2020版高考数学第9章算法初步、统计与统计案例第4节变量间的相关关系与统计案例教学案理新人教版.docx_第1页
2020版高考数学第9章算法初步、统计与统计案例第4节变量间的相关关系与统计案例教学案理新人教版.docx_第2页
2020版高考数学第9章算法初步、统计与统计案例第4节变量间的相关关系与统计案例教学案理新人教版.docx_第3页
2020版高考数学第9章算法初步、统计与统计案例第4节变量间的相关关系与统计案例教学案理新人教版.docx_第4页
2020版高考数学第9章算法初步、统计与统计案例第4节变量间的相关关系与统计案例教学案理新人教版.docx_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四节变量间的相关关系与统计案例考纲传真1.会做两个有关联变量的数据的散点图,并利用散点图认识变量间的相关关系.2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归系数公式不要求记忆).3.了解回归分析的基本思想、方法及其简单应用.4.了解独立性检验(只要求22列联表)的思想、方法及其初步应用1两个变量的线性相关(1)正相关在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关(2)负相关在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关(3)线性相关关系、回归直线如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线2回归方程(1)最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法(2)回归方程:方程x是两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),(xn,yn)的回归方程,其中,是待定参数3回归分析(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法(2)样本点的中心对于一组具有线性相关关系的数据(x1,y1),(x2,y2),(xn,yn),其中(,)称为样本点的中心(3)相关系数当r0时,表明两个变量正相关;当r0时,表明两个变量负相关r的绝对值越接近于1,表明两个变量的线性相关性越强r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系通常|r|大于0.75时,认为两个变量有很强的线性相关性4独立性检验(1)分类变量:变量的不同“值”表示个体所属的不同类别,像这类变量称为分类变量(2)列联表:列出两个分类变量的频数表,称为列联表假设有两个分类变量X和Y,它们的可能取值分别为x1,x2和y1,y2,其样本频数列联表(称为22列联表)为22列联表y1y2总计x1ababx2cdcd总计acbdabcd构造一个随机变量K2,其中nabcd为样本容量常用结论1回归直线必过样本点的中心(,)2当两个变量的相关系数|r|1时,两个变量呈函数关系基础自测1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系()(2)通过回归直线方程x可以估计预报变量的取值和变化趋势()(3)因为由任何一组观测值都可以求得一个线性回归方程,所以没有必要进行相关性检验()(4)事件X,Y关系越密切,则由观测数据计算得到的K2的观测值越大()答案(1)(2)(3)(4)2在两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数R2如下,其中拟合效果最好的是()A模型1的相关指数R2为0.98B模型2的相关指数R2为0.80C模型3的相关指数R3为0.50D模型4的相关指数R2为0.25AR2越接近于1,其拟合效果越好3已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),若自变量的值为10,则因变量的值约为()A16.3B17.3C12.38 D2.03C设回归直线方程为x,根据已知得51.234,所以0.08,所以当x10时,1.23100.0812.38.4下面是一个22列联表y1y2总计x1a2173x222527总计b46则表中a,b处的值分别为_52,54因为a2173,所以a52.又因为a2b,所以b54.5为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下22列联表:理科文科男1310女720已知P(K23.841)0.05,P(K25.024)0.025.根据表中数据,得到K2的观测值k4.844.则认为选修文科与性别有关系出错的可能性为_5%K2的观测值k4.844,这表明小概率事件发生根据假设检验的基本原理,应该断定“是否选修文科与性别之间有关系”成立,并且这种判断出错的可能性约为5%.相关关系的判断1已知变量x和y近似满足关系式y0.1x1,变量y与z正相关下列结论中正确的是()Ax与y正相关,x与z负相关Bx与y正相关,x与z正相关Cx与y负相关,x与z负相关Dx与y负相关,x与z正相关C由y0.1x1,知x与y负相关,即y随x的增大而减小,又y与z正相关,所以z随y的增大而增大,减小而减小,所以z随x的增大而减小,x与z负相关2对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是()Ar2r40r3r1Br4r20r1r3Cr4r20r3r1Dr2r40r1r3A由相关系数的定义以及散点图可知r2r40r3r1.3x和y的散点图如图所示,则下列说法中所有正确命题的序号为_x,y是负相关关系;在该相关关系中,若用yc1ec2x拟合时的相关指数为R,用x拟合时的相关指数为R,则RR;x,y之间不能建立线性回归方程在散点图中,点散布在从左上角到右下角的区域,因此x,y是负相关关系,故正确;由散点图知用yc1ec2x拟合比用x拟合效果要好,则RR,故正确;x,y之间可以建立线性回归方程,但拟合效果不好,故错误规律方法判定两个变量正、负相关性的方法(1)画散点图:点的分布从左下角到右上角,两个变量正相关;点的分布从左上角到右下角,两个变量负相关.(2)相关系数:r0时,正相关;r0时,负相关.