轴器、蛇形弹簧联轴器等。 弹性柱销式联轴器由于运转时柱销的窜动,自身噪声大,对于噪声有严格要求的场合就不应选用。 表 3 挠性联轴器和弹性联轴器许用补偿量 序号 联轴器名称 标准号 许用补偿量 径向( y )/mm 轴向( x )/mm 角向() 1 滚子链条联轴器 GB/T6069 85 0.190.27 1.49.5 1 o 2 SWC 型整体叉头十字轴式万向联轴器 JB/T5513 85 -15 o 25 o 3 SWP 型剖分轴承十字轴式万向联轴器 JB/T3241 91 -5 o 10 o 4 SWZ 型整体轴承十字轴式万向联轴器 JB/T3242 93 - 10 o 5 十字轴式万向联轴器-JB/T5901 91 - 45 o 6 球笼式万向联轴器 GB/T7549 87 -14 o 18 o 7 重型机械用球笼式万向联轴器-JB/T6140 92 - 25 o 8 球铰式万向联轴器 JB/T6139 92 - 40 o 9 TGL 型鼓形齿式联轴器 JB/T5514 91 0.31.1 1 1 o 10 WGC 、 WGP 、 WGZ 型鼓形齿式联轴器 7001 93JB/T 7002 937003 93 1.310.8 -1 o30 11 GCLD 型鼓形齿式联轴器 JB/T8854.1 1999 -1 o30 12 GCL 型鼓形齿式联轴器 JB/T8854.2 1999 1.9621.7 -1 o30 13 GCLZ 型鼓形齿式联轴器 JB/T8854.3 1999 1.08.5 -1 o30 14 CL 型鼓形齿式联轴器 JB/ZQ4218 86 0.46.3 -0 o30 15 膜片联轴器 JB/T9147 1999 -12 0 o30 1o30 16 蛇形弹簧联轴器 GB/T8869 2000 0.20.5 -0 o30 1o30 17 簧片联轴器 GB/T12922 91 0.241.1 -18 挠性杆联轴器 GB/T14654 93 -6X10 3 15X10 3 rad 19 弹性套柱销联轴器 GB/T4323 84 0.20.6 -0 o30 1 o30 20 弹性柱销联轴器 GB/T5014 85 0.150.25 - 0 o30 V 21 弹性柱销齿式联轴器 GB/T5015 85 0.31.5 -0 o30 2 o30 22 梅花型弹性联轴器 GB/T5272 85 0.51.8 -1 o 2 o30 23 轮胎式联轴器 GB/T5844 86 1.05 -3.2 o 24 弹性环联轴器 GB/T2496 96 1.26.2 -0 o30 1 o30 25 芯型弹性联轴器 GB/T10614 89 0.52 -0 o20 1 o30 26 弹性块联轴器 JB/T9148 1999 0.62 -2 o 5 o 27 多角形橡胶联轴器 JB/T5512 91 12 -1 o 1 o30 28 H 形弹性联轴器 JB/T5511 91 0.52 -0.35 o1o 29 径向弹性柱销联轴器 JB/T7849 95 1 -0.35 o1o 30 LAK 型鞍形块弹性联轴器 JB/T7648 95 210 -1 o1.5o 31 球面滚子联轴器 JB/T7009 93 -1.5 o 32 滑块联轴器-JB/ZQ4384 97 0.2 - 0 o40 (八) 经济性 由于各品种、型式、规格的联轴器结构、材料、大小和精度不同,其成本和造价相差很大。一般精度要求的联轴器成本低于高精度要求的联轴器;结构简单、工艺性好的联轴器成本低于结构复杂、工艺性差的联轴器;采用一般材料作原料的联轴器成本低于采用特殊材料作原料的联轴器;非金属弹性元件挠性联轴器的成本低于金属弹性元件挠性联轴器。在选择联轴器时,价格是不可忽视的重要因素,有时甚至是决定因素。对于一般工况条件,就无必要选择价格较贵的高精度联轴器,选用者往往因为经济的原因不能选用某些性能虽好但价格较高的挠性联轴器。 在选择联轴器时应根据选用各自实际情况和要求,综合考虑上述各种因素,从现有标准联轴器中选取最适合于自己需要的联轴器品种、型式和规格。