连杆45.png
连杆45.png

80系列微型风冷活塞式压缩机设计[含CAD图纸和说明书等资料]

收藏

压缩包内文档预览:
预览图
编号:21897670    类型:共享资源    大小:1.41MB    格式:ZIP    上传时间:2019-09-09 上传人:好资料QQ****51605 IP属地:江苏
50
积分
关 键 词:
含CAD图纸和说明书等资料 80 系列 微型 风冷 活塞 压缩机 设计 cad 图纸 以及 说明书 仿单 资料
资源描述:

【温馨提示】 dwg后缀的文件为CAD图,可编辑,无水印,高清图,压缩包内含CAD图的预览图片,仅用于预览,压缩包内文档可直接点开预览,需要原稿请自助充值下载,请见压缩包内的文件及预览,所见才能所得,请细心查看有疑问可以咨询QQ:414951605或1304139763

内容简介:
编号无锡太湖学院毕业设计(论文)相关资料题目: 80系列微型风冷活塞式 压缩机设计 (V80) 信机 系 机械工程及自动化专业学 号: 0923132学生姓名: 高 宇 指导教师: 俞萍 (职称:高级工程师 ) (职称: ) 2013年5月25日目 录一、毕业设计(论文)开题报告二、毕业设计(论文)外文资料翻译及原文三、学生“毕业论文(论文)计划、进度、检查及落实表”四、实习鉴定表无锡太湖学院毕业设计(论文)开题报告题目: 80系列微型风冷活塞式 压缩机设计 (V80) 信机 系 机械工程及自动化 专业学 号: 0923132 学生姓名: 高 宇 指导教师: 俞萍 (职称:高级工程师 ) (职称: ) 2012年11月12日 课题来源自拟科学依据(1)课题科学意义 80系列V型风冷活塞式空气压缩机是风冷单作用压缩机,压缩机由三相异步电动机作为原动机,经“V”型皮带传动,使曲轴作旋转运动,再通过连杆带动活塞在气缸内作往复运动。空气由进气阀吸入一级气缸,压缩后经排气阀进中间冷却器后再经二级气缸压缩后进入储气罐。压缩机的冷却主要由环形散热片进行散热,它具有冷却均匀的优点。(2)活塞式压缩机的的研究状况及其发展前景在石化领域,往复式压缩机主要是向大容量、高压力、低噪声、高效率、高可靠性等方向发展;不断开发变工况条件下运行的新型气阀,提高气阀寿命;在产品设计上,应用热力学、动力学理论,通过综合模拟预测压缩机在实际工况下的性能;强化压缩机的机电一体化,采用计算机自动控制,实现优化节能运行和联机运行; 在动力领域,活塞式压缩机目前占有主要市场。但随着人们对使用环境及能耗、环保等方面要求的提高,螺杆和涡旋空气压缩机开始占有一定的市场; 在制冷空调领域,往复式制冷压缩机作为一种传统的制冷压缩机,适用于制冷量较广范围内的制冷系统。虽然目前它的应用还比较广泛,但市场份额正逐渐减小。本设计主要针对于船舶,机械,冶金,石油,特别是国防等领域需求体积小,结构紧凑,小排量,高压力的空压机,./型空气压缩机其结构性能正好能满足以上要求。其设计成功量产之后将能产生巨大的社会效应。研究内容根据设计参数进行压缩机的热、动力计算(主要包括缸径的确定,电动机功率计算及选型,压缩机中的作用力的分析,飞轮距的确定,惯性力和惯性力矩的平衡);绘制主机总图及主要零件图; 对压缩机主要零件进行强度校核; 根据计算结果,确定压缩机结构尺寸,完成总装图; 拟采取的研究方法、技术路线、实验方案及可行性分析(1)实验方案选择结构方案、主要参数、相应的驱动方式,以及大体确定附属设备的布置。压缩机的技术经济指标是否先进,能不能很好的满足使用要求,很大程度上决定于总体设计阶段的考虑是否周到和适当。如果总体设计不当,就会给压缩机带来“先天不足”的缺陷,要消除它的后患,就比较困难。因此,总体设计是设计压缩机最重要的环节。(2)研究方法 选择压缩机的结构方案时,应根据压缩机的用途,运转条件,排气量和排气压力制造厂生产的可能性,驱动方式及占地面积等条件,从选择机器的型式和级数入手,制订出合适的方案。 通过对零件的计算和校核,选出最佳设计尺寸。研究计划及预期成果研究计划:2012年11月12日-2012年11月25日:按照任务书要求查阅论文相关参考资料,填写毕业设计开题报告书。2012年11月26日-2013年12月9日:填写毕业实习报告。2012年12月10日-2012年12月24日:按照要求修改毕业设计开题报告。2012年12月25日-2013年1月10日:学习并翻译一篇与毕业设计相关的英文材料。2013年1月12日-2013年3月25日:完成压缩机的热动力计算。2013年4月12日-2013年4月25日:完成压缩机图纸的绘制。2013年4月26日-2013年5月21日:毕业论文撰写和修改工作。预期成果:本次设计的压缩机能够有足够长的使用寿命,较高的运转经济型,良好的动力平衡性,维护检修方便,机器的尺寸小,重量轻,制造工艺良好。特色或创新之处 该型压缩机使用方便,操作性较好,零部件的更换便捷,成本低。 各列的一阶惯性力的合力,可用装在衢州上的平衡重达到大部分或完全平衡,因此机器可取较高的转速,运转性能好。已具备的条件和尚需解决的问题 设计方案已经非常明确,思路清晰,零部件设计有条不紊。 活塞与气缸之间的磨损有待减少。指导教师意见 指导教师签名:年 月 日教研室(学科组、研究所)意见 教研室主任签名: 年 月 日系意见 主管领导签名: 年 月 日英文原文Efficiency And Operating Characteristics Of Centrifugal And Reciprocating Compressors By Rainer Kurz, Bernhard Winkelmann, and Saeid iVIokhatab Reciprocating compressors and centrifugal compressors have different operating characteristics and use different eificiency definitions. This article provides guidelines for an equitable comparison, resulting in a universal efficiency definition for both types of machines. The comparison is based on the requirements in which a user is ultimately interested. Further, the impact of actual pipeline operating conditions and the impact on efficiency at different load levels is evaluated. At first glance, calculating the efficiency for any type of compression seems to be straightforward: comparing the work required of an ideal compression process with the work required of an actual compression process. The difficulty is correctly defining appropriate system boundaries that include losses associated with the compression process. Unless these boundaries are appropriately defined, comparisons between centrifugal and reciprocating compressors become flawed. We also need to acknowledge that the efficiency definitions, even