设计.doc

数控卧式镗铣床刀库结构设计[含CAD图纸和说明书等资料]

收藏

压缩包内文档预览:(预览前20页/共37页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:21896924    类型:共享资源    大小:3.38MB    格式:ZIP    上传时间:2019-09-09 上传人:好资料QQ****51605 IP属地:江苏
50
积分
关 键 词:
含CAD图纸和说明书等资料 数控 卧式 铣床 结构设计 cad 图纸 以及 说明书 仿单 资料
资源描述:

【温馨提示】 dwg后缀的文件为CAD图,可编辑,无水印,高清图,压缩包内含CAD图的预览图片,仅用于预览,压缩包内文档可直接点开预览,需要原稿请自助充值下载,请见压缩包内的文件及预览,所见才能所得,请细心查看有疑问可以咨询QQ:414951605或1304139763

内容简介:
一 设计(论文)进展状况 1.1 外文翻译目前已经完成对外文Multi-stage optimum design of magazine type automatic tool changer arm(链式自动换刀库的多阶段优化设计)的翻译。其中,英文原文两千七百余字,翻译完成后汉字五千四百余字。1.2 初步对所要设计的刀库有所了解数控机床为了进一步提高生产率,进一步压缩非切削时间,现代的机床逐步发展为在一台机床上一次装夹中完成多工序或全部工序的加工。数控机床为了能在工件一次装夹中完成多个工步,以缩减辅助时间和减少多次安装工件引起的误差,通常带有自动换刀系统。对工件的多工序加工而设置的存储及更换刀具的装置称为自动换刀装置(Automatic Tool Changer,ATC)。自动换刀(Automatic Tool Change 简称ATC)系统由控制系统和换刀装置组成。自动换刀装置的功能,对整机的加工效率有很大的影响。本次设计所需要的数控卧式镗铣床刀库由四排带刀套的链条组成,每排链条有15把刀套,刀库最大容量为60把刀。良好的结构设计能够实现刀库中刀具的快速移动,提高机床的加工效率。数控机床的自动换刀装置的结构形式多种多样,选择何种形式,主要取决于机床的种类、工艺范围以及刀具的种类和数量等。本课题中的JCS-013型数控卧式镗铣床将采用的是带刀库的自动换刀形式。其装配图如图所示:图1 JCS-013刀库装配图1图2 JCS-013刀库装配图2图3 JCS-013刀库装配图31.3 短期目标通过对上方三幅装配图的观察,初步了解设计所需,为后期工作做好准备。二 存在问题及解决措施2.1 刀套位置的选择因刀库由四排带刀套的链条组成,每排链条有15把刀套,刀库最大容量为60把刀,每一排刀套位置互相一一对应,因此找刀程序分为两步:一是手架升降找刀排,二是在一排内选刀。所以,刀套位置的设计尤其重要,需仔细的考虑好。2.2 链条移动速度的设计为了保证正确的自动换刀,链条移动找刀时,刀套每次必须停在同一位置上,因此刀套必须有精确地定位,链条的移动速度必须精确的设计好,2.3 部分资料的缺乏由于没有实物的存在,设计部分会异常的辛苦,所以需要多和老师及同学讨论研究,多查资料,以求完成本次设计。三 后期工作安排 根据目前设计的完成情况,后期的10-15周的工作安排如下:(1) 尽快完成数据的设计;(2) 根据得到的数据绘出所需要的装配图和零件图;(3) 完成答辩报告及论文;(4) 为最后答辩做好准备。 指导教师签字: 年 月 日注:1. 正文:宋体小四号字,行距20磅;标题:加粗 宋体四号字2. 中期报告由各系集中归档保存,不装订入册。 4一 毕业设计(论文)综述(题目背景、研究意义及国内外相关研究情况)1 题目背景和意义面对市场竞争的压力,如何提高机械制造业的生产效率是为重中之重,而刀库的出现,促使减少了机械加工时换刀具所使用的时间,大大的提高了生产效率。数控卧式镗铣床是一种具有自动换刀装置和任意分度数控转台的数字控制机床,工件在一次装夹后能自动完成几个侧面的的多种工序的加工。数控机床及由数控机床组成的制造系统是改造传统产业、构建数字化企业的重要基础设备,它的一直备受人们关注。数控机床以其卓越的柔性自动化的性能、优异而稳定的精度、灵捷而多样化的给功能引起世人瞩目,它开创了机械产品机电一体化发展的先河,因此数控技术成为先进制造技术中的一项核心技术。另一方面,通过持续的研究,信息技术的深化应用促进了数控机床的进一步提升1。2 国内外相关研究情况 近年来自动换刀刀库的发展俨然己超越其为综合切削加工机床配套的角色,在其特有的技术领域中发展出符合机床高精度、高效能、高可靠度及多任务复合等概念之独特产品,以其多样化产品的功能,左右了综合切削加工机床在生产效能及产品精度的表现。其产品的发展趋势为:(1)高效能的产品:发展符合高荷重、高容量、高速化概念的刀库产品。(2)轻量化、低成本的产品,发展符合重量轻、成本低的刀库产品。在此概念基础下,刀库产品的发展现况为2(l)超重刀具负荷刀库的发展发展出刀链系统能承载重量70kg以上的超重刀具,拥有强力锁刀装置的稳固刀链架构,可防止重型刀具于运转中坠落。(2)高效率且定位精确的驱动及选刀系统的发展发展出高精度系统配置日系高质量!高定位精度的伺服电机及减速机,以符合选刀迅速!换刀精确的主要性能需求3。(3)多型式刀具容载刀库的发展发展出同时可容纳多种型式刀具(如15050及15060)的刀链系统,也被视为是必须时常变换使用多种主轴之加工中心的必备装置。(4)不同型式刀具及任意点之换刀系统的发展可以同时夹取不同型式刀具(如15050及15060),因应需求必须有不同的刀具为了缩短换刀时间,多点式或任意点式ZMW风电机轮毅加工工艺!专用刀具及刀库的研究与设计之换刀系统是有必要的4。(5)轻量化低成本架构刀库的发展:发展出轻量化的塑钢射出刀套架构,整体重量较传统刀库减轻100kg以上,成本大幅降低之刀库。(6)大型及高容量刀库的发展在机床多功能之趋势演化下,大量的刀具被使用在同一台机床上,刀库之架构必须兼顾换刀效率及储刀效能,多变的刀库型体(可容纳120/180/200把以上刀具)及多样精密之换刀系统(如各种立式!卧式!立卧单点及多点式换刀系统),是其主要之特色5。二 本课题研究的主要内容和拟采用的研究方案、研究方法 1)本课题研究的主要内容; 2)了解数控卧式镗铣床刀库结构的性能要求; 3)了解数控卧式镗铣床刀库结构的工作原理,进行结构设计和计算分析; 4)设计指标:链条快速移动速度为8米/分钟,慢速移动速度为0.2米/分钟,刀库容量为60把刀; 5)拟采用的研究方案、研究方法或措施刀库是刀具交换系统的一部分,加工中心的刀具交换系统也称为自动换刀装置(ATC),它通常是由刀库和机械手组成。自动换刀装置是加工中心不可缺少的组成部分,也是加工中心的象征,又是加工中心成败的关键。加工中心有立式、卧式、龙门式几种,所以这些机床的刀库和自动换刀装置也是各种各样。加工中心上的刀库类型分类:(1)盘式刀库;(2)链式刀库;(3)鼓轮式刀库。 特点(1)盘式刀库:刀具呈环行排列,空间利用率低,容量不大但结构简单。图1 盘式刀库(2)链式刀库:结构紧凑,容量大,链环的形状也可随机床布局制成各种形式而灵活多变,还可将换刀位突出以便于换刀。图2 链式刀库(3)鼓轮式刀库:占地小,结构紧凑,容量大,但选刀、取刀动作复杂。 图3鼓轮式刀库换刀机械手分为单臂单手式,单臂双手式和双手式机械手。单臂单手式结构简单,换刀时间较长,适用于刀具主轴与刀库刀套平行,刀库刀套轴线与主轴轴线平行,以及刀库刀套轴线与主轴轴线垂直的场合。单臂双手机械手可同时抓住主轴和刀库中的刀具,并进行拔出、插入,换刀时间短,广泛应用于加工中心上的刀库刀套轴线与主轴平行的场合。