阳光旅馆建筑设计计算书.doc

机械类阳光旅馆建筑设计带CAD图

收藏

压缩包内文档预览:(预览前20页/共90页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:22001013    类型:共享资源    大小:4.20MB    格式:ZIP    上传时间:2019-09-15 上传人:QQ24****1780 IP属地:浙江
30
积分
关 键 词:
机械类 阳光 旅馆 建筑设计 cad
资源描述:
机械类阳光旅馆建筑设计带CAD图,机械类,阳光,旅馆,建筑设计,cad
内容简介:
XXXX大学毕业设计(论文)说明书第一章 建筑设计一、建筑概况1、设计题目: 阳光旅馆2、建筑面积: 65003、建筑总高度:19.650(室外地坪算起)4、建筑层数: 五层5、结构类型: 框架结构二、工程概况: 该旅馆为五层钢筋框架结构体系,建筑面积约6500m2,建筑物平面为V字形。走廊宽度2.4m,标准层高3.6m,室内外高差0.45m,其它轴网尺寸等详见平面简图。三、设计资料1、气象条件本地区基本风压 0.40KN/,基本雪压0.35KN/2、抗震烈度:7度第一组,设计基本地震加速度值0.01g3、工程地质条件建筑地点冰冻深度0.7M;建筑场地类别:类场地土;建筑地层一览表(标准值)序号岩 土分 类土层深度(M)厚度范围(M)地基承载力fk(KPa)桩端阻力(KPa)桩周摩擦力(KPa)1杂填土0.0-0.50.51102粉土0.5-1.51.0170103粗砂1.5-4.53.0250254砾砂4.5-340240030注:1)地下稳定水位居地坪-6M以下;2)表中给定土层深度由自然地坪算起。4、屋面做法:防水层:二毡三油或三毡四油结合层:冷底子油热马蹄脂二道保温层:水泥石保温层(200mm厚)找平层:20mm厚1:3水泥砂浆结构层:100mm厚钢筋砼屋面板板底抹灰:粉底15mm厚5、楼面做法:水磨石地面: 120现浇砼板 粉底(或吊顶)15mm厚6、材料梁、柱、板统一采用混凝土强度等级为C30,纵筋采用HPB335,箍筋采用HPB235,板筋采用HPB235级钢筋四、建筑要求建筑等级:耐火等级为级抗震等级为级设计使用年限50年五、采光、通风、防火设计1、采光、通风设计在设计中选择合适的门窗位置,从而形成“穿堂风”,取得良好的效果以便于通风。2、防火设计本工程耐火等级为二级,建筑的内部装修、陈设均应做到难燃化,以减少火灾的发生及降低蔓延速度,公共安全出口设有三个,可以方便人员疏散。因该为旅馆的总高度超过21m属多层建筑,因而根据高层民用建筑设计防火规范(2001版GB50045-95)规定,楼梯间应采用封闭式,防止烟火侵袭。在疏散门处应设有明显的标志。各层均应设有手动、自动报警器及高压灭火水枪。六、建筑细部设计1、建筑热工设计应做到因地制宜,保证室内基本的热环境要求,发挥投资的经济效益。2、建筑体型设计应有利于减少空调与采暖的冷热负荷,做好建筑围护结构的保温和隔热,以利节能。3、采暖地区的保温隔热标准应符合现行的民用建筑节能设计标准的规定。4、室内应尽量利用天然采光。5、客房之间的送风和排风管道采取消声处理措施。6、为满足防火和安全疏散要求,设有三部楼梯。7、客房内的布置与装修以清新自然为主,卫生间的地面铺有防滑地板砖,墙面贴瓷砖。七、参考资料总图制图标准(GB50103-2001)房屋建筑制图统一标准(GBJ50001-2001)建筑结构制图标准(GBJ50105-2001)高层民用建筑设计防火规范(GB50045-95)民用建筑设计通则(JGJ37-87)建筑结构荷载规范(GB50009-2001)砌体结构设计规范(GB50003-2001)混凝土结构设计规范 (GB50010-2002)钢筋混凝土高层建筑结构设计与施工规程(JGJ3-91)建筑地基基础设计规范(GB50007-2001)建筑抗震设计规范(GB50011-2001)第二章 结构设计第一节 框架结构的设计一、工程概况旅馆为六层钢筋框架结构体系,建筑面积约6500m2,建筑物平面为V字形。底层层高3.9m,其它层为3.6m,室内外高差0.45m,因毕业设计未给定0.000标高所对应绝对标高,框架平面柱网布置如图21所示:图2-1 框架平面柱网布置二、 设计资料1、 气象条件基本风压0.40N/m2,基本雪压0.35 N/m22、 抗震设防烈度7度第一组,设计基本地震加速度值为0.01g3、 工程地质条件 地层由杂填土、粉土、粗砂、砾砂组成,地质情况见表2-1,地下稳定水位距地坪6m以下。 建筑地层一览表 表2-1序号岩 土分 类土层深度(M)厚度范围(M)地基承载fk(KPa)桩端阻力qp(KPa)桩周摩擦力qs(KPa)1杂填土0.0-0.50.51102粉 土0.5-1.51.0170103粗 砂1.5-4.53.0250254砾 砂4.5-340240030注:1)地下稳定水位居地坪-6M以下;2)表中给定土层深度由自然地坪算起。4、 屋面及楼面做法屋面做法:防水层:二毡三油或三毡四油结合层:冷底子油热马蹄脂二道保温层:水泥石保温层(200mm厚)找平层:20mm厚1:3水泥砂浆结构层:120mm厚钢筋砼屋面板板底抹灰:粉底15mm厚楼面做法:水磨石地面: 120现浇砼板 粉底(或吊顶)15mm厚5、 材料砼强度等级为C30,纵筋HRB335 篐筋HPB2356、 设计依据1、建筑地基基础设计规范GB500072001 2、建筑结构荷载规范GB500092001 3、混凝土结构设计规范GB5000102002 4、建筑抗震设计规范GB50001120015、混凝土设计规范理解与应用北京:中国建筑工业出版社20026、混凝土结构设计规范算例中国建筑工业出版社20037、房屋结构毕业设计指南第二节 框架结构设计计算一、梁柱面、梁跨度及柱高的确定1、 初估截面尺寸板厚:取=97.5mm 取120mm横梁:高=()6900=862.5575 取600mm纵梁:高=()6900=487.5325 取500mm梁宽:b=() 且=11.5为了便于施工,统一取梁的宽度b=250mm2、 框架柱的截面尺寸根据柱的轴压比限值,按下列公式计算(1)柱组合的轴压力设计值注: 考虑地震作用组合后柱轴压力增大系数按简支状态计算柱的负载面积折算在单位建筑面积上的重力荷载代表值,可近似取14kN/ m2 为验算截面以上的楼层层数(2)注: 为框架柱轴压比限值,本方案为三级框架,则取0.9为混凝土轴心抗压强度设计值,本方案为C30混凝土,则取14.3kN/ 2(3)计算过程对于边柱:=1.313.5145=1228.5(kN)=1228.5103/0.914.3=95454.55(mm 2)对于内柱:=1.218.18145=1527.12(kN)=1527.12103/0.914.3=118657.34(mm 2)因此:取柱bh=500mm500 mm即可满足设计要求 柱:一、二、三、四、五层,bh500mm500mm 梁:梁编号见图2-2其中:L1:bh250mm600mm L2:bh250mm600mmL3:bh250mm600mmL4:bh250mm400mmL5:bh250mm500mmL6:bh250mm500mm图2-2 框架梁编号3、 梁的计算跨度 如图2-3所示,框架梁的计算跨度以上柱柱形心线为准,由于建筑轴线与墙重合,故建筑轴线与结构计算跨度不同。图2-3 梁的计算跨度4、 柱高度底层高度h3.9m+0.45m4.35m,其中3.9m为底层层高,0.45为室内外高差。其它柱高等于层高即3.6m,由此得框架计算简图(图2-4)。图2-4 横向框架计算简图及柱编号二、载荷计算1、 屋面均布恒载按屋面得做法逐项计算均布载荷,计算时注意:吊顶处布做粉底,无吊顶处做粉底,近似取吊顶粉底为相同重量。二毡三油防水层 0.35 kN/冷底子油两道结合层 0.05 kN/ 200 mm厚水泥石保温层 0.26.5=1.3 kN/20 mm厚1:3水泥砂浆找平层 0.0220=0.4 kN/120 mm钢筋砼屋面板结构层 0.12025=3 kN/ 粉底或吊顶 0.5 kN/共 计 5.6kN/屋面恒载标准值为:(73.9+0.25)(6.92+2.4+0.25)5.6=2538KN2、 楼面均布恒载按楼面做法逐项计算水磨石地面 0.65KN/120mm厚钢筋混凝土整浇层 0.1225=3 KN/粉底或吊顶 0.5 KN/共计 4.15 KN/ 楼面恒载标准值为:(73.9+0.25)(6.92+2.4+0.25)4.15=1881 KN3、 屋面均布活载计算重力载荷代表值时,仅考虑屋面雪载荷0.35 KN/由于屋面雪荷载0.35 KN/ 0.5 KN/则屋面均布活荷载取0.5 KN/则屋面荷载标准值为 0.5(73.9+0.25)(6.92+2.4+0.25) =226 kN4、 楼面均布活荷载楼面均布活荷载对旅馆的一般房间为1.5kN/m2,会议室、走廊、楼梯、门厅等处为2.0KN/m2。为方便计算,此处偏安全地统一取均布载荷为2.0KN/m2。楼面均布活荷载标准值为:2.0(73.9+0.25)(6.92+2.4+0.25)=906kN5、 梁柱自重(包括梁侧、梁底、柱得抹灰重量)如表12所示梁侧、梁底抹灰、柱周抹灰,近似按加大梁宽及柱宽考虑。例: 梁的净长为则每根的重量为:其它梁柱自重见表2-2 梁柱自重 表2-2 编号截面长度m根数每根重量kN0.250.66.27545=2027.30.250.62.1525=109.40.250.66.275125=6027.30.250.42.1565=306.20.250.53.4145=7012.3编号截面长度m根数每根重量kN0.250.53.4145=7012.30.50.54.3584=3231.70.50.53.6844=12826.26、 墙体自重墙体均为250厚填充墙,两面抹灰,近似按加厚墙体考虑抹灰重量。单位面积墙体重量为: 0.295.5=1.6kN/墙体自重计算见表23 墙体自重 表23墙体每片面积()片数重量kN底层纵墙3.43.426481底层横墙3.36.311366标准层纵墙3.13.427455标准层横墙36.3164847、 载荷分层总汇顶层重力载荷代表值包括:层面载荷,50屋面雪荷载,纵横梁自重,半层柱自重,半层墙的自重。其它层重力载荷代表值包括:楼面恒载50楼面均布活载荷,纵、横梁自重,楼面上、下各半层的柱及纵墙的自重。将前述分项载荷相加,得集中于各层楼面得重力载荷代表值如下:第五层:第四层:第三层:第二层:第一层:建筑物总重力荷载代表值 为:=67094.45 KN质点重力载荷值见图2-5图2-5 质点重力荷载值三、水平地震力作用下框架的侧移验算1、 横梁线刚度混凝土C30,Ec=3103 kN/在框架结构中,现浇层的楼面可以作为梁的有效翼缘,增大梁的有效刚度,减小框架侧移,为考虑这一有利作用,在计算梁截面惯性矩时,对现浇楼面的便框架梁取I=1.5I0(I0为梁的截面惯性矩),对中框架梁取I=2.0I0,若为装配楼板,带现浇层的楼面,则对边框架梁取I=1.2I0,对中框梁取I=1.5I0。横梁的线刚度计算结果列于表2-4:横梁线刚度 表2-4梁号截面跨度惯性矩边框架梁中框架梁0.250.66.774.510-36.7510-32.991040.250.62.654.510-36.7510-37.641040.250.66.771.310-3910-33.991040.250.42.652.610-32.610-32.941040.250.53.902.610-33.910-331045.210-341040.250.53.902.610-33.910-331045.210-341042、 横向框架柱的侧移刚度D值柱线刚度列于表2-5,横向框架柱侧移刚度D值计算见表2-6柱线刚度 表2-5柱号截面柱高度惯性矩线刚度(knm)0.50.54.355.2110-33.591040.50.53.65.2110-34.34104横向框架柱侧移刚度D值计算 表2-6 项目柱 层 类型数 根数底层边框架边柱0.830.47106304边框架中柱5.120.789178454中框架边柱1.110.5181171612中框架中柱1.930.6181397712422216二三四五层边框架边柱0.690.257103284边框架中柱2.450.55221044中框架边柱0.920.3151265912中框架中柱1.60.44517884124962443、 横向框架自振周期按顶点位移法计算框架的自振周期。顶点位移法时求结构基频得一种近似方法,将结构按质量分布情况简化成无限质点的悬臂直杆。导出以直杆顶点位移表示的基频公式,这样,只要求出结构的顶点水平位移,就可按下式求得结构的基本周期 。式中:基本周期调整系数,考虑填充墙使框架自振周期减小的影响,取0.8框架的定点位移。在未求出框架的周期前,无法求出框架的地震力及位移。是将框架的重力荷载视为水平作用力,求得假想框架的定点位移,然后由求出,再用求得框架结构的底部剪力,进而求出框架各层剪力和结构真正的位移。横向框架顶点位移计算见表2-7:横向框架顶点位移 表27层次层间相对位移 5437743774962440.0090.1524494993264962440.0180.14334949142754962440.0290.12524949192244962440.0390.09614991242154222160.0570.057 4、 横向地震作用计算在类场地,7度设防烈度,结构的特征周期和地震影响系数为:=0.35(s)=0.08由于,应考虑顶点附加地震作用。