轴A3.png
轴A3.png

JDM-30无极绳调车绞车设计[含CAD图纸和说明书资料]

收藏

压缩包内文档预览:
预览图
编号:21896149    类型:共享资源    大小:1.54MB    格式:ZIP    上传时间:2019-09-09 上传人:好资料QQ****51605 IP属地:江苏
50
积分
关 键 词:
含CAD图纸和说明书资料 jdm 30 无极 调车 绞车 设计 cad 图纸 以及 说明书 仿单 资料
资源描述:

【温馨提示】 dwg后缀的文件为CAD图,可编辑,无水印,高清图,压缩包内含CAD图的预览图片,仅用于预览,压缩包内文档可直接点开预览,需要原稿请自助充值下载,请见压缩包内的文件及预览,所见才能所得,请细心查看有疑问可以咨询QQ:414951605或1304139763

内容简介:
中文译文齿轮的加工方法加工齿轮轮齿有两种基本的方法:产生过程和形成过程。当一个轮齿产生时,工件和切削或磨削工具,是不断啮合在一起的,轮齿的形式是由刀具决定的。换句话说,工件和刀具是共轭的。滚齿机,成型切割机,剃齿机,磨床都使用这个原理。当一个轮齿形成时,该刀具是呈正被加工出来的空间的形状的。一些磨床使用此原理,与一个指示装置配套在一起使轮齿一个挨一个形成。刀就是同时加工所有轮齿形成刀具的例子。成型 成型本质上是与平面图类似的,但采用了圆形的切削刀具替代了齿条,由此产生的往复惯性的减少,允许更高的行程速度:现代的成型切割汽车齿轮可以以每分钟2000切割行程运行。切削刀具的形状大致是与渐开线齿轮相同的,但轮齿的顶端是圆形的。切削刀具和工件之间的发电驱动器之间不涉及机架或连接螺钉 ,因为只有圆周运动在涉及的范围内。切割机每走一个行程,工具和工件通常在切线方向移动0.5毫米。在返回的行程中,刀具必须被缩进约1毫米留有间隙,否则就会产生摩擦,马上发生故障。这类型机床的速度被限制,保证大约50千克重的切割机和轴承可移动1毫米的距离。加速度所涉及的扭矩可增加5000N的力,但必须保持高的精度。成型机的优点是生产效率相对较高,可能在齿顶上切出直角。不幸的是,对于斜齿轮,螺旋导向器需要在直线运动中施加旋转运动,这种螺旋导向器不容易生产,也不便宜。所以该方法只适合在斜齿轮上的长距离,因为对每个不同的螺旋角就要生产特殊的刀具和导向器。成型机的一个很大的优点,是它可以生产环形齿轮,例如那些需要大型epicyclie周转圆的驱动器。非常高的精确度是十分重要的,而成型切割机的不准确性也是相当要紧的。因为它们可能转移到削减齿轮。很明显侧面的错误将转移,但比起离心机或破碎机给予的特点, “掉落的轮齿” ,是相当不明显的。对于掉齿有几个原因,但它发生最频繁的是,当工件的直径大约是刀具直径的一半,1.5倍或2.5倍时。如果刀具开始在高点,在最后完成渐开线齿轮期间结束在低点,在刀具上峰与峰的偏心误差发生在最后的渐开线切割齿轮的第一个和最后一个齿轮之间。当刀具的累积螺距误差可能刚好超过25微米时,切割轮齿时就会有一个突然的这个数量的螺距误差。在机床上切割的下一个齿轮可能在邻近的节圆上是好的,如果在切割机上最后的切割碰巧发生在一个有利的位置。各种尝试已经作出,防止这种效应,特别是通过连续旋转,没有任何进一步的刀料,但如果成型机是不是很坚固,刀具不是很尖锐,然后没有进一步的切割发生,误差将不会被消除。滚齿滚齿是最常用的金属切削方法,使用机架产生的原理,但避免了由在旋转切削机上增加许多齿条引起的缓慢的往复运动。齿条在轴线方向上替换为切口蜗杆。 齿条不能为整个轮齿的工作长度产生正确的渐开线形状,因为他们在圆弧轨迹上移动,所以滚刀缓慢地沿轮齿走刀,在轴向或法向或倾斜的滚齿机螺旋线方向上。金属去除率高,因为螺旋铣刀或工件没有做往复运动的需要,所以40m/min的切割速度可用于传统的滚刀,切割速度高达150m/min的用于硬质合金滚刀。通常一个直径为100毫米的滚刀转速达到100rpm ,所以20个齿的工件以每分钟5转的速度旋转。工件的每个旋转运动将对应于0.75毫米的进给量,所以滚刀会提前通过工件约每分钟4毫米。对于汽车生产,近似多头开始的滚刀,可用于每转3毫米的粗糙进给量,以便在切割机上达到100rpm的速度,一个两头开始的滚刀和20个齿的齿轮可提供每分钟30毫米的进给速率。粗糙进给速率的缺点是在工件上会留下明显的标志,尤其是在齿根,每转在进给速率的空间显示一种图案。齿侧标记的表面波纹比齿跟要少,当有一个随后的整理操作时,如剃齿或磨削,这一点就不重要了。当没有进一步的操作时,每转的进给量必须加以限制,保证粗糙度在一个界限以下,通常这决定于润滑条件。齿根上波纹的高度指定乘以每转的进给量,然后除以滚刀直径的4倍。1毫米的进给量和100毫米的直径可产生2.5微米高的波纹。对齿侧波纹大约跟cos70一样大,即约0.85微米。滚齿机的精度对齿距和螺旋线来说,通常很高,假设机床维持不变,渐开线单单决定于滚刀齿廓的精度。渐开线的形式随着滚刀的切入产生,在滚刀上留有裂痕时,渐开线是不真实的。但是,如果说有14条切线产生在曲率半径约20毫米的齿侧,从真实的渐开线分离,仅仅大约0.5微米。滚刀的制造和安装误差可以超过10微米。使用两头开始的滚刀或斜滚齿机可增加误差水平,因为滚刀的齿距误差的转移到切割齿轮上。拉削 拉削不被用于斜齿轮,但对内齿直齿轮时十分有用的。联系全局来看,拉削的最重要的用途是用任何其他的方法都不容易加工的内花键。跟所有的拉削方法一样,这种方法对批量生产是经济的,因为安装成本较高。 拉削技术对内齿斜齿轮主要的应用是由Gleasons在其G-TRAC机床上。这台机器的运作,增加滚齿切割机的有效半径至无限远,使刀具的每一个齿都能在一条直线上转动,而不是对在一个半径上。这使得切割行为延长超过齿轮的整个端面宽度,替代了传统的滚刀每转0.75毫米的进给量。由此产生的过程中提供了非常高的生产率,更适合于美国,美国的产量在整个欧洲来说,相对较低,尽管初始成本高,但非常具有竞争力。拉削提供了较高的精确度和良好的表面光洁度,但象所有切削过程一样,仅限于 “软”材料,必须随后进行表面淬火或热处理,使其变形。剃齿剃齿切割机看起来像一个在齿根有着额外间隙的齿轮,齿侧有槽,提供切削边缘。它是运行在网格与粗糙齿轮轴交叉处,以便与做剩余运动的轮齿的相对速度有理论联系点。该剃齿刀的轮齿相对灵活的弯曲,所以当它们在两个齿轮的轮齿间两两接触时,只有有效地运作。齿轮和刀具横向在工作面以高转速运转时,大约100毫米的材料被去除。