一般情况下现有的标准联轴器基本可以满足不同工况的需要。 二 选用程序 在考虑上述综合因素的基础上,联轴器选用程序如下: (一)选用标准联轴器 设计人员在选择联轴器时首先应在已经制定为国家标准、机械行业标准以及获国家专利的联轴器中选择,只有在现有标准联轴器和专利联轴器不能满足设计需要时才自己设计联轴器。我国现已制订了数量相当多的不同品种,在不同结构型式和规格基本能满足不同转矩、转速和工况条件的标准联轴器。这些标准联轴器有的是我国自行研制并经过工业实验;有的是根据国外工业发达国家有关标准转化;有的是参考引进样机消化吸收并自行研制。有的标准联轴器不仅在国内是新型高性能,在国际上也具有先进水平,例如膜片联轴器。在制订标准时一般都经过严格程序,以保证标准的质量。标准联轴器是成熟的,一般也应是可靠的,关键是正确选择。国家专利联轴器例如弹性活销联轴器、扇形块弹性联轴器,吸取多种老式弹性联轴器的优点,克服了各自存在的缺点,在国内外均属高性能、新技术,是更新换代联轴器。 (二)选择联轴器品种、型式 了解联轴器(尤其是挠性联轴器)在传动系统中的综合功能,从传动系统总体设计考虑,选择联轴器品种、型式。根据原动机类别和工作载荷类别、工作转速、传动精度、两轴偏移状况、温度、湿度、工作环境等综合因素选择联轴器的品种。 根据配套主机的需要选择联轴器的结构型式,当联轴器与制动器配套使用时,宜选择带制动轮或制动盘型式的联轴器;需要过载保护时;宜选择安全联轴器;与法兰联接时,宜选择法兰式;长距离传动,联接的轴向尺寸较大时,宜选择接中间或接中间套型。 (三)联轴器转矩计算 传动系统中动力机的功率应大于工件机所需功率。根据动力机的功率和转速可计算得到与动力机相联接的高速端的理论转矩 T ;根据工况系数 K 及其他有关系数,可计算联轴器的计算转矩 Tc 。联轴器 T 与 n 成反比,因此低速端 T 大于高速端 T 。 (四)初选联轴器型号 根据计算转矩 Tc ,从标准系列中可选定相近似的公称转矩 Tn ,选型时应满足 Tn Tc 。 初步选定联轴器型号(规格),从标准中可查得联轴器的许用转速 n 和最大径向尺寸 D 、轴向尺寸 Lo ,应满足联轴器转速 n n 。 (五)根据轴径调整型号 初步选定的联轴器联接尺寸,即轴孔直径 d 和轴孔长度 L ,应符合主、从动端轴径的要求,否则还要根据轴径 d 调整联轴器的规格。主、从动端轴径不相同是普遍现象,当转矩、转速相同,主、从动端轴径不相同时,应按大轴径选择联轴器型号。 新设计的传动系统中,应选择符合 GB/T 3852 中规定的七种轴孔型式,推荐采用 J 1 型轴孔型式,以提高通用性和互换性,轴孔长度按联轴器产品标准的规定。 (六)选择联接型式 联轴器联接型式的选择,取决于主、从动端与轴的联接型式,一般多采用键联接,为统一键联接型式及代号,在 GB/T 3852 中规定了七种键槽型式,四种无键联接,用得较多的是 A 型键(平键单键槽)。 (七)定联轴器品种、型式、规格(型号) 根据动力机和联轴器载荷类别、转速、工作环境等综合因素,选定联轴器品种,根据联轴器的配套、联接情况等因素选定联轴器型式;根据公称转矩、轴孔直径与轴孔长度作校核验算,以最后确定联轴器的型号。 在轴系传动中一般均存在不同程度两轴线相对偏移,应选用挠性联轴器;当轴系传动中工作载荷产生冲击、振动时,则应选用弹性联轴器,从减振、缓冲效果和经济性考虑,宜选用非金属弹性元件弹性联轴器。 我国普遍存在联轴器选用不当的现象,例如在冶金机械和重型机械的轴系传动中广泛选用齿式联轴器。在冶金机械和重型机械低速重载轴系传动中冲击、振动和两轴偏移是相当突出的不利因素,只有选用减振、缓冲效果好的弹性联轴器才能改善传动系统工作状态,而齿式联轴器无论是鼓形齿和直齿均为刚性可移式联轴器。根据不具备减振、缓冲功能,而且还存在要润滑密封,需定期维修,制造工艺复杂,成本高等一系列缺点,鼓型齿式联轴器理应所有齿都啮合(点接触),由于制造误差的存在,全部齿都啮合是不可能的,承载能力大是理论值。过去联轴器品种少,选择的余地小,如今有很多弹性联轴器问世,其中扇形块弹性联轴器和弹性活销联轴器是代替齿式联轴器的合理选择之一。 (end) 高弹性联轴器损坏原因有哪些newmaker高弹性联轴器,用于动力机械主从轴系的弹性联接。周向均列的弹性元件联接于联轴器的主从毂体、,由多股钢丝绞合线经金属夹板固联成的弹性元件的螺旋环状弹性体构成了联轴器主从毂体间环形自由变形空间,联轴器主从毂体在轴向、径向和轴倾角等方向通过环形自由变形空间构成弹性位移补偿特征。适用于船用主、辅机,内燃机,柴油机,电动机和液压马达等驱动的各类(特别是设有单层或双层弹性隔振基础)动力装置的轴系联接。 最近到船上进行扭振测试,从测试结果看联轴器的扭振特性相对于许用值很小,但联轴器却连续发生损坏,在排除自身质量问题和扭振外,一般还有哪些因素可以导致联轴器损坏? 1、原理:高弹性联轴器的主要弹性元件是扭转承载的橡胶组件,橡胶组件可设计成单排或多排,各橡胶组件又有多种标准刚度可供选择,可极大范围地满足扭振计算所确定的刚度要求。在船舶动力系统中使用高弹性联轴器的主要目的是传递功率和扭矩,补偿径向,轴向和角向对中误差,补偿旋转动量的振荡。调整系统自振频率。高弹性联轴器具有重量轻,安装方便,各向位移补偿量大,阻尼大,吸振能力及调频能力强等特点,能较好地保护主机、齿轮箱和轴系。 2、 原因分析: 1) 主机弹性减振器下沉,造成轴系不对中,而产生附加转矩!对新船舶这种可能很大。 2) 高弹性联轴器橡胶元件发热断裂事故; 3) 匹配问题:只有轴系中的各个设备,如柴油机、高弹性联轴器、齿轮箱、轴系其它部件、螺旋桨等均有良好的设计和互相补充和支持,均各自提高设计制造水平,这样设计出来的船舶才是真正意义上的高质量的船舶。 4) 原因是复杂的,还要具体情况具体分析! (end) 柔性联轴器的选型方法newmaker1. 首先根据机械特性的要求,如有无齿隙、抗扭刚度高低、振动冲击力吸收等等,选择合适的联轴器型式。 2. 由驱动机械(如电机)动力 KW,HP 及联轴器使用回转数 N 求得联轴器承受的转矩 TA TA(Kg.m)=973.5 KW/N(rpm)=716.2 HP/N(rpm)或 TA(N m)=9550 KW/N(r/min) 3. 由被正系数表中查得负载条件系数 K 1 ,运转时间系数 K 2 ,起动停止频度系数 K 3 ,周围环境温度系数 K 4 ,求得补正扭力 TD 。 TD=TA K 1 K 2 K 3 K 4 4. 选用联轴器的常用转矩 TN 必须大于被正转矩 TD 。 TN TD 5 联轴器所能承受的最大扭力 TM 必须大于原动侧及被动侧双方所产生的最大扭力 TS 。 TM TS 6. 确定孔径范围是否适用。 7. 除了以上的选定步骤外,对于振动频率亦须检讨。即转矩变动的频率与轴的固有振动数 N 1 避免造成共振的现象产生。 (end) 联轴器分类及联轴器标准newmaker联轴器是用来联接不同机构中的两根轴(主动轴和从动轴)使之共同旋转以传递扭矩的机械零件。在高速重载的动力传动中,有些联轴器还有缓冲、减振和提高轴系动态性能的作用。联轴器由两半部分组成,分别与主动轴和从动轴联接。一般动力机大都借助于联轴器与工作机相联接。联轴器种类繁多,按照被联接两轴的相对位置和位置的变动情况,可以分为:固定式联轴器。主要用于两轴要求严格对中并在工作中不发生相对位移的地方,结构一般较简单,容易制造,且两轴瞬时转速相同,主要有凸缘联轴器、套筒联轴器、夹壳联轴器等。可移式联轴器。主要用于两轴有偏斜或在工作中有相对位移的地方,根据补偿位移的方法又可分为刚性可移式联轴器和弹性可移式联轴器。刚性可移式联轴器利用联轴器工作零件间构成的动联接具有某一方向或几个方向的活动度来补偿,如牙嵌联轴器(允许轴向位移)、十字沟槽联轴器(用来联接平行位移或角位移很小的两根轴)、万向联轴器(用于两轴有较大偏斜角或在工作中有较大角位移的地方)、齿轮联轴器(允许综合位移)、链条联轴器(允许有径向位移)等,弹性可移式联轴器(简称弹性联轴器)利用弹性元件的弹性变形来补偿两轴的偏斜和位移,同时弹性元件也具有缓冲和减振性能,如蛇形弹簧联轴器、径向多层板簧联轴器、弹性圈栓销联轴器、尼龙栓销联轴器、橡胶套筒联轴器等。