由于固按计算按底部剪力法求得的基底剪力,若按:分配给各层质点,则水平地震作用呈倒三角形分布。对一般层,这种分布基本符合实际,但对结构上部,水平作用小于按时程分析法和振型分析法求得的结果,特别对周期较长的结果相差更大,地震的宏观震害也表明,结果上部往往震害严重,因此引入,即顶部附加地震作用系数考虑顶部地震力的加大。考虑了结构周期和场地的影响,且使修正后的剪力分布与实际更加吻合。因此引入n = =0.080.53+0.07=0.112 结构横向总水平地震作用标准值:=注:为多质点体系结构等效总重力荷载按规定应取总重力荷载代表值得85% 顶点附加水平地震作用: 各层横向地震剪力计算见表2-8,其中:格层横向地震作用及楼层地震剪力 表28层次53.618.754377820690.298426.82426.8243.615.154949749770.272273.66700.4833.611.554949571610.208209.27909.7523.67.954949393440.143143.861053.6114.354.354991217110.07979.481133.09注:表中第五层中加入了横向框架各层水平地震作用和地震剪力见图2-6图2-6横向框架各层水平地震作用和地震剪力(a)水平地震作用 (b)地震剪力5、 横向框架抗震变动验算多遇地震作用下,层间弹性位移验算见表29,层间弹性相对转角均满足要求 横向变形验算 表2-9层次层间剪力层间刚度层间位移层高层间相对弹性转角5426.824962440.000863.61/41864700.484962440.001413.61/25533909.754962440.001833.61/196721053.614962440.002123.61/169811133.094222160.002684.351/1623四、水平地震作用下,横向框架得内力分析以中框架为例进行计算,边框架和纵向框架的计算方法、步骤与横向中框架完全相同。故不再在赘述。框架柱剪力及弯矩计算,采用D值法,其结果见表210框架柱剪力及弯矩计算表 表2-10层 次54321层 高3.63.63.63.64.35层间剪力426.82700.48909.751053.61133.1层间刚度496244496244496244496244422216L轴柱(Q)126591265912659126591171611182327310.920.920.920.921.110.350.400.450.500.6425.7438.8845.5448.648.5513.8625.9237.2648.686.3M轴柱(P)178841788417884178841397715233338381.61.61.61.61.930.370.420.470.50.5734.0252.262.9668.471.0819.9837.855.8468.494.22注:框架梁端弯矩、剪力及柱轴力见表211地震作用下框架深端弯矩及柱轴力 表2-11层次54321LM跨6.7756.7756.7756.7756.77525.7452.7471.4685.8697.1519.5941.5658.0171.5380.316.6913.9219.1123.2326.19MP跨2.652.652.652.652.6514.4330.6242.7552.7159.1714.4330.6242.7552.7159.1710.8123.1132.2639.7844.66柱轴力6.6920.6139.7262.9589.144.126.6927.367.02129.97中柱两侧梁端弯矩按深线刚度分配,地震力作用下框架弯矩见图2-7,剪力及柱轴力见图2-8图2-7 地震作用下框架弯矩图(kNm)图2-8地震力作用下框架梁端剪力及柱轴力(kN)五、竖向荷载作用下横梁框架的内力分析仍取中柱架计算1、荷载计算第五层梁的均布线荷载LM跨屋面均布恒载传给梁 5.63.9=21.84kN/m横梁自重(包括抹灰) 0.290.625=4.35kN/m恒载 26.19 kN/mMP跨屋面均布恒载传给梁 5.63.9=21.84kN/m横梁自重(包括抹灰) 0.290.425=2.9kN/m恒载 24.74 kN/m第五层活载: 0.53.9=1.95kN/m第一、二、三、四层梁均布线荷载:LM跨楼面均布恒载传给梁 4.153.9=16.185 kN/m横梁自重(包括抹灰) 0.290.425=2.9 kN/m内横墙自重包括抹灰 0.295.5(3.6-0.6)=4.785 kN/m恒载 23.87 kN/mMP跨楼面均布恒载传给梁 4.153.9=16.185 kN/m横梁自重(包括粉刷) 0.290.425=2.9 kN/m恒载 19.085 kN/m第一、二、三、四层活载 2.03.9=7.8 kN/m第一、二、三、四层集中荷载纵梁自重(包括抹灰) 0.290.5253.9=14.14 kN纵墙自重(包括抹灰) 0.295.53.9(3.6-0.5)=19.28kN柱自重(包括抹灰) 0.540.543.625=26.244 kN总计 P = 59.67 kN第一层柱自重:0.540.544.3525=31.7 kN中框架恒载及活荷载见图2-9 见图2-9 框架竖向荷载示意(a)恒载示意(b)活载示意2、用弯矩分配法计算框架弯矩竖向荷载作用下框架的内力分析,除活荷载较大的工业厂房外,对一般的工业与民用建筑可不考虑活荷载的不利布置,这样求得的框架内力,梁跨中弯矩较考虑活荷载不利布置法求得的弯矩偏低,但当荷载占总荷载比例较小时,其影响很小,若活荷载占总荷载比例较大,可在截面陪筋时,将跨中弯矩乘1.11.2的放大系数予以调整。(1)固端弯矩计算将框架梁视为两端固定梁计算固端弯矩,计算结果见表2-12固端弯矩计算表2-12LM跨MP跨简 图固端弯矩简 图固端弯矩(2)分配系数计算考虑框架计算性,取半框架计算,半框架的梁柱线刚度如图2-10所示,切断的横梁线刚度为原来的一倍,分配系数按与节点连接的转动刚度比值计算.图2-10半框架梁柱刚度示意(kN/m)例:L柱顶层节点。(3)传递系数远端固定,传递系为1/2 远端滑动铰支传递系数为-1(4)弯矩分配恒荷载作用下,框架的弯矩分配计算见图2-11,框架的弯矩图见图2-13活荷载作用下,框架的弯矩分配计算见图2-12 框架的弯矩图见图2-14上柱 下柱 右梁 左梁 上柱 下柱 右梁48.1127.58-72.991.471.221.36-3.6-0.451.35-1.12-1.2515.66-11.9433.2327.4830.59-91.380.89-22.55-20.43-37.85-0.31-0.28-0.12-0.34-0.631.68-0.89-0.8-0.33-0.9315.30-12.3-23.88-21.47-8.81-25.9691.3-11.736.7441.85-78.520.430.430.39-3.470.681.54-7.2-7.2-6.6115.6616.62-11.331.3231.3228.76-91.383.38-34.12-18.18-31.090.540.580.20.58-3.31-0.471.883.073.351.133.3514.38-12.98-12.3-22.6-24.6-8.33-24.691.3-11.1737.2638.89-76.182.442.442.24-5.23-3.61.73-6.93-6.93-6.3115.6615.66-11.331.3231.3228.67-91.383.06-31.81-18.11-30.9-0.31-0.340.12-0.34-3.161.682.593.453.751.273.7514.38-12.3-12.3-22.6-24.6-8.33-24.691.3-11.1747.6633.27-80.860.210.210.190.48-3.472.38-10.45-10.45-9.5926.1015.66-11.331.3231.3228.76-91.384.59-28.5-17.18-39.271.551.690.571.69-4.81.88-2.594.765.181.755.1814.38-12.3-18.95-22.60-24.60-8.33-24.6091.3-11.1783.82-54.13-35.53-1.24-1.35-6.460.452.59-4.67-5.18-1.7624.00-12.3-34.81-37.89-12.83100.18-14.4867.44-67.443.963.65-5.23-2.380.960.8915.56-17.4152.1947.99-100.180.2980.2680.1100.3240.3640.3010.3350.2820.3070.1040.3070.3430.3430.3150.2820.3070.1040.3070.3430.3430.3150.2820.3070.1040.3070.3430.3150.4070.4430.150.5210.4790.343图2-11恒载弯矩分配图(kNM)13.19-11.28上柱 下柱 右梁 左梁 上柱 下柱 右梁0.2980.2860.1000.3240.3640.3010.33514.788.89-23.770.50.410.46-1.2-0.17-0.50-0.41-0.465.12-3.7610.868.9810.00-29.8426.75-7.06-7.54-11.91-0.01-0.01-0.00-0.01-0.230.5-0.34-0.3-0.12-0.375-3.87-7.51-6.75-2.77-8.1629.84-4.650.2820.3070.1040.3070.3430.3430.31512.1313.34-25.310.320.320.43-1.15-0.250.46-2.4-2.4-2.215.125.43-3.5510.2410.249.40-29.8427.39-10.86-6.88-9.990.130.140.050.14-1.11-0.190.470.921.000.341.004.7-4.08-3.87-7.10-7.73-2.62-7.7329.84-4.6512.9312.34-25.240.470.470.43-0.61-0.120.43-2.29-2.292.115.125.12-3.5510.2410.249.40-29.840.2820.3070.1040.3070.3430.3430.31527.37-10.03-6.9-10.440.130.140.050.14-1.060.500.090.860.930.320.934.70-3.87-3.87-7.10-7.73-2.62-7.7329.84-4.6510.6913.71-24.370.710.710.65-1.00-1.150.0808-1.21-1.21-1.111.955.12-3.5510.2410.249.40-29.8426.94-11.07-7.26-8.61-0.1-0.11-0.04-0.11-0.560.470.460.160.170.050.174.70-3.87-1.4-7.10-7.73-2.62-7.7329.84-4.656.95-5.291.660.340.370.12-0.920.090.850.920.311.79-3.871.79-3.877.46-1.146.49-6.490.090.09-0.610.43-2.00-1.835.12-1.293.893.57-7.460.4070.4430.150.5210.4790.2820.3070.1040.3070.3430.3150.343图2-12 活载弯矩分配图(kNM)4.49-3.53图2-13恒荷载作用下框架弯矩图(kN/m)图2-14活荷载作用下框架弯矩图(kN/m)3、梁端剪力及柱轴力计算 梁端剪力 梁上均布荷载引起的剪力, 梁端弯矩引起的剪力, 柱轴力 式中: 梁端剪力 节点集中力及柱自重 以LM跨四、五层梁在恒荷载作用下,梁端剪力及柱轴力计算为例。