周期时间可以少于半分钟,机床并不昂贵,但刀具是精密的,很难制造。在剃齿机边缘容易对齿廓作出调整,然后凸缘能被利用。剃齿可以使用刀具在凸肩处完成,向下到某一深度,无轴向运动。这种方法速度快,但需要更复杂的刀具设计。磨削磨削是非常重要的,因为它是硬化正在加工的齿轮的主要途径。当要求高精度时,热处理不足以使其变形,那么,磨削是很必要的。磨削的最简单的方法往往被称为orcutt方法。车轮的轮廓使用单点钻石精确的装饰使其变形,被模板切割控制到所需要的真实形状。一个缩放仪6:1的比例是常用的。车轮的轮廓然后沿齿轮作轴向往复运动,齿轮旋转允许受螺旋角的影响。当一个齿形已经完成,通常包括100微米的金属去除,齿轮被指引到下一个齿的空间。这种方法可清楚查看,但一贯有着高的精度要求。安装尺寸过长,因为如果模数,齿数,螺旋角或齿廓校正线改变时,需要不同的装饰模板。最快的磨削方法跟滚齿机使用相同的原理,但取代了凭借磨削轮增加切口和减轻的蜗杆,磨削轮是机架上的一节。由于高的表面速度的需求,砂轮的直径被增大,使直径为0.5米的砂轮可以超过2000 rpm的速度运转,给予必要的1000米/分钟的速度。只有单头蜗杆可在砂轮上切削,但齿轮转速很高,通常情况下 为100rpm。因此很难设计驱动系统提供精度和刚度。该过程的精度是在合理的高水平,虽然在磨削期间有砂轮和工件的转向变化的一种倾向。所以砂轮的形式可能需要补偿机床挠度的影响。磨削轮上一代蜗杆的形状是一个缓慢的进程,因为装饰的钻石或滚子,不仅要形成机架上的轮廓,而且当砂轮旋转时必须做轴向运动。一旦砂轮已经形成,齿轮必须被快速的磨削,直到要求再做调整。这就是用小齿轮创造高生产率的最流行的方法,通常被称为reishauer方法。大型齿轮通常由Maag方法产生,与其方法中的规划相似,但使用大直径的磨削轮,形成侧面的理论啮合齿条。非常大的直径的齿轮不能被轻易移动,所以齿轮基本上是平稳的,而磨削轮的活动部分在螺旋线方向上作往复运动。磨削轮只在斜齿轮的端面上有一小部分是接触的,所以,当在一年内制造这个齿数的几个齿轮时,这并不重要。与形成磨削相同,磨削后,一对侧面的齿轮被指引到下一对。类似的方法用于中等大小的齿轮,这种齿轮有固定的轮子,而粗糙的齿轮是走过了车轮下。齿轮相应的旋转运动由轮上的皮带控制,这条皮带从一圆柱体的节圆直径上散开,使齿轮相对齿条的运动是正确的。 另一种方法,尼罗河的做法,采用了车轮,它被形成提供了理论上的啮合机架,而不是象Maag方法一样用两个杯轮子。这种做法最适合在小齿轮上中等精度的工作,速度介于reishauer方法和Maag方法之间。所有磨削加工与切削加工相比,是缓慢和昂贵的,因此只用于精度要求至关重要的条件下。一个粗略的经验法则是,磨削会增加齿轮的切削成本,这是10个因素之一,但轮齿的成本,往往只占变速箱总费用的一小部分。令人惊讶地是,可获得的精度不是非常取决于齿轮的大小,齿轮的直径是5米或50米,可获得的节圆渐开线和螺旋线的精度是预想的5微米或更好,比起任何其他因素,更取决于操作工和检查员的技术和耐心。它往往是假定磨削将去除在粗的阶段产生的所有误差。不幸的是,磨床是较灵活的,所以砂轮有一个按照以往误差的趋势。误差将因此减少,但并没有完全消除,除非很多切削方法被使用。任何时候磨削过程给出的都一致的结果,这是可在粗切的阶段检测精度是可取的。唯一的例外是磨削的形成过程,将不跟随渐开线误差,但仍允许螺旋线和节圆误差。中 国 矿 业 大 学本科生毕业设计姓 名: 张午霞 学 号: 21040306 学 院: 应用技术学院 专 业: 机械工程及自动化 设计题目: JDM-30无极绳调车绞车设计 专 题: 指导教师: 陈世其 职 称: 讲师 2008 年 6 月 徐州中国矿业大学毕业论文任务书学院 应用技术学院 专业年级 机自04-3 学生姓名 张午霞 任务下达日期: 2008年 3月 14日毕业论文日期: 2008 年 3月 15日 至2008 年6 月 10日毕业论文题目:JDM-30无极绳调车绞车设计毕业论文专题题目: 毕业论文主要内容和要求:无级绳调车绞车的设计主要内容包括:1、绞车的绪论、工作原理、发展状况;2、电动机的选择,以及根据设计要求中牵引力来选择钢丝绳的直径,再根据钢丝绳的直径以及设计要求中的速度来决定卷筒的结构和尺寸,根据电动机,卷筒的相对位置来选择减速器,并设计绞车的制动机构;3、设计中要对各个部件进行校核,保证其能满足使用要求。设计中基本要求:绞车具有防爆能力,设计寿命5000h,牵引力为300kN,其平均绳速为9m/min,容绳量为500m。设计图纸量折合成A0图纸不少于3张,并完成设计说明书,要求说明书正文不少于70页,要有英文相关文章的翻译,翻译成中文后不少于3000字。院长签字: 指导教师签字:中国矿业大学毕业论文指导教师评阅书指导教师评语(基础理论及基本技能的掌握;独立解决实际问题的能力;研究内容的理论依据和技术方法;取得的主要成果及创新点;工作态度及工作量;总体评价及建议成绩;存在问题;是否同意答辩等):成 绩: 指导教师签字: 年 月 日中国矿业大学毕业论文评阅教师评阅书评阅教师评语(选题的意义;基础理论及基本技能的掌握;综合运用所学知识解决实际问题的能力;工作量的大小;取得的主要成果及创新点;写作的规范程度;总体评价及建议成绩;存在问题;是否同意答辩等):成 绩: 评阅教师签字: 年 月 日中国矿业大学毕业论文评阅教师评阅书评阅教师评语(选题的意义;基础理论及基本技能的掌握;综合运用所学知识解决实际问题的能力;工作量的大小;取得的主要成果及创新点;写作的规范程度;总体评价及建议成绩;存在问题;是否同意答辩等):成 绩: 评阅教师签字: 年 月 日中国矿业大学毕业设计答辩及综合成绩答 辩 情 况提 出 问 题回 答 问 题正 确基本正确有一般性错误有原则性错误没有回答答辩委员会评语及建议成绩:答辩委员会主任签字: 年 月 日学院领导小组综合评定成绩:学院领导小组负责人: 年 月 日摘 要 JDM-30型无极绳绞车是一种新型的矿山辅助运输设备。其主要适用于煤矿井下长运距,多起伏的运输巷道,特别适用于大型综采设备的运输牵引和长运距矿车及材料的运输。能大大提高运输效率和运输安全可靠性,防止放打滑现象。该绞车的设计对于完善无极绳绞车起着重要的基础作用。JDM30型无极绳绞车主要由电动机、联轴器、减速器、卷筒和制动闸等组成。本毕业设计的重点是减速器的设计,该传动系统采用了五级传动,第一级为直齿圆锥齿轮传动,其余为圆柱直齿轮传动,采用了两个双联齿轮,最后一级的小齿轮和大齿轮靠过桥齿轮连接,形成封闭的传动路线。