联轴器有些已经标准化。选择时先应根据工作要求选定合适的类型,然后按照轴的直径计算扭矩和转速,再从有关手册中查出适用的型号,最后对某些关键零件作必要的验算。 联轴器分类有很多标准 第一,根据类型分类: 梅花联轴器 波纹管联轴器 金属膜片联轴器 万向联轴器 链条式联轴器 弹簧螺旋联轴器 橡胶树脂联轴器 轮胎式联轴器 弹性柱销联轴器 曲面齿联轴器 多角式联轴器 平行切缝联轴器 刚性联轴器 永磁性联轴器 第二,根据性能分类 高转速联轴器 万向联轴器 软轴 耐高温联轴器 耐低温联轴器 微型联轴器 高吸震联轴器 高弹性联轴器 大扭矩联轴器 防爆联轴器 零背隙联轴器 磁性化工联轴器 刚性联轴器 液力缓冲联轴器 防腐联轴器 精密型联轴器 (end) 各式联轴器特点及使用场合newmaker刚性联轴器: 刚性联轴器具有较高的刚性。 弹性联轴器: 弹性联轴器具有较高的刚性,即能够吸收较大的安装误差。 微型联轴器: 微型联轴器具有较小的体积,同时具备一定的刚性和弹性,可应用于精密微型机械场合。 离合器:离合器是一种用于传动分离和吸合的装置,分为电磁离合器、气动离合器等多种类型,应用范围相当广泛。 气动离合器:气动离合器是以气压作分离和吸合控制的一种离合器,应用范围较为广泛。 电磁离合器:电磁离合器是一种将驱动侧的回转力传送给从动侧的连接器,可根据需要自由底连结或切离。 磁粉离合器:电磁磁粉离合器是以磁粉作为传动介质,实现张力控制等功能的离合器。 进口离合器:诸多进口品牌。 牙嵌离合器:牙嵌离合器因其吸合面为牙齿形状而得名,其具有小体积大扭矩等特点,又称电磁齿式离合器。 超越离合器:超越离合器又称单向轴承、单向离合器、 逆止器 ,应用范围较为广泛。 电磁刹车器: 电磁刹车器又称电磁制动器,用于控制旋转运动定位、急停。 日本离合器: 日本离合器的主要品牌有小仓OGURA、神钢SHINKO等。 德国离合器: 德国离合器的主要品牌有伦茨LENZE、KEB等。 伺服联轴器:伺服专用联轴器主要用于伺服电机以及步进电机统外围设备(如滚珠丝杠)的联结。 编码器联轴器:编码器联轴器主要用于联结编码器以及外围设备,准确的传递速度信号。 工程机械联轴器:工程机械联轴器主要安装在发动机和液压泵之间,需要有很大的吸震性能,主要为橡胶树脂联轴器。 弹簧联轴器: 弹簧联轴器具有金属弹簧状的外形结构,具有很好的弹性。 万向节:万向节又称万向联轴器,分普通型和精密型两种,其中后者有滑动轴承和滚针轴承两种结构。 印刷机械联轴器:印刷机械上应用到很多联轴器和离合器,由于其特殊性,要求上述产品必须具备一定的精度要求。 链条联轴器: 链条联轴器又称齿链式联轴器,或者齿轮链条联轴器。 橡胶联轴器:橡胶联轴器是以橡胶树脂为弹性体的联轴器,由于其具有高弹性,应此应用范围极其广泛。 德国联轴器: 德国联轴器的主要品牌有KTR/R+W/ CENTAFLEX / MAYR 等。 日本联轴器: 本超市汇集了诸多日本联轴器制造厂商详细产品信息。 金属螺旋联轴器:金属螺旋联轴器为金属螺旋状结构,具有一体化无背隙、高弹性等特点。 数控机床联轴器: 数控机床联轴器分为进给轴和主轴高速两种类型。 软轴:软轴是一种金属弹簧状柔软装置,可以任意方位长距离传递旋转运动,应用范围极其广泛。 膜片联轴器:膜片联轴器为金属膜片式结构,由于其高刚性、无背隙等特点,广泛应用于伺服电机以及化工工业场合。 磁性化工联轴器:磁性化工联轴器利用高性能用磁铁的磁性来传递力矩,在联轴器中间没有任何机械接触。 (end) 十字轴式万向联轴器的改进与应用newmaker摘要:因swz型十字万向接轴承载能力达不到设计要求,经常出现轴承座螺栓裂纹、断裂及十字轴断裂等事故,影响轧机正常生产。通过增大联轴器回转直径和轴承座螺栓尺寸,降低了联轴器事故的发生;采用6个m39螺栓改型联轴器及无螺栓结构的swc整体式联轴器,整体寿命提高至1年。 