双手式机械手结构较复杂,换刀时间短,这种机械手除了完成拔刀、插刀外,还起运输刀具的作用6。结合所给题目,初步决定采用链式刀库双手式机械手换刀方案。采用系统化设计方法,将设计看成由若干个设计要素组成的一个系统,每个设计要素具有独立性,各个要素间存在着有机的联系,并具有层次性,所有的设计要素结合后,即可实现设计系统所需完成的任务。三 完成毕业论文的工作步骤与时间安排(按周次填写)(1)13周:调研并收集资料;(2)35周:确定设计方案和整体结构特点;(3)69周:完成结构设计计算;(4)1012周:完成装配图、三维建模和仿真;(5)13-15周:完成论文撰写,准备答辩。 四 指导教师意见(对课题的深度、广度及工作量的意见) 指导教师: 年 月 日 五 所在系意见: 系主管领导: 年 月 日注:1. 正文:宋体小四号字,行距20磅。2. 开题报告由各系集中归档保存。参考文献1Chang W C, Van Y T. Researching Design Trens for the Redesign of ProductJ. Design Studies(US),2003,24(1):173-1802邱馄城.刀库之发展趋势与未来展望J.制造技术与机床,2007,4:114一115. 3关慧贞,冯辛安等.机械制造装备设计M.北京:机械工业 出版社,20074成大先,王德夫,李长顺等.机械设计设计手册M.北京:化学工业出版社,20075王光斗,王春福.机床夹具设计手册M.北京:机械工业出版社6孟宪源.现代机构手册M.北京:机械工业出版社,19947叶玉驹,焦永和,张彤等.机械制图手册M. 北京:机械工业出版社, 2008.8孙志礼,冷兴聚,魏延刚等.机械设计M. 沈阳:东北大学出版社, 2000.9吴宗泽.机械结构设计M.北京:高等教育出版社, 1986.10刘建彗,邹彗雪,颜洪森.对加工中心自动换刀装置时间的探讨J. 组合机床和自动 化加工技术, 2004第8期:35-3611宋明宽. 精密刀库机械手换刀位置调整工具J. 制造技术与机床. 2010,4:30-3112陶松桥. 加工中心刀库定位控制的改进J. 设备管理与维修, 2008,3:44-4513李体仁,张淳,夏田.立式加工中心刀库刀套的改进设计J. 机床与液压,2004,6:12-1314祁平. 加工中心自动换刀过程PLC编程技巧J. 制造技术与机床. 2001,1:22-23 15迟桂纯,刘洪瑛,谢培红.2A637卧式镗铣床数控技术改造M.哈尔滨印刷机械厂,200216詹启贤.自动机械设计M. 北京:中国轻工业出版社, 1994. 17刘文志.数控卧式铣床滑枕变形有限元分析及补偿技术J.制造技术与机床.2008,11:27-2918刘澄深. 法国TC3型自动换刀数控卧式镗铣床J. 组合机床通讯. 1975.19Asfahl, R. Robot and Manufacturing Automation(US). John Wiley&Sons, 1992.20Mou J, Liu C R.An error correction method for CNC machine tools using reference parts(US). Transactions of NAMRE/SME, 1994,3:15-16 5 J. Cent. South Univ. (2012) 19: 174178 DOI: 10.1007/s1177101209883 Multi-stage optimum design of magazine type automatic tool changer arm KIM Jae-Hyun, LEE Choon-Man School of Mechatronics, Changwon National University, Changwon 641-773, Korea Central South University Press and Springer-Verlag Berlin Heidelberg 2012 Abstract: To enhance machining efficiency, tool change time has to be reduced. Thus, for an automatic tool changer attached to a machining center, the tool change time is to be reduced. Also the automatic tool changer is a main part of the machining center as a driving source. The static attributes of the automatic tool changer using the commercial code, ANSYS Workbench V12, were tried to interpret. And the optimum design of automatic tool changer arm was proposed by performing the multi-stage optimum design. The shape optimization of the automatic tool changer was proposed and the result was verified to obtain acceptable improvements. It is possible to obtain an optimized model in which the maximum deformation, maximum stress, and mass are reduced by 10.46%, 12.89% and 9.26%, respectively, compared with those of the initial model. Also, the results between conventional method by the design of experiments and proposed method by the multi-stage optimum design method were compared. Key words: automatic tool changer; optimum design; structural analysis; exchange arm 1 Introduction Recently, in machine manufacturing industries, molds and machine parts have been changed to small quantity batch production system. Also, improvements in productivity and cutting rate are required. Whereas, it is true that high quality and low cost are to be targeted from a practical standpoint. Therefore, the machine tools for such aims pursue to achieve high-speed processing, implement automation, and reduced