由框架竖向荷载示意图查得梁上均布荷载为四层:集中荷载:柱自重:五层:由恒载作用下框架弯矩图查得:四层梁端弯矩 五层梁端弯矩 括号内为调幅后的数值五层两端剪力调幅前 调幅后 同理可得四层梁端剪力调幅前 调幅后 五层L柱柱顶记柱底轴力四层L柱柱顶及柱底轴力其它梁端剪力及柱轴力 见表2-13恒载作用下梁端剪力及柱轴里(kN) 表2-13层 次54321荷载引起剪力LM跨88.7280.8680.8680.8680.86MP跨32.7825.2825.2825.2825.28弯矩引起剪力LM跨-2.24(-1.94)-0.55(-0.44)-1.02(-0.81)-0.72(-0.57)-1.17(-0.93)MP跨00000总剪力LM跨86.3(86.78)80.31(80.42)79.84(80.04)80.14(80.29)79.69(79.93)91.14(90.66)81.41(81.3)81.88(81.69)81.58(81.43)82.03(81.79)MP跨23.7825.2825.2825.2825.28柱轴力A柱86.78226.87366.58506.54646.14112.98253.07392.78532.74677.84B柱123.92290.28457.11623.64790.62150.12316.48483.31649.84822.32注:括号内为调幅后的剪力值活荷载作用下梁端剪力及柱轴力计算见表2-14活载作用下梁端剪力及柱轴里(kN) 2-14层 次54321荷载引起剪力LM跨6.6126.4226.4226.4226.42MP跨2.5810.3410.3410.3410.34弯矩引起剪力LM跨-0.07(-0.05)-0.38(-0.30)-0.31(-0.25)-0.31(-0.25)-0.44(-0.35)MP跨00000总剪力LM跨6.54(6.56)26.04(26.12)26.11(26.17)26.11(26.17)25.98(26.07)6.68(6.66)26.8(26.72)26.73(26.67)26.73(26.67)26.86(26.77)MP跨2.5810.3410.3410.3410.34柱轴力A柱=6.5632.6858.8585.02111.09B柱=9.2646.483.47120.54157.74注:括号内为调幅后的剪力值六、内力组合1、框架梁内力组合在恒荷载和活荷载作用下,跨间可近似取跨中的代替。式中:梁左右端弯矩,见图2-13、2-14括号内的数值,跨中若小于,应取在竖向荷载与地震力组合时,跨间最大弯矩采用数解法计算,则及其的具体取值见表2-15:MGE及Xi值计算 表2-15项 层 目 跨 次1.2(恒+0.5活)1.3地震qLM跨567.8583.8133.4625.4732.6489.3394.1368.5654.0333.32385.2492.8892.975.41287.5393.19111.6292.99181.4876.61126.3104.4MP跨534.934.918.7618.7630.86419.9719.9739.8139.8127.58320.720.755.5855.58220.7520.7568.5268.52123.2323.2316.9276.92项 层 目 跨 次LM跨56.77599.38/116.773.05/3.58117.08/107.83494.07/130.262.82/3.91112.01/96.72386.9/136.592.61/4.1120.98/101.81281.84/142.242.46/4.27124.58/104.437179.54/147.642.39/4.43139.75/119.32MP跨52.65026.73/55.050.87/1.78-4.56/-4.5746.5/66.590.24/2.4120.6/20.63-5.4/78.49-0.2/2.8534.88/34.882-15.17/88.26-0.55/3.247.77/47.771-21.51/94.6-0.78/3.4353.69/53.69注:当或时,表示最大弯矩发生在支座处。应取或,用计算重力荷载作用下梁端的弯矩水平地震作用下梁端弯矩 竖向荷载与地震荷载共同作用下梁端反力梁内力组合表 表2-16层次位置内力荷载类别竖向何载组合竖向何载与地震力组合恒载活载地震何载1.2+1.41.2(+0.5)1.35-53.95-5.1925.74-72.01-34.39-101.3286.786.566.69113.32116.77-67.06-5.5619.59-88.26-109.28-58.3491.146.686.69118.72122.07-28.42-1.3314.43-35.97-16.14-53.6632.782.5810.8142.9554.94跨中LM89.765.81115.85177.08107.83MP-6.7/10.80.38/0.86-7.5/14.24-64.69-19.552.74-104.93-20.77-157.8980.4226.1213.92133.07130.27-67.67-21.5541.56-111.37-148.16-40.1181.4126.813.92135.21131.87-13.74-5.8130.62-24.6219.83-59.7825.2810.3423.1144.8166.85跨中LM70.7824.23118.86112.0196.72MP3.01/8.371.04/3.425.07/14.83-60.94-20.1971.46-101.397.66-178.1480.0426.1719.11132.69136.59-66.45-21.958.01-110.4-168.29-17.4781.8826.7319.11135.68139.14-14.49-5.5242.75-25.1235.88-76.2825.2810.3432.2644.8178.48跨中LM73.2723.71121.12120.98101.81MP2.26/8.371.33/3.424.57/14.82-62.82-20.2585.86-103.7424.08-199.1580.2926.1723.23132.986142.25-66.7-21.9171.53-110.71-186.18-0.281.5826.7323.23135.32144.13-14.54-5.552.71-25.1547.78-89.2725.2810.3439.7844.8188.25跨中LM72.223.67119.78124.58104.44MP2.21/8.371.35/3.424.45/14.8层次位置内力荷载类别竖向何载组合竖向何载与地震力组合恒载活载地震何载1.2+1.41.2(+0.5)1.31-58.39-19.0297.15-96.6944.82-207.7879.9326.0726.19132.41145.61-64.71-21.480.31-107.61-194.913.9182.0326.8626.19136.04148.6-16.34-6.0359.17-28.0553.7-100.1526.2810.3444.6644.8194.6跨中LM75.4124.54124.85139.75119.32MP0.41/8.370.82/3.421.64/14.8注:表中弯矩的单位为kNm,剪力的单位为kN。表中跨中弯矩中组合弯矩未填写处均为跨间最大弯矩发生在支座处,其值与支座正弯矩组合值相同。柱L、M内力组合见表2-17、2-18 L柱内力组合表 表2-17层次位置内力荷载类别竖向何载组合竖向何载与地震力组合恒载活载,地震何载1.2+1.41.2(+0.5)1.35柱顶M67.446.4925.7490.0151.36118.28N86.786.566.69113.32116.7799.375柱底M-47.66-10.6913.86-72.16-45.59-81.62N112.986.656.69144.76130.82148.214柱顶M33.2713.7138.8859.12-2.3998.69N226.8732.6820.61317.996265.059318.65柱底M-37.26-12.3925.92-62.81-18.77-86.17N253.0732.6820.61349.44295.5350.093柱顶M38.8912.3445.5463.944-5.13113.27N366.5858.8539.72522.286423.57526.84柱底M-36.74-12.1337.26-61.07-2.93-99.8N392.7858.8539.72553.73455.01558.282柱顶M41.8513.3448.668.9-4.96121.4N506.5485.0262.95726.88577.03740.7柱底M-48.11-14.7848.6-78.42-3.42-129.78N532.7485.0262.95758.32608.47772.14层次位置内力荷载类别竖向何载组合竖向何载与地震力组合恒载活载,地震何载1.2+1.41.2(+0.5)1.31柱顶M27.588.8948.5545.67-24.63101.6N646.14111.0989.14930.89726.14957.904柱底M-13.79-4.4986.3-22.8392.95-131.43N667.84111.0989.14968.93764.18995.94注: 表中弯矩单位为kNm,轴力单位为kN。M柱内力组合表 表2-18层次位置内力荷载类别竖向何载组合竖向何载与地震力组合恒载活载,地震何载1.2+1.41.2(+0.5)1.35柱顶M-54.13-5.2934.02-72.362-112.36-23.9N123.929.264.12161.67148.9159.62柱底M39.278.6119.9859.1878.2626.32N150.129.264.12193.11180.34191.064柱顶M-28.5-11.0752.2-49.7-108.727.02N290.2846.46.69413.3367.48384.87柱底M30.910.4437.851.792.48-5.8N316.4846.46.69444.74398.92416.313柱顶M-31.81-10.0362.96-52.21-126.0437.66N457.1183.4727.3665.39563.12634.1柱底M31.099.9955.8451.29155.89-29.29N483.3183.4727.3696.83594.56665.542柱顶M-34.12-10.8668.4-56.15-136.3841.46N623.64120.5467.02917.12733.57907.82柱底M37.8511.9168.462.09141.49-36.35N649.84120.5467.02948.56765.01939.261柱顶M-22.55-7.0671.08-36.94-123.761.11N790.62157.74129.971169.58874.431212.35柱底M11.283.5394.2218.48138.14-106.83N822.32157.74139.971207.62912.471250.39注: 表中弯矩单位为kNm,轴力单位为kN。七 截面设计1、承载力抗力调整系数考虑地震作用时,结构构件的截面设计采用下面的表达式:式中 -承载力抗震调整系数 取值见表2-19 S-地震作用效应或地震作用效应与其它荷载效应的基本组合 R结构构件的组合注意在截面配筋时,组合表中与地震力组合的内力均应乘以后再与静力组合的内力进行比较,挑选出最不利内力 承载力抗震调整系数 表2-19材料结构构件受力状态钢筋混凝土梁受弯0.75梁轴压比0.15的墙偏压0.75轴压比的墙偏压0.80抗震墙偏压0.85各类构件受剪、偏压0.852、横向框架梁截面设计以第一层梁为例,梁控制截面的 内力如图2-15所示,图中单位为 单位为砼强度等级C30 ,纵筋为HRB335,箍筋为HPB235,图2-15 第一层梁内力示意(1) 梁的正截面强度计算见表2-20 框架梁正截面强度计算 表2-20一层截面M()-207.7844.82139.75-194.913.91-100.1553.714.84bh0 (mm2)250565250365()36.437.1523.65M0 ()-171.38.42139.75-157.7-23.24-76.530.0514.84 ()-128.56.31104.81-118.3-17.43-57.3722.5411.130.1130.010.090.100.020.120.050.020.120.010.100.110.020.130.050.020.941.000.950.950.990.940.980.99(mm2)780.536.1628.7714.698.8541.9204.199.5选 筋318318318318318316216216实配面积(mm2)763763763763763603402402%0.540.540.540.540.540.660.440.44二层截面M()-199.1524.08124.58-186.18-0.2-89.2747.7814.84bh0 (mm2)250565250365()35.5636.0322.06M0 ()-163.5-11.48124.58-150.1-35.83-67.2125.0614.84 ()-122.7-8.6193.44-112.6-50.4119.2911.130.11-0.0080.080.100.110.040.020.11-0.0080.090.10.110.040.020.941.00.960.950.940.980.99(mm2)742.7-49557.2678.2471.917499.5选 筋318316316318318316216216实配面积(mm2)763603603763763603402402%0.540.430.430.540.540.660.440.44三层截面M()-178.17.66120.98-168.3-17.47-76.2834.8814.84bh0 (mm2)250565250365()34.1534.7919.62M0 ()-143.9-26.49120.98-133.5-56.6615.2614.84 ()-107.99-19.8790.74-100.13-42.511.4511.130.09-0.020.080.090.090.020.020.10-0.020.080.090.090.020.020.951.010.950.950.950.990.99(mm2)648.8-112.5540.4599.2393.9102.399.5选 筋318316316318318216216216实配面积(mm2)763603603763763402402402%0.540.430.430.540.540.440.440.44四 层截面M()-157.89-20.77112.01-148.16-40.11-59.7819.8314.84bh0 (mm2)250565250365()32.5732.9716.65M0 ()-125.3112.01-115.2-43.143.1914.84 ()-93.9984.001-86.39-32.352.3911.130.080.070.080.070.0050.020.090.080.080.030.0050.020.960.960.960.971.00.99(mm2)560.7498.7513.4296.321.199.5选 筋316316218316316216216216实配面积(mm2)603603509603603402402402%0.430.430.360.430.430.440.440.44五层截面M()-101.3-34.39117.08-109.3-58.34-53.66-16.1414.22bh0 (mm2)250565250365()29.1930.5213.74M0 ()-72.13117.08-78.76-39.9314.22 ()-54.187.81-59.07-39.9410.670.050.080.050.060.020.050.080.050.060.020.980.960.970.970.99(mm2)316.5522.2346.4273.595.3选 筋218218316218218216216216实配面积(mm2)509509603509509402402402%0.360.360.430.360.360.440.440.44(2)梁的斜截面强度计算为了防止梁在弯曲屈服前先发生剪切破坏,截面设计时,对剪力设计进行调整如下: 剪力增大系数,对三级框架取1.1梁的净跨,对第一层 ,梁在重力荷载作用下,按简支梁分析的梁端截面剪力设计值,分别为梁左、右端顺时针方向和逆时针方向截面组合弯矩值,由表-,查得。LM跨:顺时针方向 逆时针方向 MP跨:顺时针方向 逆时针方向 计算中取顺时针或逆时针方向中较大者。LM跨:MP跨:考虑承载力抗震调整系数调整后的剪力值大于组合表中的静力组合的剪力值,故按调整后的剪力值进行斜截面计算。梁的斜截面强度计算见下表表2-21梁斜截面强度计算 表2-21截面支座L右支座M左支座M右设计剪力145.61148.694.6123.77126.3180.41调整后剪力146.57146.57108.35124.58124.5892.1250565250565250365箍筋直径肢数(n)50.350.350.3箍筋间距100100100截面支座L右支座M左支座M右0.40.40.40.20.20.23、柱截面设计以第一、二层L,M柱为例,对图2-16中的,截面进行设计。砼强度等级C30 ,纵筋为HRB335,箍筋为HPB235,图2-16 柱计算截面示意(1)轴压比验算轴压比限值见表2-22轴压比限值 表2-22 类别抗震等级一二三框架柱0.70.80.9框支柱0.60.70.8由L、M柱内力组合表2-17、2-18查得 均满足轴压比限值得要求(2)正截面承载力的计算框架结构的变形能力与框架的破坏机制密切相关,一般框架梁的延性远大于柱,梁先屈服可能使整个框架体系有较大的内力重分布和能量消耗能力,极限层间位移增大,抗震性能较好,若柱形成了塑性铰,则会伴随产生极大的层间位移,危及结构承受垂直荷载的能力并可能使结构成为机动体系。因此,在框架设计中,应体现“强柱弱梁”即一、二、三级框架的梁柱节点处除框架支层最上层的柱上端,框架顶层和柱轴压比小于0.15外,柱端弯矩设计值应符合:(为强柱系数,一级框架取1.5,二级框架取1.2,三级框架为1.1)本设计为三级框架故:地震往复作用,两个方向的弯矩设计均满足要求,当柱考虑顺时针弯矩和时,梁应考虑反时针方向弯矩和,反之亦然。若采用对称配筋,可取两组中较大者计算配筋。由于框架的变形能力。同时伴随着框架梁铰的出现。由于塑性内力重分布,底层柱的反弯点具有较大的不确定性。因此,对三级框架底层柱考虑1.15的弯矩增大系数。第一层梁与L柱节点的梁端弯矩值由内力组合表2-16查得:左震 右震 取大值第一层梁与L柱节点的柱端弯矩值由内力组合表2-17查得:左震 右震 梁端取右震, 也取右震:取将与的差值按柱的弹性分析弯矩值之比分配给节点上下柱端(即,截面)对底层柱底的弯矩设计值考虑增大系数1.15根据L柱内力组合表2-17,选择最不利内力,并考虑上述各种调整及承载力抗震调整系数后,各截面控制内力如下:截面:截面:截面:第一层梁与M柱节点的梁端弯矩值由内力组合表2-16查得:左震 右震 取大值第一层梁与M柱节点的柱端弯矩值由内力组合表2-18查得:左震 右震 梁端取左震, 也取左震:取将与的差值按柱的弹性分析弯矩值之比分配给节点上下柱端(即,截面)对底层柱底的弯矩设计值考虑增大系数1.15根据M柱内力组合表2-18,选择最不利内力,并考虑上述各种调整及承载力抗震调整系数后,各截面控制内力如下:截面:截面:截面:截面采用对称配筋,具体配筋计算见表2-24、表2-25,表中,当时,取 ,当时,取 ;(大偏心受压)(小偏心受压)(大偏心受压)(小偏心受压)柱截面纵向钢筋的最小总配筋率(百分率) 表2-23类别抗震等级一二三四中柱和边柱1.00.80.70.6角柱、框支柱1.21.00.90.8柱正截面受压承载力计算见表2-24柱正截面受压承载力计算(L柱) 表2-24截面-M()105.0878.4282.2745.67121.1333.83N()617.17758.32766.32930.89796.76968.93()450043504350(2)500465500465500465()170.26103.41107.3649.06152.0334.91()139.5139.5139.5()0202020020()170.26123.41127.3569.06152.0354.91/98.78.71.00.920.940.61.00.521.01.01.01.01.01.0截面-1.161.21.191.221.171.24()197.16148.07150.9884.17177.1767.96()412.16363.07365.98299.17392.17282.96(=0.55)0.1860.230.230.280.240.29偏心性质大偏压大偏压大偏压大偏压大偏压大偏压 0 0 0 0 0 0选筋418418418实配面积21017101710170.8750.8750.875柱正截面受压承载力计算(M柱) 表2-25截面-M()116.7262.09102.0536.94127.0918.48N()612.01948.56699.541169.58729.981207.62()450043504350(2)500465500465500465()190.7265.46145.8831.58174.115.3()139.5139.5139.5()020020020()190.7285.46145.8851.58174.135.3/98.78.71.00.6961.00.51.00.4截面-1.01.01.01.01.01.01.141.221.171.241.141.29()217.62104.19171.0264.142199.2445.480()432.62319.19386.02279.14414.24260.48(=0.55)0.1840.2850.210.350.220.36偏心性质大偏压大偏压大偏压大偏压大偏压大偏压49.42 0 0 0 0 0选筋418418418实配面积21017101710170.8750.8750.875(3)斜截面承载力计算以第一层柱为例,剪力设计值按下式调整:式中:柱净高; ,分别为柱上下端顺时针或反时针方向截面组合的弯矩设计值,取调整后的弯矩值,一般层应满足,底层柱底应考虑1.15的弯矩增大系数。由正截面计算中第-、-截面的控制内力得:即=1.1柱的抗剪承载力能力 式中框架的计算剪跨比。,当3时,取=3。N考虑地震作用组合的框架柱轴向压力设计值,当时,取, ,取=3.0=0.314.3=1072.5kN,取由于:则按构造要求配筋,且柱受剪截面应符合如下条件即表2-26抗震等级箍筋最大间距箍筋最小直径一6d 10010二8d 1008三8d 150(柱根100)8四8d 150(柱根100)6(柱根8)4、节点设计 建筑结构抗震规范(GBJ11-89规定),对一、二级抗震等级的框架节点必须进行受剪承载力计算,而三级抗震等级的框架节点,仅按构造要求配筋,不再进行受剪承载力计算。第三节 基础设计设计基础的荷载包括:框架柱传来的弯矩,轴力和剪力(可取设计底层柱的相应控制内力)基础类型的选取由于本建筑物柱距为3900mm,因而采用柱下独立基础在框架柱内力计算中所选的筋LMPQ轴为一榀框架,该榀框架四根柱子,柱距分别为6775mm,2650mm,6775mm因而将柱分别做成柱下独立基础。一、荷载设计值1、外柱基础承受的上部荷载框架柱L传来: 梁自重:墙自重:地基梁传来: 2、内柱基础承受的上部荷载框架柱M传来: 梁自重:墙自重:地基梁传来:回填土重: 该工程框架层数不多,地基土较均匀且柱距较大,所以选择独立基础,根据地质报告,基础埋深需在粘土以下,取基础混凝土的强度等级为C30,钢筋采用HRB335 ,垫层100mm厚,C10素砼,每边比基础宽出100二、外柱独立基础的计算1、初步确定基底尺寸(1)选择基础埋深,(2)地基承载力的深度修正根据资料提供:, 、重度计算:杂填土:粘土: 粗砂: 则基础地面以上土的重度取平均重度:设基础宽度为2.5m (3)基础地面尺度先按中心荷载作用下计算基底面积:但考虑到偏心荷载作用应力分布不均匀,故将计算出的基底面积增大20%40%,取1.2 选用矩形即宽长:,满足要求:地基承载力不必对宽度进行修正:图2-17基础尺寸(4)地基承载力验算作用于基底中心的弯矩,轴力分别为: 故承受力满足要求(5)基础剖面尺寸的确定采用独立基础(6)冲切验算土壤净反力的计算:基底净反力:2、2、基础底面配筋计算基础在上部结构传来荷载与土壤净反力的共同作用,可把它倒过来,视为一均布荷载作用下支承于柱上的悬臂板。其弯矩及配筋计算柱边-截面弯矩为: -截面选16200-截面选16200三、内柱独立基础的计算1、初步确定基底尺寸(1)选择基础埋深(同外柱),(2)地基承载力对深度修正(同外柱) (3)基础地面尺度先按中心荷载作用下计算基底面积:取,满足要求地基承载力不必对宽度进行修正(4)地基承载力验算作用于基底中心的弯矩,轴力分别为: 故承受力满足要求(5)基础剖面尺寸的确定采用独立基础(6)冲切验算土壤净反力的计算:基底净反力:(不包括柱基础基回填土自重)土壤净反力计算:基础底面配筋计算同前基础在上部结构传来荷载与土壤净反力的共同作用,可把它倒过来,视为一均布荷载作用下支承于柱上的悬臂板。柱边-截面弯矩为: -截面选16200-截面选162002、基础梁配筋基础梁按构造配筋,选用其基础配筋的外柱选用 416 As=804 -截面对应的地基梁也选用416内柱选用 414 As=615 -截面对应的地基梁也选用414第四节 楼板设计一、楼板类型及设计方法的选择按受力特点,混凝土楼盖中的周边支承可分为单向板和双向板两类,只在一个方向弯曲或主要在一个方向弯曲的板,称为单向板,在两个方向弯曲且不能忽略任一方向弯曲的板称为双向板,在本方案中属于双向板,板平面布置见图2-19:图2-19板平面布置图二、荷载设计值一般层 (1)活荷载 (2)恒荷载 顶层 (1)活荷载 (2)恒荷载 三、计算跨度楼面板的弯矩计算 表2-27区格ABCD6.9752.42.46.9753.9453.9753.93.90.570.60.620.5618.662.12.118.866.780.880.886.78-30.81-3.55-3.55-30.81-30.81-3.55-3.55-30.81-21.61-2.56-2.65-21.61-21.61-2.56-2.65-21.61(1)内跨 (2)边跨 四、弯矩计算已如前述,跨中最大正弯矩发生在活荷载为棋盘式布置时,它可以简化为当内支座固支时作用下的跨中弯矩值与当内支座铰支时作用下的跨中弯矩值两者之和。支座最大负弯矩可近似按活荷载满布求得,即内支座固支时作用下的支座弯矩。 