传动原理简单、可靠、高效。JDM30型无极绳绞车具有良好的防爆性能和制动性能,容绳量大、适用条件强、使用寿命长、传动效率高等特点。该绞车结构紧凑,外形尺寸小,能够整机下井;结构为近似对称布置,外形美观,成长条形,底座呈雪橇状;绞车重心低,底座刚性好,可安装地锚,运转平稳,安全可靠,维护方便。关键词:无极绳绞车; 运输; 传动ABSTRACTJDM-30-Promise rope winch is a new type of mine-assisted transport equipment. The main application is long distance in the coal mine, more ups and downs of the roadway, especially for large transport fully mechanized coal mining equipment traction and long distance transport cars and materials. It can greatly improve transport efficiency and transport safety and reliability and prevent-skid phenomenon. The winch design plays an important basic role in improving the Promise of the rope winch.JDM-30-Promise rope winch is mainly composed of the motor, coupling, reducer, brake drum gates, and other components. The graduation project focused on the design of the reducer, the drive system uses five transmission, the first class uses straight bevel gear, the rest is straight cylindrical gear transmission, it uses two pairs of gears, and the small gear and the big gear of the last one are c onnected by the bridge gear.It formed a closed transmission line. Transmission principle is simple, reliable and efficient.JDM-30-Promise rope winch has a good explosion-proof performance and braking performance, large capacity to justice, conditions of application strong, long-life, high efficiency drive. The winch has compact structure, small shape size, can go down with overall unit; structure is similar to symmetrical layout, aesthetic appearance, growth strip, a sled-shaped base; the gravity centerof the winch is low, rigid base, and can be installed to anchor, a smooth operation, safe and reliable , easy maintenance.Keyword : promise rope winch ; transport; drive目 录1 绪论1 1.1引言1 1.2绞车运输及国内外的发展状况1 1.3无极绳绞车的类型及工作原理1 1.3.1无极绳绞车的类型2 1.3.2无极绳绞车的工作原理2 1.4无极绳运输的安全注意事项22 总体设计2 2.1设计总则2 2.2已知条件3 2.3牵引钢丝绳直径的确定及滚筒直径的确定3 2.3.1钢丝绳的选择3 2.3.2滚筒参数的确定3 2.4滚筒强度的计算4 2.5传动系统的确定、运动学计算及电机的选择4 2.5.1传动系统的确定4 2.5.2计算传动效率5 2.5.3各级传动比分配及总传动比6 2.5.4计算总传动比6 2.5.5确定钢丝绳在卷筒上的拉力及卷筒上的功率6 2.5.6选择电机型号7 2.5.7验算电机闷车时,钢丝绳在里层的安全系数7 2.5.8传动装置运动参数的计算83 齿轮设计8 3.1第一级直齿锥齿传动设计8 3.1.1初步设计8 3.1.2几何计算定9 3.1.3齿面接触疲劳强度校核12 3.1.4齿根抗弯疲劳强度校核14 3.2第二级直齿圆柱齿轮传动设计15 3.2.1基本参数15 3.2.2强度校核16 3.3第三级直齿圆柱齿轮传动的强度校核20 3.3.1基本参数20 3.3.2强度校核21 3.4第四级直齿圆柱齿轮传动的强度校核25 3.4.1基本参数25 3.4.2强度校核26 3.5第五级直齿圆柱齿轮传动前级的强度校核30 3.5.1基本参数30 3.5.2强度校核30 3.6第五级直齿圆柱齿轮传动后级的强度校核34 3.6.1基本参数34 3.6.2强度校核354 齿轮轴传动的设计计算39 4.1锥齿轮轴的设计计算与强度校核39 4.1.1轴的初步计算39 4.1.2轴的结构设计40 4.1.3轴的疲劳强度校核40 4.1.4锥齿轮轴上键的强度验算45 4.1.5锥齿轮轴上轴承的寿命验算45 4.2二轴的设计计算与强度验算46 4.2.1轴的初步计算46 4.2.2轴的结构设计46 4.2.3轴的疲劳强度校核47 4.2.4二轴上键的强度验算53 4.2.5二轴轴承的寿命验算54 4.3花键轴的设计计算与强度验算55 4.3.1轴的初步计算55 4.3.2轴的结构设计56 4.3.3轴的疲劳强度校核56 4.3.4花键轴上花键的强度验算64 4.3.5花键轴上轴承的寿命验算65 