lead time. As a result, it is possible to check the states of tools and workpieces using proper sensors in the machine tools. In addition, a machining center based on an automatic tool changer (ATC) and an automatic pallet changer (APC) aims to operate an unattended operation factory for 24 h. The automatic tool changer stores the tools used in a machining center to its magazine and changes the tools automatically as required. The tool changed by such ATC is precisely equipped to a spindle 1. Also, it represents an advantage that an operator of the machining center is able to engage in other works due to the less interference for the machine tools. That is to say, the operator can control other machine tools or prepare the next workpieces, which leads to reduced production time. The magazine type ATC used in this study represents a feature that many tools are stored in the magazine. In the change of tools, two arms move to change the equipped tool to the next tool by rotating them by 180 in a directly changed manner 2. Thus, it is necessary to ensure the technologies for both the structural characteristics of arms and the design of lightweight simultaneously. In actual industrial fields, design optimization is very important. Therefore, various optimization methods are presented for the optimization of various mechanical parts 3. SONG et al 4 presented optimization design of the short journal bearing by using enhanced artificial life optimization algorithm. ALLAIRE et al 5 combined the topological and shape derivations on the structural optimization. BAGCI and AYKUT 6 presented Taguchi optimization to verify the optimum surface roughness of the CNC milling. LAMBERTI 7 presented a design optimization algorithm based on simulated annealing for truss structures. SEKULSKI 8 presented that the genetic algorithm can be an efficient multi-objective optimization tool for simultaneous design of the topology and sizing of ship structures. SEO et al 9 presented shape optimization and its extension to topological design based on isogeometric analysis. In optimizing the ATC arm, the factors of the structural characteristics and the lightweight are contrary to each other 10. It shows a trade-off that if it pursues to improve the lightweight in structures, the structural characteristics will represent a weakness, and if the Foundation item: Work(RTI04-01-03) supported by Grant from Regional Technology Innovation Program of the Ministry of Knowledge Economy (MKE), Korea Received date: 20110426; Accepted date: 20111010 Corresponding author: LEE Choon-Man, Professor, PhD; Tel: +82552133622; E-mail: cmleechangwon.ac.kr J. Cent. South Univ. (2012) 19: 174178 175 structural characteristics are improved, the achievement of the lightweight is difficult. Therefore, for satisfying these contrary factors and optimizing them, the optimization of such arm shapes in different way is presented by using the design of experiments 11. In this study, for achieving a more improved optimization model than the previous study 11, a multi-stage optimum design was performed. The optimum design was presented using the commercial analysis programs, CATIA V5 and ANSYS Workbench, and the analytic validity was investigated through comparing the initial and conventional optimized models with the optimized model implemented in this study. 