广东省深圳市宝安区2019届高三数学上学期9月调研考试试题理(含解析).docx_第1页
广东省深圳市宝安区2019届高三数学上学期9月调研考试试题理(含解析).docx_第2页
广东省深圳市宝安区2019届高三数学上学期9月调研考试试题理(含解析).docx_第3页
广东省深圳市宝安区2019届高三数学上学期9月调研考试试题理(含解析).docx_第4页
广东省深圳市宝安区2019届高三数学上学期9月调研考试试题理(含解析).docx_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省深圳市宝安区2019届高三数学上学期9月调研考试试题 理(含解析)本试卷满分150分,考试时间120分钟一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.复数的共轭复数是( )A. B. C. D. 【答案】B【解析】【分析】先化形式,再根据共轭复数概念求解.【详解】因为,所以共轭复数是,选B.【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为2.已知集合,若,则实数的取值集合为( )A. B. C. D. 【答案】D【解析】【分析】先求出集合M=x|x2=1=1,1,当a=0时,N=,成立;当a0时,N=,由NM,得或=1由此能求出实数a的取值集合【详解】集合M=x|x2=1=1,1,N=x|ax=1,NM,当a=0时,N=,成立;当a0时,N=,NM,或=1解得a=1或a=1,综上,实数a的取值集合为1,1,0故选:D【点睛】本题考查实数的取值范围的求法,考查子集、不等式性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题3.定义某种运算的运算原理如右边的流程图所示,则( )A. B. C. D. 【答案】A【解析】【分析】根据流程图知运算为分段函数,根据分段函数进行计算.【详解】由流程图得所以,选A.【点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.4.某景区在开放时间内,每个整点时会有一趟观光车从景区入口发车,某人上午到达景区入口,准备乘坐观光车,则他等待时间不多于10分钟的概率为( )A. B. C. D. 【答案】B【解析】由题意,此人在50分到整点之间的10分钟内到达,等待时间不多于10分钟,所以概率.故选B5.已知函数的零点是和,则( )A. B. C. D. 【答案】C【解析】【分析】先求函数零点得零点关系,再根据两角和正切公式求结果.【详解】由得,所以,因此,选C.【点睛】本题考查两角和正切公式以及韦达定理,考查基本求解能力.6.若实数,满足,则,的大小关系为( )A. B. C. D. 【答案】B【解析】【分析】推导出0=loga1logablogaa=1,由此利用对数函数的单调性能比较m,n,l的大小【详解】实数a,b满足ab1,m=loga(logab),0=loga1logablogaa=1,m=loga(logab)loga1=0,01,1=2logabm,n,l的大小关系为lnm故选:B【点睛】本题考查三个数的大小的比较,考查对数函数的单调性等基础知识,考查运算求解能力,考查函数与方程思想,是基础题7.在中,“”是“为锐角三角形”的( )A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】C【解析】分析:从两个方向去判断,先看能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出成立,从而必要性也不满足,从而选出正确的结果.详解:由题意可得,在中,因为,所以,因为,所以,结合三角形内角的条件,故A,B同为锐角,因为,所以,即,所以,因此,所以是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若是钝角三角形,也推不出“,故必要性不成立,所以为既不充分也不必要条件,故选D.点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征.8.在的展开式中,含项的系数为( )A. B. C. D. 