when evaluated equitably, still dont completely answer one of the operators main concerns: What is the driver power required for the compression process?To accomplish this, mechanical losses in the compression systems need to be discussed. Trends in efficiency should also be considered over time, such as off-design conditions as they are imposed by typical pipeline operations, or the impact of operating hours and associated degradation on the compressors. The compression equipment used for pipelines involves either reciprocating compressors or centrifugal compressors. Centrifugal compressors are driven by gas turbines, or by electricmotors. The gas turbines used are, in general,two-shaft engines and the electric motor drives use either variable speed motors, or variable speed gearboxes. Reciprocating compressors are either low speed integral units, which combine the gas engine and the compressor in one crank casing,or separable high-speed units. The latter units operate in the 750-1,200 rpm range (1,800 rpm for smaller units) and are generally driven by electric motors, or four-stroke gas engines.EfficiencyTo determine the isentropic efficiency of any compression process based on total enthalpies (h), total pressures (p), temperatures (T)and entropies (s) at suction and discharge of the compressor are measured, and the isentropic efficiency r then becomes: (Eq.1)and, with measuring the steady state mass flow m, the absorbed shaft power is: (Eq.2)considering the mechanical efficiency r.The theoretical (isentropic) power consumption (which is the lowest possible power consumption for an adiabatic system) follows from: (Eq.3)The flow into and out of a centrifugal compressor can be considered as steady state.Heat exchange with the environment is usually negligible. System boundaries for the efficiency calculations are usually the suction and discharge nozzles. It needs to be assured that the system boundaries envelope all internal leakage paths,in particular recirculation paths fiom balance piston or division wall leakages. The mechanical efficiency r)., describing the friction losses in bearings and seals, as well as windage losses, is typically between 98 and 99%.For reciprocating compressors, theoretical gas horsepower is also given by Eq. 3,given the suction and discharge pressure are upstream of the suction pulsation dampeners and downstream of the discharge pulsation dampeners. Reciprocating compressors, by their very nature, require manifold systems to control pulsations and provide isolation from neighboring units (both reciprocating and centrifugal), as well as from pipeline flow meters and yard piping and can be extensive in nature.The design of manifold systems for either slow speed or high speed units uses a combination of volumes, piping lengths and pressure drop elements to create pulsation (acoustic) filters.These manifold systems (filters) cause a pressure drop, and thus must be considered in efficiency calculations. Potentially, additional pressure deductions from the suction pressure would have to made to include the effects of residual pulsations. Like centrifugal compressors, heat transfer is usually neglected.For integral machines, mechanical efficiency is generally taken as 95%. For separable machines a 97% mechanical efficiency is often used. These numbers seem to be somewhat optimistic, given the fact that a number of sources state that reciprocating