2 Structure of ATC ATC consists of three elements, such as magazine part, changer part, and arm part. The magazine part is a device that stores many tools and changes tools using servo motors. The changer part is equipped with servo motors, which rotate arms. The arm part shows an arm shape and changes tools by gearing the tools in the spindle and magazine in a machining center by rotating them by 180. Figure 1 illustrates the entire structure of the ATC modelled by using the CATIA V5 R17. Fig. 1 Structure of magazine type ATC The structural analysis of the initial model of the arm was performed. Regarding the reference of the performed finite element analysis, the finite element analysis of the initial model was carried out using the commercial analysis program, Ansys Workbench V12. The analysis was performed by minimizing the additional part employed in the arm. In the analysis method, a hex dominant method was applied in which a finite element analysis had totally 51 794 nodes and 13 496 elements. Figure 2 shows the initial finite element model of the arm. Fig. 2 Initial finite element model of arm For the boundary conditions in the analysis, the hole at the center of the ATC arm was supported, and the gravitational acceleration was applied to the entire body. In the load conditions, a load of 147 N was applied to the clamps at both ends for considering the maximum weight of the tools. The results of the structural analysis are presented in Fig. 3. The maximum deformation of the initial model at the clamps is 5.748 7 m and occurs at both ends. Also, the maximum stress is generated at the edge of the section, which pushes the rear finger of the ATC arm, and is presented by 4.176 2 MPa. Fig. 3 Structural analysis of arm: (a) Deformation distribution; (b) Stress distribution 3 Multi-stage optimization of arm The static compliance, fx(=D/F), can be presented by an inverse number of the static stiffness. In particular, in some machine structures like machine tools and industrial robots that require high accuracy and machining efficiency, it becomes the most important static characteristic as well as the structure weight where these factors are to be comprehensively and simultaneously evaluated. As mentioned above, the optimization of the static issue is determined as the static characteristic of these two objective functions and the minimization issue of the weight 12. J. Cent. South Univ. (2012) 19: 174178 176 Thus, in this study, the optimization is performed as a multi-stage manner for satisfying each objective function. The first stage is configured as a stage that improves the static characteristics. By defining design factors that minimize the deformation, an optimum model can be induced. The second stage is determined as a stage for implementing its lightweight. Based on the optimum model presented in the first stage, the shape optimization is performed by aiming a reduction in its weight by 10%. 