所有区格板按其位置与尺寸分为四类,计算弯矩时,考虑泊松比的影响取 A区格板:查表计算跨中正弯矩如表2-27屋面板的弯矩计算 表2-28区格ABCD6.9752.42.46.9753.9453.9753.93.90.570.60.620.5615.221.741.7415.225.230.690.695.23-29.38-3.39-3.39-29.38-29.38-3.39-3.39-29.38-20.61-2.44-2.44-20.61-20.61-2.44-2.44-20.61五、截面设计截面有效高度,选用的钢筋做为受力主筋,则(短跨)方向跨中截面的顶层板的弯矩计算 支座截面处均为101截面弯矩设计值;该板四周与梁整浇,故弯矩设计值应按如下折减:1、A区格的跨中截面与AA支座截面折减2、BC区格的跨中截面与AB,AC支座截面折减(两板的均小于1.5)3、D区格不予折减。计算配筋量时,取内力臂系数 截面配筋计算结果及实际配筋列与表2-29 楼面板的配筋计算 表2-29截面配筋实有跨中区格方向10118.660.8=14.937418120+8150754方向936.780.8=5.422928170295区格方向1012.10.8=1.68838190265方向930.880.8=1.68388190265区格方向1012.10.8=1.68838190265方向930.880.8=1.68388190265区格方向10118.66926875+895938方向936.783658100393支座A-A(方向)101-30.810.8=-24.651223895+895+8951242A-A(方向)101-21.610.8=-17.29858890+895851A-B101-30.810.8=-24.651223895+895+8951242截面配筋实有A-C101-21.610.8=-17.29858890+895851B-B101-2.561278190265B-D101-2.561278190265C-C101-3.551768190265C-D101-3.551768190265边支座101-3.551768190265边支座101-3.551768190265边支座(方向)101-30.8115298100+8100+8951535边支座(方向)101-30.811072895+81001032屋面板的配筋计算 表2-30截面配筋实有跨中区格方向10115.220.8=12.186048160+8170609方向 935.230.8=4.182258170265区格方向1011.740.8=1.39698190265方向 930.690.8=0.55308190265区格方向1011.740.8=1.39698190265方向 930.690.8=0.55308190265区格方向10115.22755825+8140761方向 935.232828170295截面配筋实有支座A-A(方向)101-29.38*0.8=-23.51166890+81101016A-A(方向)101-20.61*0.8=-16.49818895+8100807A-B101-29.38*0.8=-23.51166890+81101016A-C101-20.61*0.8=-16.49818895+8100807B-B101-2.441218190265B-D101-2.441218190265C-C101-3.391688190265C-D101-3.391688190265边支座101-3.391688190265边支座101-3.391688190265边支座(方向)101-29.381458885+885+8751448边支座(方向)101-20.611023895+81001032第五节 楼梯设计一、梯段板的设计图2-20 楼梯平面图1、梯段板的计算假定板厚;取2、荷载计算 (取1米宽板计算) 楼梯斜板的倾斜角恒载计算:踏步重: 斜板重:20mm厚找平层:15mm厚板底抹灰:恒载标准值:恒载设计值:活载标准值:活载设计值:总荷载设计值:3、内力计算跨中弯矩 4、配筋计算:受力筋选用120()分布筋选用130 二、平台板的计算1、荷载计算 (取1m板宽计算) 假定板厚为70mm恒载:平台板自重: 20mm厚找平层: 15mm厚底面抹灰:恒载标准值:恒载设计值:活载标准值:活载设计值:总荷载设计值:2、内力计算计算跨度:板跨中弯矩 3、配筋计算受力筋选用110() 分布筋选用220三、平台梁的计算1、荷载计算梯段板传来 平台板传来 梁自重 (假定bh=250400mm) 荷载设计值 2、内力计算3、配筋计算纵向钢筋计算(按第一类倒L形截面计算)翼缘宽度 取小值 选用3()4、箍筋计算截面校核 截面尺寸满足要求:判别是否需按计算配置箍筋需构造配置箍筋选用6150 第六节 雨篷设计计算简图2-22一、雨篷正截面承载力计算1、尺寸和材料外伸:板长:板端: 材料:C30,受力筋级2、荷载计算沿板1m宽板20厚防水砂浆:混凝土板:板底抹灰:恒载标准值:恒载设计值: 集中荷载: 活载标准值:活载设计值: 检修集中荷载:3、内力计算控制截面:弯矩: 取大值则:4、抗弯计算 选受力筋6110 () 二、雨篷梁计算1、尺寸和材料 宽度(b)、墙宽(h)、梁h=400mm、b=250mm、C30混凝土2、恒载: 板传来的活荷载:3、内力计算取小值:弯矩计算: 剪力计算:扭矩作用下 4、抗剪扭截面校核 满足要求按构造配筋三、雨篷抗倾覆验算满足抗倾覆梁两端做扩散线,水平取,梁以上各层墙窗挑檐自重。带雨篷处一、二层次用粘土砖填充墙,其它层均按粉煤灰砌块填充。第三章 施工组织设计一、工程概况及现场条件1、工程概况本工程为阳光旅馆,总建筑面积6500m,高度为19.5m,共3跨。主体为5层框架,横向跨度分别为6.9m,2.4m,6.9m。首层层高为3.9m,其它层为3.6m。基础采用独立基础基础,埋深2.1m。框架梁、柱、楼板均为现浇构件。2、工程地质条件本工程地基持力层为中砂层,允许地耐力f=200kN/m。3、材料供应(1)三材由建材公司供应,品种齐全。(2)墙体材料均选用加气砼砌块,女儿墙为砖墙。4、施工条件和能力(1)在施工期间,为施工企业服务的企业有木材加工厂,水泥厂,机械修理厂。设在市区路口,木材加工厂,水泥厂,砼搅拌站,机械化供应站,机械配长皆设在是内,距工地约3km远。(2)材料运输条件:各种材料均由市区用汽车运至工地。(3)设备条件:有各类塔吊、自行式起重机、井架、砼搅拌机等,供工地使用。(4)水电条件:均已接通。(5)劳动力由建筑公司统一调配,能满足施工需要。二、施工部署1、施工任务划分(1)土建工程由一队承担。(2)基槽土方、砼垂直运输等工程由机械处施工土方队来承担。(3)水、电、暖工程由水电处二队承担。(4)通风、装修由二队承担。2、施工进度计划施工顺序详见施工进度计划安排,所有结构施工完毕,塔吊拆除出场。三、主要施工机具计划表3.1机具名称数量(台)电机容量(kw)QT60/80塔式起重机148电焊机6256=150kvA砼搅拌机2112=22钢筋切断机17砼振捣机42.24=8.8蛙式打夯机42.84=11.2卷扬机113钢筋弯曲机14.5四、施工设备 1、放大样2、搭架等钢结构制作3、组织落实 4、临时用电计算 动力用电总容量 P1=163kvA 电焊机用电容量 P2=150kvA 设cos k1=0.5 k3=1.0 P总=1.05(选用320kvA变压器一台,由建设单位提供。导线截面选择:I线= 选用最大断面导线为120mm2,裸铝线分东西两条干线,断面分别为70mm2和50mm2。临时用水仅考虑消防水,4150mm管径已接入现场,可满足施工要求。五、施工方法与主要施工过程的选择1、施工顺序采用“先地下,后地上,先结构,后装修”的原则。放大样弹线基础施工组装搭架(三脚架)吊装就位支撑吊装斜向支撑加固整个支撑系统绑架子铺绗架固定模板钉钢板网绑钢筋(现场制作钢筋)分层浇筑砼养护拆模2、模板工程 模板与支撑系统是此项工程关键点,因支撑系统决定以后上边的模板钢筋和砼工程施工。(1)支模 模板施工要因地制宜,要以钢木结合,钢模为主,模板施工顺序为:调支撑系统调绗架铺101010枋面,由于上部荷载大枋面与绗架接触处,要用钢板垫上,防止枋子坍陷铺定模板加固梁绑,立绑,加固时全部用枋子101010,模板支模时不分段。(2)拆模模板工程从支撑到模板比较复杂,而且坚固,所以这也就造成拆模困难,而且在高空拆模难度相当大。先将梁绑拆除后拆支撑系统,拆模期间塔吊配合。拆模时一点一点拆,特别是支撑模系统,待砼强度达到设计强度的100%后方可拆模,拆模时要先用钢丝绳将要拆除的构件系住。以防掉下来砸伤人,拆一件用塔吊吊下来一件,一切材料均不得堆在高空。因支撑系统全部为铁构件,又因焊接牢固,这样大部分钢构件全部拆成废铁,在拆模是,需两名气焊工,而且拆模是应强调一下各工种的配合。上下人员的配合一定相互呼应,注意高空作业的安全。拆模人员一定要系安全带,戴安全帽,工作时不得玩耍=嬉笑等,有病人员严禁参加施工。3、钢筋工程钢筋工程比较复杂,工程量也很大,钢筋工程为上进度在模板工程将进行过半时尽快插入。为了方便施工,除板、钢筋的运输及堆放过程要保证钢筋顺直且不受污染。钢筋运输到现场后,要安排人员分类、码放,并对各类钢筋进行编号,随时施工随时拿,以便施工,钢筋绑扎前要除锈,绑扎是要按规范和设计要求去做。 钢筋施工过程中要注意,由于梁与梁相交较多,梁节点较多,所以要注意穿筋顺序,先穿下筋,后穿上筋,先穿主筋,后穿架立筋和构造筋,待钢筋全部穿好,按图检查后再绑扎。大梁绑扎时先用临时支撑固定,使钢筋绑扎牢固而且质量好。 4、砼工程砼工程,采用由一打头,向外扩展,为确保砼的浇注量,砼浇筑时要连续昼夜不断。为保证砼的接磋和连续性,我们在砼中掺加终凝型外加剂,这样将延长砼的凝固时间,在水泥材料要求终凝时间长的水泥,以保证砼的密实度,砼的分层槎子在施工前要选用水泥浇筑一层,以便砼粘结牢固。砼为商品砼,C20砼、C30砼,砼在运输途中较远。为了减少砼的离析现象,垂直运输又较高,为了减少砼的运输费,分两次运输。多层砼框架结构砼浇筑,一般按结构层分层施工,因本工程工程量较大,柱与梁、板分两次浇筑,柱子施工缝留在梁底(或托梁下),待砼达到1.2N/mm2强度后,再浇筑梁板。浇筑柱子时,一个施工段内的柱子应该按排或列由外向内对称地依次浇筑。不要从一端向另一端推进,以避免柱模因砼单向浇筑受推倾斜而使误差积累难以纠正。因本工程层高为3.6m4.5m,柱现浇高度超过3m,故应采用串桶或溜管下料,或从柱模侧的浇筑孔灌注砼。柱浇筑前,其底部应先填50100mm厚与砼成分相同的水泥砂浆,然后分层浇筑砼,当浇筑到柱顶出现较厚的砂浆层时,应加干净骨料仔细捣实,在施工中要常进行检查,以保证施工质量。梁和板同时浇筑,顺次梁方向从一端向前推进。因本工程施工结构平面较大,宜分段进行施工,分为4个工程段,每段工程长度为12m,平面上各段的不出现阴角,以免温度应力集中,形成裂缝。看施工情况而定,在工期紧迫情况下,采用连续浇水施工,且根据施工队数目和技术停歇等因素划分施工段,使得第一施工对完成第一施工层的各施工段后,转第二施工层的第一施工段时,该段第一层已达到操作强度。六、质量达标保证措施 1、做好各材料的现场验收工程,不符合坚决不能进场。 2、各支撑系统和模板全部放大样,按大样施工,支撑系统的焊缝为80mm,全部焊满。 3、凡在现场投料的外加剂,要做到加入外加剂后快转5分钟,搅拌均匀,以保证外加剂与砼充分拌合,但特别注意商品砼严禁随意洒水,以免因水灰比过大造成砼分层离析,从而导致其强度下降。 4、砼浇筑后,要用草帘面养护,砼接槎时,要严格工艺操作,接槎时,先将砼凿毛,使石子外露2/3后,用水冲洗干净后泼素水泥浆作为结合层。 5、模板支撑全部拉成,各线要先弹出,埋件标高用水平测量后再埋件,埋件要与主筋点焊。七、混凝土雨天施工措施:(1)及时收听天气预报,周密安排。(2)运输工具要考虑防雨、防滑措施。(3)随时调整拌和用水量。1、遇小雨时,使用的措施有:(1)适当减少用水量或增加水泥的用量。(2)缩短每层浇筑时间,适当加强振捣。(3)防止周围雨水流入,并及时排除模内积水。(4)对新筑砼及时加以防护。2、如遇到中雨时,应更换为下列措施:(1)对浇筑较小的构件,按防小雨措施施工。(2)对浇筑面积较大的构件,停止浇筑并加以覆盖。如遇大雨时,应立即停止浇筑并采取表面防冲措施。3、安全技术措施:(1)论是支撑系统做架子,还是外挑架子,一定要对料具认真检查,不得使用残次品,挑面外架,插管与架子铁管插入后要焊牢,架子要挂安全网。(2)架子上只供施工人员施工,不得放料、工具等,更不得打闹嬉戏。(3)支撑系统不得与外架子绑在一起,可以和建筑物连接。(4)支撑系统一定要稳牢,尤其是支撑点,要密实,严格把握施工顺序,严防倒塌。(5)因支撑系统均为焊接,在焊接施工中,滞水免于火灾。(6)架上铺板,要先检查不得有缺裂,脚手架板要铺严,按板对应对齐板,用立网封好。砼浇筑是连续施工,将电灯照明接好。(1)严格掌握尺寸,支完模后要施认真检查,尤其是吊模部分要保证浇筑时不移动。(2)各种用电器要经常检查,漏电保护器要完好无损。(3)进入现场必须戴安全帽,高空作业人员必须系好安全带。(4)每位工长要根据各工种的分工不同,进行安全技术校定。(5)工作前要检查使用的工具是否牢固,工作时要集中精力。(6)要随时检查架子塔吊轨道,尤其是雨后,要保证塔吊正常使用,不发生安全事故,大风(臂杆不能自制)下大雨(视线受阻)要停止使用塔吊,凡塔吊不能使用时,铁轨要设卡。(7)遇有6级以上大风时,应暂停室外高空作业。(8)不得在脚手架上堆放大批模板等。