engines incur between 8-15% mechanical losses and reciprocating compressors between 6-12%(Ref 1: Kurz , R., K. Brun, 2007).Operating Conditions For a situation where a compressor operates in a system with pipe of the length Lu upstream and a pipe of the length Ld downstream, and further where the pressure at the beginning of the upstream pipe pu and the end of the downstream pipe pe are known and constant, we have a simple model of a compressor station operating in a pipeline system (Figure 1). Figure 1: Conceptual model of a pipeline segment (Ref. 2: Kurz, R., M. Lubomirsky.2006). For a given, constant flow capacity Qstd the pipeline will then impose a pressure ps at the suction and pd at the discharge side of the compressor. For a given pipeline, the head (Hs)-flow (Q) relationship at the compressor station can be approximated by (Eq.4)where C3 and C4 are constants (for a given pipeline geometry) describing the pressure at either ends of the pipeline, and the friction losses, respectively(Ref 2: Kurz, R., M. Lubomirsky, 2006). Among other issues, this means that for a compressor station within a pipeline system, the head for a required flow is prescribed by the pipeline system (Figure 2). In particular, this characteristic requires the capability for the compressors to allow a reduction in head with reduced flow, and vice versa, in a prescribed fashion. The pipeline will therefore not require a change in flow at constant head (or pressure ratio). Figure 2: Stafion Head-Flow relationship based on Eq. 4. In transient situations (for example during line packing), the operating conditions follow initially a constant power distribution, i.e. the head flow relationship follows: (Eq.5)and will asymptotically approach the steady state relationship (Ref 3: Ohanian, S., R.Kurz, 2002). Based on the requirements above, the compressor output must be controlled to match the system demand. This system demand is characterized by a strong relationship between system flow and system head or pressure ratio.Given the large variations in operating conditions experienced by pipeline compressors, an important question is how to adjust the compressor to the varying conditions, and, in particular, how does this influence the efficiency. Centrinagal compressors tend to have rather flat head vs. flow characteristic. This means that changes in pressure ratio have a significant effect on the actual flow through the machine (Ref 4:Kurz, R., 2004). For a centrifugal compressor operating at a constant speed, the head or pressure ratio is reduced with increasing flow. Controlling the flow through the compressor can be accomplished by varying the operating speed of the compressor This is the preferred method of controlling centrifugal compressors. Two shaft gas turbines and variable speed electric motors allow for speed variations over a wide range (usually from 40-50% to 100% of maximum speed or more).It should be noted, that the controlled value is usually not speed, but the speed is indirectly the result of balancing the power generated by the power turbine (which is controlled by the fuel flow into the gas turbine) and the absorbed power of the compressor. Virtually any centrifugal compressor installed in the past 15 years in pipeline service is driven by a variable speed driver, usually a two-shaft gas turbine. Older installations and installations in other than pipeline service sometimes