3.1 First stage of optimum design of arm In the first stage of the optimum design, the optimum design aims to minimize the deformation of the arm. Figure 4 illustrates the design variables of the arm. Fig. 4 Factors of ATC arm The general formalization for the dimension and the optimum shape design can be presented by defining objective functions and limitation condition functions 1315. For implementing the optimum design for the ATC arm, the formalization is determined as follows: Find X Minimize deformation (X) Subject to a a L A, B, C U (=A, B, C) X=A, B, C where X represents one of the design variables, and and show the stress and deformation, respectively. Also, a and a show the allowance values for the stress and deformation, respectively. The terms of A, B, and C are the design variables. The design variables are configured by 30 mm in order not to present the influences of the collision and interference in structures on the design. In the optimum design, the optimum solution can minimize the deformation of the arm using the CATIA V5 Product engineering optimizer. Table 1 gives the results of the optimization. Figure 5 illustrates the results of the structural analysis of the optimal designed arm. The boundary conditions in the analysis are configured as the same as the existing initial model. Table 1 Results of optimization for reducing deformation Factor Initial model Optimal designed modelA/mm 25 3.396 B/mm 70 73.68 6 C/mm 27 32.68 6 Maximum deformation/m 5.748 7 4.668 3 Maximum stress/MPa4.176 2 3.607 2 Fig. 5 Structural analysis of optimized arm for reducing deformation: (a) Deformation distribution; (b) Stress distribution 3.2 Second stage of optimum design of arm Achieving the lightweight of the arm is an important factor for reducing the cost of workpieces. Also, it is possible to improve the economy by introducing a lightweight structure 16. Therefore, the optimum design for implementing the lightweight of the arm is performed in the second stage. The target in reducing the mass is 10% of the arm based on the model proposed in the first stage of the optimum design. For reducing the mass of the arm, the shape optimization is carried out using the ANSYS Workbench shape optimization function. The formalization for the optimum design can be presented as follows: Find Z Minimize mass (Z) Subject to a a LrU Z=r where Z is one of the design variables, and show the stress and deformation, respectively, and a and a are the allowance values for the stress and deformation, respectively. Also, the design variable, r, is configured J. Cent. South Univ. (2012) 19: 174178 177 to find all sections in which the mass reduction is possible except for the sections, which have some limitations in the design. Figure 6 illustrates the results of the optimum solution that minimizes the deformation of the arm. As shown in Fig. 6, the section presented by Remove represents a mass reducible section by removing it. Based on the results, the reducible sections are removed to a maximum level. Figure 7 shows the proposed optimum shape for lightweight of the arm based on the results of the shape optimization. Fig. 6 Result of shape optimization using ANSYS Fig. 7 Redesign of arm The structural analysis is performed using the proposed optimum design. Also, the boundary conditions in the analysis are applied as the same as the existing initial model. Figure 8 shows the results of the structural analysis, which is carried