(9)焊机必须接地,一保证操作人员安全。(10)由于本工程焊工工作量大,焊缝变压器不得超负荷,变压器升温不得超过600C。(11)焊工必须戴防护面具。(12)施工用地范围应设有明显防护标志,以免行人误入工地造成事故,保持消防设施良好,注意做好防火工作。八、其他部位施工安排1、屋面工程施工屋面工程施工阶段,屋面工程应在立体结构工程完工后紧接着进行,以便尽快为房屋的内外装饰工程创造条件,屋面防水工程的施工顺序是:做找平层铺保温层、隔气层做找平层刷冷子油、热沥青铺防水层(刷聚氨脂底胶、铺三元乙丙防水卷材一层、涂银色着色剂保护层)。2、装饰工程施工 装饰工程耗用劳动量大,站用工期长,机械化程度低,劳动条件差(湿作业量大)。因此要科学合理安排施工顺序,组织立体交叉流水作业,确定施工的空间顺序。室外装饰工程采用自上而下的流水施工顺序,由上而下完成每层的全部工序后,即可拆除该层的脚手架,在外脚手架全部拆除后即可施工散水与台阶。室内装修也采用自上而下的流水施工方案,因主体结构工程已封顶,主体结构完成后,有一定的沉降时间,屋面防水层已做好,可防止雨水渗漏而影响装饰质量。另外自上而下流水作业,各工序交叉少,影响小,便于组织施工,利于安全,而且清理方便。但其缺点是:工期较长,要等主体结构完工后才能开始。3、水暖电器工程施工本工程为旅馆楼,管道较多,又为整体现浇,故在立体结构施工阶段,在砌墙或浇筑砼时要按设计图预留孔(管道孔),电线孔和木砖,暗盒埋设、暗管等。 参考文献1、国家标准、规范、规程总图制图标准(GB50103-2001)房屋建筑制图统一标准(GBJ50001-2001)建筑结构制图标准(GBJ50105-2001)建筑设计防火规范(GBJ16-87,2001)民用建筑设计通则(JGJ37-87)建筑结构荷载规范(GB50009-2001)砌体结构设计规范(GB50003-2001)混凝土结构设计规范(GB50010-2002)钢筋混凝土高层建筑结构设计与施工规程(JGJ3-91)建筑地基基础设计规范(GB50011-2001)钢结构设计规范(GBJ20017-2003)2、教科书建筑设计资料集钢筋混凝土、钢结构设计手册建筑结构静力计算手册建筑结构构造资料集山西省建筑、结构通用图集 外文资料:Components of A Building and Tall BuildingsMaterials and structural forms are combined to make up the various parts of a building, including the load-carrying frame, skin, floors, and partitions. The building also has mechanical and electrical systems, such as elevators, heating and cooling systems, and lighting systems. The superstructure is that part of a building above ground, and the substructure and foundation is that part of a building below ground.The skyscraper owes its existence to two developments of the 19th century: steel skeleton construction and the passenger elevator. Steel as a construction material dates from the introduction of the Bessemer converter in 1885.Gustave Eiffel (1832-1932) introduced steel construction in France. His designs for the Galerie des Machines and the Tower for the Paris Exposition of 1889 expressed the lightness of the steel framework. The Eiffel Tower, 984 feet (300 meters) high, was the tallest structure built by man and was not surpassed until 40 years later by a series of American skyscrapers.Elisha Otis installed the first elevator in a department store in New York in 1857.In 1889, Eiffel installed the first elevators on a grand scale in the Eiffel Tower, whose hydraulic elevators could transport 2,350 passengers to the summit every hour.Load-Carrying Frame. Until the late 19th century, the exterior walls of a building were used as bearing walls to support the floors. This construction is essentially a post and lintel type, and it is still used in frame construction for houses. Bearing-wall construction limited the height of building because of the enormous wall thickness required;for instance, the 16-story Monadnock Building built in the 1880s in Chicago had walls 5 feet (1.5 meters) thick at the lower floors. In 1883, William Le Baron Jenney (1832-1907) supported floors on cast-iron columns to form a cage-like construction. Skeleton construction, consisting of steel beams and columns, was first used in 1889. As a consequence of skeleton construction, the enclosing walls become a “curtain wall” rather than serving a supporting function. Masonry was the curtain wall material until the 1930s, when light metal and glass curtain walls were used. After the introduction of buildings continued to increase rapidly. All tall buildings were built with a skeleton of steel until World War . After the war, the shortage of steel and the improved quality of concrete led to tall building being built of reinforced concrete. Marina Tower (1962) in Chicago is the tallest concrete building in the United States; its height588 feet (179 meters)is exceeded by the 650-foot (198-meter) Post Office Tower in London and by other towers.A change in attitude about skyscraper construction has brought a return to the use of the bearing wall. In New York City, the Columbia Broadcasting System Building, designed by Eero Saarinen in 1962,has a perimeter wall consisting of 5-foot (1.5meter) wide concrete columns spaced 10 feet (3 meters) from column center to center. This perimeter wall, in effect, constitutes a bearing wall. One reason for this trend is that stiffness against the action of wind can be economically obtained by using the walls of the building as a tube; the World Trade Center building is another example of this tube approach. In contrast, rigid frames or vertical trusses are usually provided to give lateral stability.Skin. The skin of a building consists of both transparent elements (windows) and opaque elements (walls). Windows are traditionally glass, although plastics are being used, especially in schools where breakage creates a maintenance problem. The wall elements, which are used to cover the structure and are supported by it, are built of a variety of materials: brick, precast concrete, stone, opaque glass, plastics, steel, and aluminum. Wood is used mainly in house construction; it is not generally used for commercial, industrial, or public building because of the fire hazard.Floors. The construction of the floors in a building depends on the basic structural frame that is used. In steel skeleton construction, floors are either slabs of concrete resting on steel beams or a deck consisting of corrugated steel with a concrete topping. In concrete construction, the floors are either slabs of concrete on concrete beams or a series of closely spaced concrete beams (ribs) in two directions topped with a thin concrete slab, giving the appearance of a waffle on its underside. The kind of floor that is used depends on the span between supporting columns or walls and the function of the space. In an apartment building, for instance, where walls and columns are spaced at 12 to 18 feet (3.7 to 5.5 meters), the most popular construction