关键词:十字轴式万向联轴器;轴承座;螺栓;无螺栓结构 中图分类号:tg333.15 文献标识码:b 文章编号:1004-4620(2005)04-0056-02 1 概 况 济南钢铁股份有限公司中板厂(简称济钢中板厂)2500四辊可逆式轧机建于1989年,设计最大轧制力为29400kn,所配两台直流电机功率为2500kw,设计配用主传动万向接轴承载能力1990kn.m。采用swz型整体轴承座十字轴式万向联轴器,由于该接轴实际承载能力达不到设计要求及生产能力的提高,导致生产运行中该接轴故障和事故频繁。 2 联轴器失效分析及改进 原接轴采用swz型轴承座式十字轴式万向联轴器,四辊轧机工作辊最小直径为730mm,实际接轴轧辊侧与电机侧十字包回转直径均为710 mm。该万向接轴承载能力只有1225kn.m,大大低于轧机设计配用主传动万向接轴承载能力。 2.1 主要失效形式 2.1.1 轴承座螺栓断裂 轴承座螺栓断裂是最常见的失效形式,轴承座把合螺栓规格小,抗剪抗拉能力小;另外接轴叉头止口接触面积小,止口容易损伤产生间隙并不断扩大。轴承座止口存在间隙是造成接轴螺栓受冲击拉力的重要原因,也是造成螺栓断裂的主要原因。 2.1.2 十字轴断裂 原设计轧辊侧十字包中螺栓与十字轴未能充分利用十字包内空间,十字轴直径仅为177.1mm,轴承座高强度螺栓为m68,部件承载能力不够。 2.1.3 轴承座、叉头根部裂纹 由于叉头、轴承座尺寸较大,形状复杂,表面加工及热处理质量很难控制。轴承座、叉头根部圆角处机加工表面粗糙度与图纸抛光要求相差甚远,加工表面存在微观裂纹,热处理过程中根部过渡圆角处残余应力较高,极易形成裂纹。 2.2 改进措施 2.2.1 增大轴承座螺栓规格,改进止口尺寸 通过增大轴承座螺栓规格,轧辊侧由m68增大到m72,后又增大到m76,电机侧增大到m95,提高了螺栓抗剪抗拉能力。改进止口尺寸,加高传递键,增加承载接触面积,降低止口面损伤产生的间隙,改善降低螺栓受冲击情况,提高螺栓寿命。 2.2.2 充分利用空间,加大十字包回转直径 轧机侧十字包回转直径由710 mm增至724mm,电机侧则根据承载能力加大到850mm,为十字包部件加大提供了可能,提高了承载能力。 2.3 改进效果 采取以上措施后,万向联轴器从1996年底开始使用,近3年时间内,传动接轴共发生事故7起,,其中断螺栓事故4起(因螺栓材质问题而产生的事故2起),花键套开裂1起,叉头开裂1起,十字轴滚珠碎1起。而改造前的1996年,仅断螺栓事故一项就20多起,因而接轴的改造为济钢中板厂生产水平的逐年提高提供了保证。 3新型联轴器的应用 3.1 新型swz轴承座式联轴器的应用 由于轧辊侧受回转半径的限制,原来的swz型联轴器己无法进一步提高承载能力,新型swz联轴器将原来2个m76轴承座螺栓改为6个m39螺栓。 其主要特点如下: (1)将轴承座联结用螺栓改为多数量、小规格形式,改善螺栓受力状况;原设计轴承座每边只有一个螺栓,使轴承座与叉头接合部位预紧力不均,尤其是接轴径向不能承受力矩; (2)十字轴接合部取消阶梯轴,改为大圆弧过渡设计,减少了应力集中,充分利用了十字包内部空间,十字轴直径为200mm,增大了承载能力; (3)轴承座的键槽采用合理的宽深比,提高传动扭矩,减少轴承座键槽开裂现象; (4)接轴叉头十字瓣为整体式,提高十字包的整体强度。 改进后的万向联轴器承载能力为2500kn.m,达到了设计要求。于2001年9月投入使用,效果良好,使用寿命达到1年以上。 3.2 新型 swc整体式联轴器的应用 为解决电机侧万向联轴器在长期使用中出现的轴承座、花键套、法兰根部裂纹及螺栓、十字轴断裂问题,于2002年4月投用了新型swc整体式十字万向联轴器(无螺栓结构)。 该联轴器具有以下特点: (1)采用整体式叉头结构,大圆弧过渡设计,减少应力集中,消除了swz型根部裂纹及螺栓断裂问题; (2)由于不存在联接螺栓,因而有可能加大十字包(十字轴和轴承组件)尺寸,在回转直径850mm情况下,十字轴直径可做到256mm,十字包承载能力可达到2600 kn.m,符合设计要求; (3)十字轴定位采用卡环结构,两侧间隙控制在10m之内,定位牢固可靠; (4)采用模块化设计,模块间采用端齿法兰联接,更换方便。 