out through applying the optimum shape. Fig. 8 Structural analysis of optimized arm for lightweight: (a) Deformation distribution; (b) Stress distribution The maximum deformation of the model, which applies the optimal design, is reduced from 5.748 7 m presented in the initial model to 5.147 5 m by as much as 10.46% and generated at the end of the clamp as the same as the initial model. Also, the maximum stress is reduced from 4.176 2 MPa presented in the initial model to 3.637 9 MPa by as much as 12.89%. In addition, the mass is reduced from 7.871 2 kg presented in the initial model to 7.142 5 kg by as much as 9.26%. Table 2 presents the results of the comparison of the optimum design 11 using the design of experiments performed with the multi-stage optimum design implemented in this study. Table 2 Comparison of results PropertyInitialmodel(A) Conventional method (B) Proposed optimization method (C) Ratio of Ato C/% Ratio of Bto C/% Maximum deformation/m 5.748 75.219 7 5.147 5 10.461.38Maximum stress/MPa4.176 24.163 3.637 9 12.8912.61Mass/kg7.871 27.568 3 7.142 5 9.265.63 In the comparison of the results obtained in this study with the results of the design of experiments, the maximum deformation, maximum stress, and mass are reduced by 1.38%, 12.61%, and 5.63%, respectively. Thus, it can be seen that the multi-stage design using the CATIA and ANSYS performed in this study makes possible to draw more improved optimum design than the existing study. 4 Conclusions 1) By performing the multi-stage optimum design, it is possible to obtain an optimized model in which the maximum deformation, maximum stress, and mass are reduced by 10.46%, 12.89%, and 9.26%, respectively, compared with those of the initial model. 2) In the comparison of the optimum design between the multi-stage optimum design and the previously performed design of experiments, the maximum deformation, maximum stress, and mass are reduced by 1.38%, 12.61% and 5.63%, respectively. 3) By comparing the results between conventional method by the design of experiments and proposed method by the multi-stage optimum design, it is verified whether the optimum design is carried out properly. 4) Based on verification of using commercial programs of CATIA and ANSYS for multi-stage optimum design, it is expected that it can be applied to the optimum design of machine tool structures. J. Cent. South Univ. (2012) 19: 174178 178 References 1 LEE S W, LEE H K. Reliability evaluation of ATC for high-speed line center J. Journal of Korean Society for Precision Engineering, 2006, 23(6): 111118. (in Korean) 2 BARK T Y. The design of automatic tool changer M. Korea Advanced Institute of Science Univ Press, 1977: 111. (in Korean) 3 ROY R, HINDUJA S, TETI R. Recent advances in engineering design optimization: Challenges and future trends J. CIRP AnnalsManufacturing Technology, 2008, 57: 697715. 4 SONG J H, YANG B S, CHOI B G, KIM H J. Optimum design of short journal bearings by enhanced artificial life optimization algorithm J. Tribology International, 2005, 38(4): 403412. (in Korean)
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:数控卧式镗铣床刀库结构设计[含CAD图纸和说明书等资料]
链接地址:https://www.renrendoc.com/p-21896924.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!