is a solid concrete slab with no beams. The underside of the slab serves as the ceiling for the space below it. Corrugated steel decks are often used in office buildings because the corrugations, when enclosed by another sheet of metal, form ducts for telephone and electrical lines.Mechanical and Electrical Systems. A modern building not only contains the space for which it is intended (office, classroom, apartment) but also contains ancillary space for mechanical and electrical systems that help to provide a comfortable environment. These ancillary spaces in a skyscraper office building may constitute 25% of the total building area. The importance of heating, ventilating, electrical, and plumbing systems in an office building is shown by the fact that 40% of the construction budget is allocated to them. Because of the increased use of sealed building with windows that cannot be opened, elaborate mechanical systems are provided for ventilation and air conditioning. Ducts and pipes carry fresh air from central fan rooms and air conditioning machinery. The ceiling, which is suspended below the upper floor construction, conceals the ductwork and contains the lighting units. Electrical wiring for power and for telephone communication may also be located in this ceiling space or may be buried in the floor construction in pipes or conduits.There have been attempts to incorporate the mechanical and electrical systems into the architecture of building by frankly expressing them; for example, the American Republic Insurance Company Building(1965) in Des Moines, Iowa, exposes both the ducts and the floor structure in an organized and elegant pattern and dispenses with the suspended ceiling. This type of approach makes it possible to reduce the cost of the building and permits innovations, such as in the span of the structure.Soils and Foundations. All building are supported on the ground, and therefore the nature of the soil becomes an extremely important consideration in the design of any building. The design of a foundation depends on many soil factors, such as type of soil, soil stratification, thickness of soil lavers and their compaction, and groundwater conditions. Soils rarely have a single composition; they generally are mixtures in layers of varying thickness. For evaluation, soils are graded according to particle size, which increases from silt to clay to sand to gravel to rock. In general, the larger particle soils will support heavier loads than the smaller ones. The hardest rock can support loads up to 100 tons per square foot(976.5 metric tons/sq meter), but the softest silt can support a load of only 0.25 ton per square foot(2.44 metric tons/sq meter). All soils beneath the surface are in a state of compaction; that is, they are under a pressure that is equal to the weight of the soil column above it. Many soils (except for most sands and gavels) exhibit elastic propertiesthey deform when compressed under load and rebound when the load is removed. The elasticity of soils is often time-dependent, that is, deformations of the soil occur over a length of time which may vary from minutes to years after a load is imposed. Over a period of time, a building may settle if it imposes a load on the soil greater than the natural compaction weight of the soil. Conversely, a building may heave if it imposes loads on the soil smaller than the natural compaction weight. The soil may also flow under the weight of a building; that is, it tends to be squeezed out.Due to both the compaction and flow effects, buildings tend settle. Uneven settlements, exemplified by the leaning towers in Pisa and Bologna, can have damaging effectsthe building may lean, walls and partitions may crack, windows and doors may become inoperative, and, in the extreme, a building may collapse. Uniform settlements are not so serious, although extreme conditions, such as those in Mexico City, can have serious consequences. Over the past 100 years, a change in the groundwater level there has caused some buildings to settle more than 10 feet (3 meters). Because such movements can occur during and after construction, careful analysis of the behavior of soils under a building is vital.The great variability of soils has led to a variety of solutions to the foundation problem. Wherefirm soil exists close to the surface, the simplest solution is to rest columns on a small slab of concrete(spread footing). Where the soil is softer, it is necessary to spread the column load over a greater area;in this case, a continuous slab of concrete(raft or mat) under the whole building is used. In cases where the soil near the surface is unable to support the weight of the building, piles of wood, steel, or concrete are driven down to firm soil.The construction of a building proceeds naturally from the foundation up to the superstructure. The design process, however, proceeds from the roof down to the foundation (in the direction of gravity). In the past, the foundation was not subject to systematic investigation. A scientific approach to the design of foundations has been developed in the 20th century. Karl Terzaghi of the United States pioneered studies that made it possible to make accurate predictions of the behavior of foundations, using the science of soil mechanics coupled with exploration and testing procedures. Foundation failures of the past, such as the classical example of the leaning tower in Pisa, have become almost nonexistent. Foundations still are a hidden but costly part of many buildings. Although there have been many advancements in building construction technology in general, spectacular achievements have been made in the design