4.4过桥轮轴的设计计算与强度验算67 4.4.1初定轴的直径67 4.4.2轴的疲劳强度校核67 4.4.3过桥轮轴的轴承寿命验算68 4.5卷筒轴的设计69 4.5.1对卷筒进行受力分析69 4.5.2对卷筒轴进行受力分析71 4.5.3轴的直径的初步确定72 4.5.4轴的疲劳强度校核72 4.5.5卷筒轴上轴承的寿命验算745 绞车及主要部位的检查维护766 绞车的常见故障原因76结论79参考文献80英文原文81中文译文86致谢90英文原文Gear manufacturing methodsThere are two basic methods of manufacturing gear teeth: the generating process and the forming process. when a gear tooth is generated, the workpiece and the cutting or grinding tool are in continuous mesh and the tooth form is generated by the tool. In other words, the work and the tool are conjugated to each other. hobbing :machines, shaper cutters, shaving machines, and grinders use this principle.When a gear tooth is formed, the tool is in the shape of the space that is being machined out. Some grinding machines use this principle with an indexing mechianism which allows the gear teeth to be formed tooth by tooth. Broaches are examples of form tools that machine all the gear teeth simultaneously.shaping Shaping is inherently similar to planning but uses a circular cuttrer instead of rack and the resulting reduction in the reciprocating inertia allows much higher stroking speeds: modern shapers cutting car gears can run at 2,000 cutting strokes per minmute. The shape of the cutter is roughly the same as an involute gear but the tips of the teeth are rounded. The generating drive between cutter and workpiece does not involve a rack or leadscrew since only circular motion in involved. The tool and workpiece move tangential typically 0.5 mm for each stroke of the cutter. On the return stroke the cutter must be retracted about 1 mm to give clearance otherwise tool rub occurs on the backstroke and failure is rapid. The speed on this type of machine is limited by the rate at which some 50kg of cutter and bearings can be moved a distance of 1 mm. the accelerations involved tequire forces of the order of 5000N yet high accuracy must be maintained. The advantages of shaping are that production rates are relatively high and that it is possible to cut right up to a shoulder. Unfortunately, for helical gears, a helical guide is required to impose a rotational motion on the stroking motion; such helical guides cannot be produced easily or cheaply so the method is only suitable for long runs with helical gears since special cutters and guides must be manufactured for each different helix angle. A great advantage of shaping is its ability to annular gears such as those required for large epicyclie drives. When very high accuracy is of importance the inaccuracies in the shaping cutter matter since they may transfer to the cut gear. It is obvious that profile errors will transfer but it is less obvious than an eccentrically mounted or ground cutter will give a