电机侧采用新型swc整体叉头十字轴式万向联轴器后,整体寿命由原来的半年提高到1年以上,为轧机的正常生产提供了保障。 (end)联轴器的拆卸和装配newmaker拆卸与装配式相反的过程,两者的目的是不同的。装配过程是按装配要求将联轴器组装起来,使联轴器能安全可靠地传递扭矩。拆卸一般是由于设备的故障或联轴其自身需要维修,把联轴器拆卸成零部件。拆卸的程度一般根据检修要求而定,有的只是要求把联接的两轴脱开,有的不仅要把联轴其全部分解,还要把轮毂从轴上取下来。联轴器的种类很多,结构各不相同,联轴器的拆卸过程也不一样,在此主要介绍联轴器拆卸工作中需要注意的一些问题。 由于联轴器齿轮与振动轴连接较紧(过盈配合),且法兰盘内的空间较小,拆卸联轴器齿轮比较困难。为此,我们设计了一种专用拆卸工具,既简单又方便、实用。联轴器本身的故障而需要拆卸,先要对联轴器整体做认真细致的检查(尤其对于已经有损伤的联轴器),应查明故障的原因。 在联轴器拆卸前,要对联轴器各零部件之间互相配合的位置作一些记号,以作复装时的参考。用于高转速机器的联轴器,其联接螺栓经过称重,标记必须清楚,不能搞错。 拆卸联轴器时一般先拆联接螺栓。由于螺纹表面沉积一层油垢、腐蚀的产物及其它沉积物,是螺栓不易拆卸,尤其对于锈蚀严重的螺栓,拆卸是很困难的。联接螺栓的拆卸必须选择合适的工具,因为螺栓的外六角或内六角的受力面已经打滑损坏,拆卸会更困难。对于已经锈蚀的或油垢比较多的螺栓,常常用溶剂(如松锈剂)喷涂螺栓与螺母的联接处,让溶剂渗入螺纹中去,这样就会容易拆卸。 在联轴器拆卸过程中,最困难的工作是从轴上拆下轮毂。对于键联接的轮毂,一般用三脚拉马或四脚拉马进行拆卸。选用的拉马应该与轮毂的外形尺寸相配,拉马各脚的直角挂钩与轮毂后侧面的结合要合适,在用力时不会产生滑脱想象。这种方法仅用于过盈比较小的轮毂的拆卸,对于过盈比较大的轮毂,经常采用加热法,或者同时配合液压千斤顶进行拆卸. 对联轴器的全部零件进行清洗、清理及质量评定是联轴器拆卸后的一项极为重要的工作。零部件的评定是指每个零部件在运转后,其尺寸、形状和材料性质的现有状况与零部件设计确定的质量标准进行比较,判定哪一些零部件能继续使用,哪一些零部件应修复后使用,哪一些属于应该报废更新的零部件。 (end) 柔性联轴器的选型方法newmaker1. 首先根据机械特性的要求,如有无齿隙、抗扭刚度高低、振动冲击力吸收等等,选择合适的联轴器型式。 2. 由驱动机械(如电机)动力 KW,HP 及联轴器使用回转数 N 求得联轴器承受的转矩 TA TA(Kg.m)=973.5 KW/N(rpm)=716.2 HP/N(rpm)或 TA(N m)=9550 KW/N(r/min) 3. 由被正系数表中查得负载条件系数 K 1 ,运转时间系数 K 2 ,起动停止频度系数 K 3 ,周围环境温度系数 K 4 ,求得补正扭力 TD 。 TD=TA K 1 K 2 K 3 K 4 4. 选用联轴器的常用转矩 TN 必须大于被正转矩 TD 。 TN TD 5 联轴器所能承受的最大扭力 TM 必须大于原动侧及被动侧双方所产生的最大扭力 TS 。 TM TS 6. 确定孔径范围是否适用。 7. 除了以上的选定步骤外,对于振动频率亦须检讨。即转矩变动的频率与轴的固有振动数 N 1 避免造成共振的现象产生。 (end) 联轴器的润滑保养newmaker双头齿形联轴器:最高圆周速度约60m/s,用0号或1号润滑脂润滑,用量为装满联轴器,换脂周期6-12个月,要求润滑剂粘着性要好,对密封要求不严;最高圆周速度约60m/s,用N150、N220号齿轮油润滑,用量为装联轴器容量的一半,使静止时不漏油,换油周期12个月,对密封要求不严;最高圆周速度约150m/s,用N150、N220齿轮油润滑,要求有足够的流量,沿轴向连续地通过联轴器,无密封。 单头齿形联轴器:最高圆周速度约60m/s,用0号或1号润滑脂润滑,用量为装满联轴器,换脂周期6-12个月,要求润滑剂粘着性要好,对密封要求不严;最高圆周速度约60m/s,用N150、N220号齿轮油润滑,用量为装联轴器容量的一半,使静止时不漏油,换油周期12个月,普通矿物油,对密封要求不严;最高圆周速度约30m/s,用0号或1号润滑脂润滑,用量为装满联轴器,换脂周期6个月,要求润滑剂粘着性要好,对密封要求不严。 