use single-shaft gas turbines (which allow a speed variation from about 90-100% speed) and constant speed electric motors. In these installations, suction throttling or variable inlet guide vanes are used to Drovide means of control. Figure 3: Typical pipeline operating points plotted into a typical centrifugal compressor performance map. The operating envelope of a centrifugal compressor is limited by the maximum allowable speed, the minimum flow (surge flow),and the maximum flow (choke or stonewall)(Figure 3). Another limiting factor may be the available driver power. Only the minimum flow requires special attention, because it is defined by an aerodynamic stability limit of the compressor Crossing this limit to lower flows will cause a flow reversal in the compressor, which can damage the compressor. Modem control systems prevent this situation by automatically opening a recycle valve. For this reason, virtually all modern compressor installations use a recycle line with control valve that allows the increase of the flow through the compressor if it comes near the stability limit. The control systems constantly monitor the operating point of the compressor in relation to its surge line,and automatically open or close the recycle valve if necessary. For most applications, the operating mode with an open, or partially open recycle valve is only used for start-up and shutdown, or for brief periods during upset operating conditions. Assuming the pipeline characteristic derived in Eq. 4, the compressor impellers will be selected to operate at or near its best efficiency for the entire range of head and flow conditions imposed by the pipeline. This is possible with a speed (N) controlled compressor, because the best efficiency points of a compressor are connected by a relationship that requires approximately (fan law equation): (Eq.6)For operating points that meet the above relationship, the absorbed gas power Pg is (due to the fact that the efficiency stays approximately constant): (Eq.7) As it is, this power-speed relationship allows the power turbine to operate at, or very close to its optimum speed for the entire range.The typical operating scenarios in pipelines therefore allow the compressor and the power turbine to operate at its best efliciency for most of the time. The gas producer of the gas turbine will, however, lose some thermal efficiency when operated in part load. Figure 3 shows a typical real world example: Pipeline operating points for different flow requirements are plotted into the performance map of the speed controlled centrifugal compressor used in the compressor station. Reciprocating compressors will automatically comply with the system pressure ratio demands,as long as no mechanical limits (rod load power)are exceeded. Changes in system suction or discharge pressure will simply cause the valves to open earlier or later. The head is lowered automatically because the valves see lower pipeline pressures on the discharge side and/or higher pipeline pressures on the suction side. Therefore, without additional measures, the flow would stay roughly the same except for the impact of changed volumetric efficiency which would increa.se, thus increasing the flow with reduced presstire ratio. The control challenge lies in the adjustment of the flow to the system demands. Without additional adjustments, the flow throughput of the compressor changes very