characteristic “dropped tooth”. There are several causes for “dropped tooth” but it occurs most commonly when the diameter of the workpiece is about half, one and half, two and a half, etc, times the cutter diameter. If the cutter starts on a high point and finishes on a low point during the final finishing revolution of the gear the peak to peak eccentricity errors in the cutter occurs between the last and the first tooth of the final revolution of the cut gear; as the cumulative pitch error of the cutter may well be over 25 microns there is a sudden pitch error of this amount on the cut gear. The next gear cut on the machine may however be very good on adjacent pitch if the final cut happened to start in a favorable position on the cutter. Various attempts have been made to prevent this effect, in particular by continuing rotation without any further cutter infeed but if the shaping machine is not very rigid and the cutter very sharp then no further cutting will occur and the error will not be removed. hobbinghobbing, the most used metal cutting method, uses the rack generating principle but avoids slow reciprocation by mounting many “racks ” on a rotating cutter. The “racks” are displaced axially to form a gashed worm. The “racks” do not generate the correct involute shape for the whole length of the teeth since they are moving on a circular path and so the hob is fed slowly along the teeth either axially in normal or in the direction of the helix in “oblique” hobbing.Metal removal rates are high since no reciprocation of hob or workpiece is required and so cutting speeds of 40 m/min can be used for conventional hobs and up to 150m/min for carbide hobs. Typically with a 100mm diameter hob the rotation speed will be 100rpm and so a twenty tooth workpiece will rotate at 5 rpm. Each revolution of the workpiece will correspond to 0.75mm feed so the hob will advance through the workpiece at about 4mm per minute. For car production roughing multiple start hobs can be used with coarse feeds of 3mm per revolution so that 100 rpm on the cutter, a two-start hob and a 20 tooth gear will give a feed rate of 30mm/minute.The disadvantage of a coarse feed rate is that a clear marking is left on the workpiece, particularly in the root, showing a pattern at a spacing of the feed rate per revolution. This surface undulation is less marked on the flanks than in the root and is not important when there is a subsequent finishing operation such as shaving or grinding. When there are no further operations the feed per revolution must be restricted to keep the undulations below a limit which is usually dictated by lubrication conditions. The height of the undulations in the root of the gear is given by squaring the feed per