【答案】B【解析】【分析】把x+看作一项,写出的展开式的通项,再写出的展开式的通项,由x的指数为5求得r、s的值,则答案可求【详解】的展开式的通项为的展开式的通项为=由6r2s=5,得r+2s=1,r,sN,r=1,s=0在的展开式中,含x5项的系数为故选:B【点睛】求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r1项,由特定项得出r值,最后求出其参数.9.若实数,满足,则的最小值为( )A. B. C. D. 【答案】D【解析】【分析】先确定所表示区域,再根据M表示区域内点到定点(1,0)距离平方减去1求最小值【详解】,而表示正方形及其外部(如图),所以的最小值为点(1,0)到AB:y=-x+2的距离平方减去1,即,选D.【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.10.如图,在平面四边形ABCD中,若点E为边CD上的动点,则的最小值为 ( )A. B. C. D. 【答案】A【解析】分析:由题意可得为等腰三角形,为等边三角形,把数量积分拆,设,数量积转化为关于t的函数,用函数可求得最小值。详解:连接AD,取AD中点为O,可知为等腰三角形,而,所以为等边三角形,。设 = 所以当时,上式取最大值 ,选A.点睛:本题考查的是平面向量基本定理与向量的拆分,需要选择合适的基底,再把其它向量都用基底表示。同时利用向量共线转化为函数求最值。11.函数的图象在上恰有两个最大值点,则的取值范围为( )A. B. C. D. 【答案】C【解析】【分析】由三角函数图象确定满足条件,解得结果.【详解】由题意得,选C.【点睛】本题考查三角函数图象与性质,考查基本求解能力.12.已知分别为双曲线 的左顶点、右焦点以及右支上的动点,若恒成立,则双曲线的离心率为( )A. B. C. 2 D. 【答案】C【解析】分析:设P点坐标为,写出直线PA、PF的斜率,利用及它们与斜率的关系可建立的方程,此即为P点的轨迹方程与双曲线标准方程比较可得关系,从而得离心率.详解:设,又,又,整理得,这是P点的轨迹方程,又P点轨迹方程为,故选C.点睛:求双曲线的离心率,一般要求出的一个关系等式,这可从双曲线的几何性质分析得出,本题中由于已知是,而这两个角可以与相应直线的斜率有关,因此可以通过正切的二倍角公式建立P点的轨迹方程,这应该是双曲线的标准方程,比较后得出的关系.这种方法比较特殊,可以体会学习.二、填空题:本题共4小题,每小题5分,共20分.13.已知,则_【答案】【解析】【分析】先根据二倍角公式化简,再根据弦化切,最后根据条件求结果.【详解】因为,又因为所以.【点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般可以适当变换已知式,求得另外函数式的值,以备应用;变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.14.过双曲线的右焦点,且斜率为2的直线与的右支有两个不同的公共点,则双曲线离心率的取值范围是_【答案】【解析】【分析】根据双曲线渐近线性质得渐近线斜率范围,即得离心率取值范围.【详解】由题意得【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.15.九章算术中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体)在如图所示的堑堵中, ,则阳马的外接球的表面积是_【答案】【解析】【分析】根据堑堵定义以及长方体性质可得阳马的外接球的直径为,再根据球的表面积公式求结果.【详解】由于两两相互垂直,所以阳马的外接球的直径为,即,因此外接球的表面积是.【点睛】若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解16.定义在上的函数满足,且当 若任意的,不等式恒成立,则实数的最大值是 _【答案】【解析】【分析】先根据解析式以及偶函数性质确定函数单调性,再化简不等式,分类讨论分离不等式,最后根据函数最值求m取值范围,即得结果.【详解】因为当时 为单调递减函数,又,所以函数为偶函数,因此不等式恒成立,等价于不等式恒成立,即,平方化简得,当时,;当时,对恒成立,;当时,对恒成立,(舍);综上,因此实数的最大值是.【点睛】解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分17.已知等比数列中,-=,(1)求的通项公式;(2)设,求数列的前项和【答案】(1),;(2) 【解析】【分析】(1)先根据等比数列通项公式化简条件等式,解得公比,再代入等比数列通项公式即可,(2)先化简,再利用分组求和法化为等差数列的和,最后根据等差数列求和公式求结果.