牙嵌式联轴器:最高圆周速度约150m/s,用N150、N220齿轮油润滑,要求有足够的流量,沿轴向连续地通过联轴器,无密封。 弹簧片式联轴器:最高圆周速度约30m/s,用1号润滑脂润滑,用量为装满联轴器,换脂周期1000小时,对密封要求不严。 盘式弹簧联轴器:最高圆周速度约60m/s,用2号或3号润滑脂润滑,用量为装满联轴器,换脂周期12个月,对密封要求不严;最高圆周速度约150m/s,用N150、N220齿轮油润滑,要求有足够的流量,沿轴向连续地通过联轴器。 十字滑块式联轴器:最高圆周速度约30m/s,用2号润滑脂润滑,中间滑块的空隙装满脂,换脂周期1000小时,适合采用球轴承脂。最高圆周速度约30m/s,用N220齿轮油润滑,中间滑块的空隙装满油,换油周期1000小时,有时采用浸滿油的毛毡垫。 (end) 万向联轴节newmaker1 单万向联轴节 单万向联轴节是用来传递两相交轴之间转动的一种空间低副机构,在端部有叉形的轴1和轴3分别与机架和十字头2组成两组轴线相互垂直的转动副,这四个转动副的轴线相交与十字头的中心点O。轴1和轴3所夹锐角为。 当主动轴1回转一周时,从动轴2也随着回转一周,但是两轴的瞬时角速度并不时时相等,即当轴1以等角速度回转时,轴3作变角速度回转。两轴角速比的关系为: 由上式可知,角速比是两轴夹角和主轴1的函数。当一定,1=0 或180时,分母值最小,传动比值最大,为1/cos ;而当1 =90或270时,分母值最大,传动比值最小,为1cos 。 当变化时,角速度比的值也将改变,其变化曲线如下图所示。 由图可知,传动比的变化幅度随着轴夹角的变化而增大。为使从动轴的角速度波动不致过大,一般情况下两轴夹角最大不超过3545。 2 双万向联轴节 由于单万向联轴节从动轴的角速度作周期变化,因而传动中将产生附加动载荷,使轴发生振动。为避免从动轴产生角速度变化,可采用双万向联轴节。 双万向联轴节是由左右两单万向联轴节组成,由于传动中主、从动轴相对位置有变化,因此两端两万向联轴节间距离也相对发生变化,为适应这种变化,采用花键联接。 为保证主、从动轴的角速度相等,即角速比恒等于1,双万向联轴节必须满足以下两个条件: 1) 主动轴与中间轴的夹角必须等于从动轴与中间轴的夹角,即1=3 ; 2) 中间轴两端的叉面必须位于同一平面内。 3 万向联轴节的应用 实例1 下图为轧钢机的传动示意图。由于在轧钢过程中,需要经常调节轧辊的上下位置,所以齿轮座轴线与轧辊轴线之间的距离h要经常变化,这就需要用双万向联轴节来作为齿轮与轧辊之间的中间传动装置。 实例2 众所周知,汽车行驶时由于道路的不平会引起变速箱输出轴和后桥输入轴相对位置的变化,只有采用双万向联轴节才能实现两轴之间的运动传递。 联轴器的选用方法作者:苏广庆联轴器的选用 联轴器品种、型式、规格很多,在正确理解品种、型式、规格各自概念的基础上,根据传动的需要来选择联轴器,首先从已经制订为标准的联轴器中选择,目前我过制订为国际和行标的联轴器有数十种,这些标准联轴器绝大多数是通用联轴器,每一种联轴器都有各自的特点和适合范围,基本能够满足多种工况的需要,一般情况下设计人员无需自行设计联轴器,只有在现有标准联轴器不能满足需要时才自行设计联轴器。标准联轴器选购方便,价格比自行设计的非标准联轴器要便宜很多。在众多的标准联轴器中,正确选择适合自己需要的最佳联轴器,关系到机械产品轴系传动的工作性能、可靠性、使用寿命、振动、噪声、节能、传动效率、传动精度、经济性等一系列问题,也关系到机械产品的质量。设计人员在选用联轴器时应立足于从轴系传动的角度和需要来选择联轴器,应避免单纯的只考虑主、从动端联接选择联轴器。 一、选择联轴器应考虑的因素 (一) 动力机的机械特性 动力机到工作机之间,通过一个或数个不同品种型式、规格的联轴器将主、从动端联接起来,形成轴系传动系统。在机械传动中,动力机不外乎电动机、内燃机和气轮机。