revolution and dividing by four times the diameter of the hob; 1 mm feed and 100mm diameter gives 2.5 micron high undulations in the root. On the gear flank the undulation is roughly cos70 as large, i.e., about 0.85 micron.Accuracy of hobbing is normally high for pitch and for helix, provided machines are maintained; involute is dependent solely on the accuracy of the hob profile. As the involute form is generated by as many cuts as there are gashes on the hob the involute is not exact, but if there are, say, 14 tangents generating a flank of 20 mm radius curvature about 4 mm high the divergence from a true involute is only about half a micron; hob manufacturing and mounting errors can be above 10 microns. Use of twostart hobs or oblique hobbing gives increased error levels since hob errors of pitching transfer to the cut gear.broaching Broaching is not used for helical gears but is useful for internal spur gears; the principal use of broaching in this context is for internal splines which cannot easily be made by any other method. As with all broaching the method is only economic for large quantities since setup costs are high. The major application of broaching techniques to helical external gears is that used by Gleasons in their G-TRAC machine .this machine operates by increasing the effective radius of a hobbing cutter to infinity so that each tooth of the cutter is traveling in a straight line instead of on a radius. This allows the cutting action to extend over the whole facewidth of a gear instead of the typical 0.75 mm feed per revolution of hobbing. The resulting process gives a very high production rate , more suitable for U.S.A. production volumes than for the relatively low European volumes and so, despite a high initial cost ,is very competitive.Broaching give high accuracy and good surface finish but like all cutting processes is limited to “soft” materials which must be subsequently casehardened or heat treated, giving distortion. Shaving A shaving cutting cutter looks like a gear which has extra clearance at the root and whose tooth flanks have been grooved to give cutting edges. It is run in mesh with the rough gear with crossed axes so that there is in theory point contact with a relative velocity along the teeth giving scraping action. The shaving cutter teeth are relatively flexible in bending and so will only operate effectively when they are in double contact between two gear teeth. The gear and cutter operate at high rotational speeds with traversing of the workface and about 100 mm micron of material is removed. Cycle times can be less than half a minute and the machines are not expensive but cutters are delicate and difficult to manufacture. It is easy to make adjustments