【详解】(1)设等比数列an的公比为q,则q0因为-=,所以-=,因为,解得所以, (2)设,则【点睛】本题采用分组转化法求和,即通过两个一组进行重新组合,将原数列转化为一个等差数列. 分组转化法求和的常见类型还有分段型(如 )及符号型(如 )18.如图,在多面体中,四边形为菱形,且平面平面. (1)求证:;(2)若,求二面角的余弦值.【答案】(1)证明见解析;(2).【解析】【试题分析】(1)连接,根据菱形的几何性质有,由面面垂直的性质定理可知平面,所以,所以平面,所以.(2) 设,过点作的平行线,以为坐标原点建立空间直角坐标系,通过计算平面和平面的法向量来求二面角的余弦值.【试题解析】(1)证明:连接,由四边形为菱形可知,平面平面,且交线为,平面,又,平面,平面,;(2)解:设,过点作的平行线,由(1)可知两两互相垂直,则可建立如图所示的空间直角坐标系,设,则,所以,设平面的法向量为,则,即,取,则为平面的一个法向量,同理可得为平面的一个法向量.则,又二面角的平面角为钝角,则其余弦值为.19.在某市高中某学科竞赛中,某一个区名考生的参赛成绩统计如图所示.(1)求这名考生的竞赛平均成绩(同一组中数据用该组区间中点作代表);(2)由直方图可认为考生竞赛成绩服正态分布,其中,分别取考生的平均成绩和考生成绩的方差,那么该区名考生成绩超过分(含分)的人数估计有多少人?(3)如果用该区参赛考生成绩的情况来估计全市的参赛考生的成绩情况,现从全市参赛考生中随机抽取名考生,记成绩不超过分的考生人数为,求.(精确到)附:,;,则,;.【答案】(1)分;(2)634人;(3)0.499【解析】【分析】(1)根据加权平均数公式计算;(2)根据正态分布的对称性计算P(z84.81),再估计人数;(3)根据二项分布的概率公式计算P(3)【详解】(1)由题意知:中间值概率 ,名考生的竞赛平均成绩为分.(2)依题意服从正态分布,其中,服从正态分布,而,.竞赛成绩超过分的人数估计为人人.(3)全市竞赛考生成绩不超过分的概率.而, .【点睛】关于正态曲线在某个区间内取值的概率求法熟记P(X),P(2X2),P(3X3)的值充分利用正态曲线的对称性和曲线与x轴之间面积为1.20.已知,分别为椭圆:的上、下焦点,是抛物线:的焦点,点是与在第二象限的交点,且(1)求椭圆的方程;(2)与圆相切的直线:(其中)交椭圆于点,若椭圆上一点满足,求实数的取值范围【答案】(1);(2)【解析】【分析】(1) 抛物线定义可得点M坐标,再根据两点间距离公式求 ,利用椭圆定义得 ,根据勾股定理解得b,(2)设直线:,根据直线与圆相切得(,),利用直线方程与椭圆方程联立方程组,结合韦达定理得p坐标,代入椭圆方程得,消k,再根据二次函数性质求实数的取值范围.【详解】(1)由题意得,所以,又由抛物线定义可知,得,于是易知,从而,由椭圆定义知, ,得,故,从而椭圆的方程为(2)设,则由知,且,又直线:(其中)与圆相切,所以有,由,可得(,),又联立消去得,且恒成立,且,所以,所以得,代入式,得,所以,又将式代入得,易知,且,所以【点睛】解析几何中的最值与范围问题是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值与范围的探求来使问题得以解决.21.已知函数(1)当时,若函数恰有一个零点,求实数的取值范围;(2)当时,恒成立,求的取值范围【答案】(1)或;(2) 【解析】【分析】(1)先求导数,再根据a讨论导函数零点,根据导函数符号变化规律确定函数单调性,最后结合零点存在定理确定只有一个零点的条件,(2)先求导数并分解因式,根据m讨论导函数零点情况,再根据导函数符号变化规律确定函数单调性,最后根据单调性确定函数最值,列不等式解得的取值范围【详解】(1)函数的定义域为当时,所以当时,时无零点当时,所以在上单调递增, 取,则,因为,所以,此时函数恰有一个零点 当时,令,解得当时,所以在上单调递减;当时,所以在上单调递增要使函数有一个零点,则即 综上所述,若函数恰有一个零点,则或 (2)令,根据题意,当时,恒成立,又 若,则时,恒成立,所以在上是增函数,且,所以不符题意若时,则时,恒成立,所以在上是增函数,且,所以不符题意当时,则时,恒有,故在上是减函数,于是“对任意都成立”的充要条件是,即,解得,故综上,的取值范围是【点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论