由于动力机工作原理和机构不同,其机械特性差别较大,有的运转平稳,有的运转时有冲击,对传动系统形成不等的影响。根据动力机的机械特性,将动力机分为四类。见表 1 。 表 1 动力机系数Kw 动力机类别代号 动力机名称 动力机系数 Kw 动力机类别代号 动力机名称 动力机系数 Kw 电动机、透平 1.0 二缸内燃机 1.4 四缸及四缸以上内燃机 1.2 单缸内燃机 1.6 动力机的机械特性对整个传动系统有一定的影响,不同类别的动力机,由于其机械特性不同,应选取相应的动力机系数 Kw ,选择适合于该系统的最佳联轴器。动力机的类别是选择联轴器品种的基本因素,动力机的功率是确定联轴器的规格大小的主要依据之一,与联轴器转矩成正比。固定的机械产品传动系统中的动力机大都是电动机,运行的机械产品传动系统(例如船舶、各种车辆等)中的动力机多为内燃机,当动力机为缸数不同的内燃机时,必须考虑扭振对传动系统的影响,这种影响因素与内燃机的缸数、各缸是否正常工作有关。此时一般应选用弹性联轴器,以调整轴系固有频率,降低扭振振幅,从而减振、缓冲、保护传动装置部件,改善对中性能,提高输出功率的稳定性。 (二) 载荷类别 由于结构和材料不同,用于各个机械产品传动系统的联轴器,其载荷能力差异很大。载荷类别主要是针对工作机的工作载荷的冲击、振动、正反转、制动、频繁启动等原因而形成不同类别的载荷。为便于选用计算,将传动系统的载荷分为四类,见表 2 。 表 2 载荷类别 载荷类别 载荷状况 工况系数 K 载荷类别 载荷状况 工况系数 K 载荷均匀,工作平稳 11.5 重冲击载荷,频繁正反转 2.52.75 中等冲击载荷 1.52.5 特重冲击载荷,频繁正反转 2.75 传动系统的载荷类别是选择联轴器品种的基本依据。冲击、振动和转矩变化较大的工作载荷,应选择具有弹性元件的挠性联轴器即弹性联轴器,以缓冲、减振、补偿轴线偏移,改善传动系统工作性能。起动频繁、正反转、制动时的转矩是正常平稳工作时转矩的数倍,是超载工作,必然缩短联轴器弹性元件使用寿命,联轴器只允许短时超载,一般短时超载不得超过公称转矩的 23 倍,即 Tmax 23T n 。 低速工况应避免选用只适用于中小功率的联轴器,例如:弹性套柱销联轴器、芯型弹性联轴器、多角形橡胶联轴器、轮胎式联轴器等;需要控制过载安全保护的轴系,宜选用安全联轴器;载荷变化较大的并有冲击、振动的轴系,宜选择具有弹性元件且缓冲和减振效果较好的弹性联轴器。金属弹性元件弹性联轴器承载能力高于非金属弹性元件弹性联轴器;弹性元件受挤压的弹性联轴器可靠性高于弹性元件受剪切的弹性联轴器。 (三) 联轴器的许用转速 联轴器的许用转速范围是根据联轴器不同材料允许的线速度和最大外缘尺寸,经过计算而确定。不同材料和品种、规格的联轴器许用转速的范围不相同,改变联轴器的材料可提高联轴器许用转速范围,材料为钢的许用转速大于材料为铸铁的许用转速。用于 n5000r/min 工况条件的联轴器,应考虑联轴器外缘离心力和弹性元件变形等影响因素,并应作动平衡。高速时不应选用非金属弹性元件弹性联轴器,高速时形成弹性元件变形,宜选用高精度的挠性联轴器,目前国外用于高速的联轴器不外乎膜片联轴器和高精度鼓形齿式联轴器。 (四) 联轴器所联两轴相对位移 联轴器所联两轴由于制造误差、装配误差、安装误差、轴受载而产生变形、基座变形、轴承受损、温度变化(热胀、冷缩)、部件之间的相对运动等多种因素而产生相对位移。一般情况下,两轴相对位移是难以避免的,但不同工况条件下的轴系传动所产生的位移方向,即轴向( x )、径向( y )、角向()以及位移量的大小有所不同。只有挠性联轴器才具有补偿两轴相对位移的性能,因此在实际应用中大量选择挠性联轴器。刚性联轴器不具备补偿性能,应用范围受到限制,因此用量很少。角向()唯一较大的轴系传动宜选用万向联轴器,有轴向窜动,并需控制轴向位移的轴系传动,应选用膜片联轴器;只有对中精度很高的情况下选用刚性联轴器,各标准挠性联轴器许用补偿量见表 3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论