little with changed pressure ratio. Historically, pipelines installed many small compressors and adjusted flow rate by changing the number of machines activated. This capacity and load could be fine-tuned by speed or by a number of small adjustments (load steps) made in the cylinder clearance of a single unit. As compressors have grown, the burden for capacity control has shifted to the individual compressors. Load control is a critical component to compressor operation. From a pipeline operation perspective, variation in station flow is required to meet pipeline delivery commitments, as well as implement company strategies for optimal operation (i.e., line packing, load anticipation).From a unit perspective, load control involves reducing unit flow (through unloaders or speed)to operate as close as possible to the design torque limit without overloading the compressor or driver The critical limits on any load map curve are rod load limits and HP/torque limits for any given station suction and discharge pressure.Gas control generally will establish the units within a station that must be operated to achieve pipeline flow targets. Local unit control will establish load step or speed requirements to limit rod loads or achieve torque control. The common methods of changing flow rate are to change speed, change clearance, or de-activate a cylinder-end (hold the suction valve open). Another method is an infinite-step unloader, which delays suction valve closure to reduce volumetric efficiency. Further, part of the flow can be recycled or the suction pressure can be throttled thus reducing the mass flow while keeping the volumetric flow into the compressor approximately constant. Control strategies for compressors should allow automation, and be adjusted easily during the operation of the compressor.In particular, strategies that require design modifications to the compres.sor (for example: re-wheeling of a centrifugal compressor, changing cylinder bore, or adding fixed clearances for a reciprocating compressor)are not considered here. It should be noted that with reciprocating compressors, a key control requirement is to not overload the driver or to exceed mechanical limits.OperationThe typical steady state pipeline operation will yield an efliciency behavior as outlined in Figure 4. This figure is the result of evaluating the compressor efTiciency along a pipeline steady state operating characteristic. Both compressors would be sized to achieve their best efficiency at 100% flow, while allowing for 10% flow above the design flow. Different mechanical efficiencies have not been considered for this comparison.The reciprocating compressor efliciency is derived n-om valve efficiency measurements in Ref 5 (Noall, M., W. Couch, 2003) with compression efficiency and losses due to pulsation attenuation devices added. The efficiencies are achievable with low speed compressors. High speed reciprocating compressors may be lower in efficiency.Figure 4: Compressor Efficiency af different flow rates based on operation aiong a steady state pipeline characteristic.Figure 4 shows the impact of the increased valve losses at lower pressure ratio and lower flow for reciprocating machines, while the efficiency of the centrifugal compressor stays more or less constant.ConclusionsEfficiency definitions and comparison between different types of compressors require close attention to the