of profile at the shaving stage and crowning can be applied. Shaving can be carried out near a shoulder by using a cutter which is plunged in to depth without axial movement; this method is fast but requires more complex cutter design.grinding Grinding is extremely important because it is the main way hardened gear are machined. When high accuracy is required it is not sufficient to pre-correct for heat treatment distortion and grinding is then necessary.The simplest approach to grinding, often termed the Orcutt method. The wheel profile is dressed accurately to shape using single point diamonds which are controlled by templates cut to the exact shape required; 6:1 scaling with a pantograph is often used. The profile wheel is then reciprocated axially along the gear which rotates to allow for helix angle effects; when one tooth shape has been finished, involving typically 100 micron metal removal the gear is indexed to the next tooth space. This method is fairly show but gives high accuracy consistently. Setting up is lengthy because different dressing templates are needed if module, number of teeth, helix angle, or profile correction are changed.The fastest grinding method uses the same principle as hobbing but replaces a gashed and relieved worm by a grinding wheel which is a rack in section. Since high surface speeds are needed the wheel diameter is increased so that wheels of 0.5 m diameter can run at over 2000 rpm to give the necessary 1000 m/min. only single start worms are cut on the wheel but gear rotation speeds are high,100 rpm typically, so it is difficult to design the drive system to give accuracy and rigidity. Accuracy of the process is reasonably high although there is a tendency for wheel and workpiece to deflect variably during grinding so the wheel form may require compensation for machine deflection effects. Generation of a worm shape on the grinding wheel is a slow process since a dressing diamond or roller must not only form the rack profile but has to move axially as the wheel rotates. Once the wheel has been trued, gears can be ground rapidly until redressing is required. This is the most popular method for high production rates with small gear and is usually called the Reishauer method.Large gears are usually generated by the Maag method which is similar to planning in its approach but uses cup grinding wheels of large diameter to form the flanks of the theoretical mating rack. Gears of very large diameter cannot easily be moved so the gear is essentially stationary while the grinding wheel carriage
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:JDM-30无极绳调车绞车设计[含CAD图纸和说明书资料]
链接地址:https://www.renrendoc.com/p-21896149.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!