and construction of ultrahigh-rise buildings.The early development of high-rise buildings began with structural steel framing. Reinforced concrete and stressed-skin tube systems have since been economically and competitively used in a number of structures for both residential and commercial purposes. The high-rise buildings ranging from 50 to 110 stories that are being built all over the United States are the result of innovations and development of new structural systems.Greater height entails increased column and beam sizes to make buildings more rigid so that under wind load they will not sway beyond an acceptable limit. Excessive lateral sway may cause serious recurring damage to partitions, ceilings, and other architectural details. In addition, excessive sway may cause discomfort to the occupants of the building because of their perception of such motion. Structural systems of reinforced concrete, as well as steel, take full advantage of the inherent potential stiffness of the total building and therefore do not require additional stiffening to limit the sway.In a steel structure, for example, the economy can be defined in terms of the total average quantity of steel per square foot of floor area of the building. Curve A in Fig.1 represents the average unit weight of a conventional frame with increasing numbers of stories. Curve B represents the average steel weight if the frame is protected from all lateral loads. The gap between the upper boundary and the lower boundary represents the premium for all lateral loads. The gap between the upper boundary and the lower boundary represents the premium for height for the traditional column-and-beam frame. Structural engineers have developed structural systems with a view to eliminating this premium.Systems in steel. Tall buildings in steel developed as a result of several types of structural innovations. The innovations have been applied to the construction of both office and apartment buildings.Frames with rigid belt trusses. In order to tie the exterior columns of a frame structure to the interior vertical trusses, a system of rigid belt trusses at mid-height and at the top of the building may be used. A good example of this system is the First Wisconsin Bank Building (1974) in Milwaukee.Framed tube. The maximum efficiency of the total structure of a tall building, for both strength and stiffness, to resist wind load can be achieved only if all column elements can be connected to each other in such a way that the entire building acts as a hollow tube or rigid box in projecting out of the ground. This particular structural system was probably used for the first time in the 43-story reinforced concrete DeWitt Chestnut Apartment Building in Chicago. The most significant use of this system is in the twin structural steel towers of the 110-story World Trade Center building in New York.Column-diagonal truss tube. The exterior columns of a building can be spaced reasonably far apart and yet be made to work together as a tube by connecting them with diagonal members intersecting at the center line of the columns and beams. This simple yet extremely efficient system was used for the first time on the John Hancock Center in Chicago, using as much steel as is normally needed for a traditional 40-story building.Bundled tube. With the continuing need for larger and taller buildings, the framed tube or the column-diagonal truss tube may be used in a bundled form to create larger tube envelopes while maintaining high efficiency. The 110-story Sears Roebuck Headquarters Building in Chicago has nine tubes, bundled at the base of the building in three rows. Some of these individual tubes terminate at different heights of the building, demonstrating the unlimited architectural possibilities of this latest structural concept. The Sears tower, at a height of 1450 ft (442m), is the worlds tallest building.Stressed-skin tube system. The tube structural system was developed for improving the resistance to lateral forces (wind or earthquake) and the control of drift (lateral building movement) in high-rise building. The stressed-skin tube takes the tube system a step further. The development of the stressed-skin tube utilizes the facade of the building as a structural element which acts with acts with the framed tube,thus providing an efficient way of resisting lateral loads in high-rise buildings, and resulting in cost-effective column-free interior space with a high ratio of net to gross floor area.Because of the contribution of the stressed-skin facade, the framed members of the tube require less mass, and are thus lighter and less expansive. All the typical columns and spandrel beams are standard rolled shapes, minimizing the use and cost of special built-up members. The depth requirement for the perimeter spandrel beams is also reduced, and the need for upset beams above floors, which would encroach on valuable space, is minimized. The structural system has been used on the 54-story One Mellon Bank Center in Pittsburgh. Systems in concrete. While tall buildings constructed of steel had an early start, development of tall buildings of reinforced concrete progressed at a fast enough rate to provide a competitive challenge to structural steel systems for both office and apartment buildings.Framed tube. As discussed above, the first framed tube concept for tall buildings was used for the 43-story DeWitt Chestnut Apartment Building. In this building, exterior columns were spaced at 5.5-ft (1.68-m) cen
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:机械类阳光旅馆建筑设计带CAD图
链接地址:https://www.renrendoc.com/p-22001013.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!