definition of the boundary conditions for which the efficiencies are defined as well as the operating scenario in which they are employed. The mechanical efficiency plays an important role when efficiency values are used to calculate power consumption. If these definitions are not considered, discussions of relative merits of different systems become inaccurate and misleading. REFERENCES1 Kurz . R. K. Brun. 2007. EfTiciency Definition and Load Management for Reciprocating and Centrifugal C ompressors, ASME Paper GT2OO7-27O81.2 Kurz. R., M. Lubomirsky, 2006. Asymttietric Solution for Compressor Station Spare Capacity.ASMt: Paper 2006-90069.3 Ohanian. S. R. Kurz. 2002, Series or Parallel Arrangement in a Two-Unit Compressor Station. Trans.ASME JEng for GT and Power. Vol.124.4 Kurz. R. 2004. The Physies of Centrifugal Compressor Performance. Pipeline Simulation Interest Group. Palm Springs. CA.5 Noall, M. W. Couch. 2003, Performance and Endurance Tests of Six Mainline Compressor Valves in Natural Gas Compression Service. Gas Machinery Conference. Salt Lake City. UT.中文译文离心式和往复式压缩机的工作效率特性 Rainer Kurz , Bernhard Winkelmann , and Saeid Mokhatab往复式压缩机和离心式压缩机具有不同的工作特性,而且关于效率的定义也不同。本文提供了一个公平的比较准则,得到了对于两种类型机器普遍适用的效率定义。这个比较基于用户最感兴趣的要求提出的。此外,对于管道的工作环境影响和在不同负载水平的影响给出了评估。乍一看,计算任何类型的压缩效率看似是很简单的:比较理想压缩过程和实际压缩过程的工作效率。难点在于正确定义适当的系统边界,包括与之相关的压缩过程的损失。除非这些边界是恰好定义的,否则离心式和往复式压缩机的比较就变得有缺陷了。我们也需要承认,效率的定义,甚至是在评估公平的情况下,仍不能完全回应操作员的主要关心问题:压缩过程所需的驱动力量是什么?要做到这一点,就需要讨论在压缩过程中的机械损失。随着时间的推移效率趋势也应被考虑,如非设计条件,它们是由专业的流水线规定,或者是受压缩机的工作时间和自身退化的影响。 管道使用的压缩设备涉及到往复式和离心式压缩机。离心式压缩机用燃气轮机或者是电动马达来驱动。所用的燃气轮机,总的来说,是两轴发动机,电动马达使用的是变速马达或者变速齿轮箱。往复压缩机是低速整体单位或者是可分的“高速”单位,其中低速整体单位是燃气发动机和压缩机在一个曲柄套管内。后者单位的运行在750-1,200rpm范围内(1,800rpm是更小的单位)并且通常都是由电动马达或者四冲程燃气发动机来驱动。效率要确定任何压缩过程的等熵效率,就要基于测量的压缩机吸入和排出的总焓(h),总压力(p),温度(T)和熵(s),于是等熵效率变为: (Eq.1)并且加上测量的稳态质量流m,吸收轴功率为: (Eq.2)考虑机械效率。理论(熵)功耗(这是绝热系统可能出现的最低功耗)如下: (Eq.3)流入和流出离心式压缩机的流量可以视为“稳态”。环境的热交换通常可以忽略。系统边界的效率计算通常是用吸入和排出的喷嘴。需要确定的是,系统边界要包含所有内部泄露途径,尤其是从平衡活塞式或分裂墙渗漏的循环路径。机械效率,在描述轴承和密封件的摩擦损失以及风阻损失时可以达到98%和99%。对于往复式压缩机,理论的气体马力也是由Eq.3给出的,鉴于吸力缓冲器上游和排力缓冲器下游的吸气和排气压力脉动。往复压缩机就其性质而言,从临近单位需要多方面的系统来控制脉动和提供隔离(包括往复式和离心式),以及可以自然存在的来自管线的管流量和面积管道。对于任何一个低速或高速单位的歧管系统设计,使用了卷相结合,管道长度和压力降元素来创造脉动(声波)滤波器。这些歧管系统(过滤器)引起压力下降,因此必须在效率计算时考虑到。潜在的,从吸气压力扣除的额外压力不得不包含进残余脉动的影响。就像离心压缩机一样,传热就经常被忽视。对于积分的机器,机械效率一般取为95%。对于可分机机械效率一般使用97%。这些数字似乎有些乐观,一系列数字显示,往复式发动机机械损失在8-15%之间,往复压缩机的在6-12%(参考1往复压缩机招致号码:库尔兹,R.,K.,光布伦,2007)。工作环境在这样的情况下,当压缩机在一个系统中运行时,管道长度Lu上游和Ld下游,以及管道pu上游的初始压力和管道pe下游的终止压力均被视为常量,在管道系统中我们有一个压缩机运行的简单模型(图1)。图1:管道段的概念模型(文献2:库尔兹.R,M.由罗穆斯基,2006年)。对于给定的,标准管线定量流动能力将在吸入阶段强加压力,在压缩机放电区强加压力。对于给定的管线,压缩机站头部()流(Q)关系可以近似表述为 (Eq.4)其中和是常数(对于一个给定的管道几何)分别描述了管道两边的压力和摩擦损失(文献2:库尔兹.R,M.由罗穆斯基,2006年)。除去其他问题,这意味着对于带管道系统的压缩机站,头部所需流量扬程是由管道系统规定的(图2)。特别地,这一特点对于压缩机需要的能力允许头部减量,按照规定的方式反之亦然。管道因此将不需要改变头部的流量恒定(或压力比)。图2:建立在4式上的机头流量关系。在短暂的情况下(如包装其间),最初的操作条件遵循恒功率分布,如头部流量关系如下: (Eq.5) 并将渐进地达到稳定的关系(文献3:奥海宁S.,R.库尔兹,2002年)在上述要求的基础上,必须控制压缩机输出与系统要求匹配。该系统需求的特点是系统流程和系统头部或压力比的强烈关系。管线压缩机提供了在操作条件经验下的大量变化,一个重要问题就是如何使压缩机适应这样变化的条件,具体的说就是如何影响效率。离心压缩机具有相当大的平头部和流程特点。这意味着压力比的改变对机器的实际流程有重大的影响(文献4:库尔兹R.,20004年)。对于一个恒速运行的压缩机,头部或压力比随着流量的增加而减少。控制压缩机内的流程可以实现压缩机不同的运行速度。这是控制离心压缩机最便捷的方法。两轴燃气轮机和变速电机允许大范围的速度变化(通常是最大速度或更多的40%或50%到100%)。应当指出,被控制的值通常不是速度,但速度是间接平衡由涡轮产生的动力(受进入燃气轮机燃油流量控制)和压缩机的吸收功率。事实上,在过去15年安装的任何离心压缩机在管线服务方
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:80系列微型风冷活塞式压缩机设计[含CAD图纸和说明书等资料]
链接地址:https://www.renrendoc.com/p-21897670.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!