(3)线性回归直线方程中:回归分析【例1】(2018广州一模)某地110岁男童年龄xi(岁)与身高的中位数yi(cm)(i1,2,10)如下表:x/岁12345678910y/cm76.588.596.8104.1111.3117.7124.0130.0135.4140.2对上表的数据作初步处理,得到下面的散点图及一些统计量的值. (xi)2 (yi)2 (xi)(yi)5.5112.4582.503 947.71566.85(1)求y关于x的线性回归方程(回归方程系数精确到0.01);(2)某同学认为,ypx2qxr更适宜作为y关于x的回归方程类型,他求得的回归方程是0.30x210.17x68.07.经调查,该地11岁男童身高的中位数为145.3 cm.与(1)中的线性回归方程比较,哪个回归方程的拟合效果更好?附:回归方程x中的斜率和截距的最小二乘估计公式分别为,.解(1)6.87,112.456.875.574.67,所以y关于x的线性回归方程为6.87x74.67.(2)若回归方程为6.87x74.67,当x11时,150.24.若回归方程为0.30x210.17x68.07,当x11时,143.64.因为|143.64145.3|1.66|150.24145.3|4.94,所以回归方程0.30x210.17x68.07对该地11岁男童身高中位数的拟合效果更好规律方法1.求回归直线方程的步骤2(1)若已知回归直线方程(方程中无参数)进行预测时,把变量x代入回归直线方程即可对变量y进行估计(2)若回归直线方程中有参数,则根据回归直线一定经过点(,)求出参数值,得到回归直线方程,进而完成预测 (1)(2017山东高考)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系设其回归直线方程为x.已知xi225,yi1 600,4.该班某学生的脚长为24,据此估计其身高为()A160B163C166 D170(2)某产品的广告费用x万元与销售额y万元的统计数据如表:广告费用x(万元)2345销售额y(万元)26m4954根据上表可得回归方程9x10.5,则m的值为()A36B37C38 D39(1)C(2)D(1)xi225,xi22.5.yi1 600,yi160.又4,160422.570.回归直线方程为4x70.将x24代入上式得42470166.故选C.(2)由回归方程的性质,线性回归方程过样本点的中心,则:910.5,解得m39.故选D.独立性检验【例2】(2018全国卷)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人第一组工人用第一种生产方式,第二组工人用第二种生产方式根据工人完成生产任务的工作时间(单位:min)绘制了如图所示的茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:K2,P(K2k)0.0500.0100.001k3.8416.63510.828解(1)第二种生产方式的效率更高理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟因此第二种生产方式的效率更高()由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟因此第二种生产方式的效率更高()由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟因此第二种生产方式的效率更高()由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少因此第二种生产方式的效率更高(以上给出了4种理由,答出其中任意一种或其他合理理由均可)(2)由茎叶图知m80.列联表如下:超过m不超过m第一种生产方式155第二种生产方式515(3)由于K2106.635,所以有99%的把握认为两种生产方式的效率有差异规律方法1.在22列联表中,如果两个变量没有关系,则应满足adbc0.|adbc|越小,说明两个变量之间关系越弱;|adbc|越大,说明两个变量之间关系越强.2.解决独立性检验的应用问题,一定要按照独立性检验的步骤得出结论.独立性检验的一般步骤:(1)根据样本数据制成22列联表;(2)根据公式 (3)比较观测值k与临界值的大小关系,作统计推断. 某研究型学习小组调查研究学生使用智能手机对学习的影响部分统计数据如下表:使用智能手机不使用智能手机合计学习成绩优秀4812 学习成绩不优秀16218估计201030附表:P(K2k0)0.150.100.050.0250.0100.0050.001k02.0722.7063.8415.0246.6357.87910.828经计算K2的观测值为10,则下列选项正确的是()A有99.5%的把握认为使用智能手机对学习有影响B有99.5%的把握认为使用智能手机对学习无影响C有99.9%的把握认为使用智能手机对学习有影响D有99.9%的把握认为使用智能手机对学习无影响A依题意,注意到7.8791010.828,因此有99.5%的把握认为使用智能手机对学习有影响,故选A.1(2015全国卷)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响对近8年的年宣传费xi和年销售量yi(i1,2,8)数据作了初步处理,得到下面的散点图及一些统计量的值(xi)2(wi)2(xi)(yi)(wi)(yi)46.65636.8289.81.61 469108.8表中wi,wwi.(1)根据散点图判断,yabx与ycd哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利润z与x,y的关系为z0.2yx.根据(2)的结果回答下列问题:年宣传费x49时,年销售量及年利润的预报值是多少?年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),(un,vn),其回归直线vu的斜率和截距的最小二乘估计分别为,.解(1)由散点图可以判断,ycd适宜作为年销售量y关于年宣传费x的回归方程类型(2)令w,先建立y关于w的线性回归方程由于68, 563686.8100.6,所以y关于w的线性回归方程为100.668w,因此y关于x的回归方程为100.668.(3)由(2)知,当x49时,年销售量y的预报值100.668576.6,年利润z的预报值576.60.24966.32.根据(2)的结果知,年利润z的预报值0.2(100.668)xx13.620.12.所以当6.8,即x46.24时,取得最大值故年宣传费为46.24千元时,年利润的预报值最大2.(2017全国卷)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A表

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论