轮边减速器设计【开题报告】【车辆工程毕业设计说明书图纸论文】.zip
收藏
资源目录
压缩包内文档预览:(预览前15页/共30页)
编号:22167641
类型:共享资源
大小:954.85KB
格式:ZIP
上传时间:2019-09-24
上传人:小***
认证信息
个人认证
林**(实名认证)
福建
IP属地:福建
100
积分
- 关 键 词:
-
车辆工程毕业设计说明书图纸论文
轮边减速器设计
轮边减速器毕业设计开题报告
毕业论文设计开题报告
车辆工程毕业设计
设计开题报告
- 资源描述:
-
轮边减速器设计【开题报告】【车辆工程毕业设计说明书图纸论文】.zip,车辆工程毕业设计说明书图纸论文,轮边减速器设计,轮边减速器毕业设计开题报告,毕业论文设计开题报告,车辆工程毕业设计,设计开题报告
- 内容简介:
-
课题名称: 轮边减速器设计 一、综述本课题国内外研究动态,说明选题的依据和意义 轮边减速器一般为双极减速驱动桥中安装在轮毂中间或附近的第二级减速器。在一些矿山水利及其他大型工程等所用的重型汽车,工程和军事上用的重型牵引汽车及大型公共汽车等,要求有较高的动力性,而汽车车速相对较低,因而其传动系的低档总传动比很大,为了使变速器分动器传动轴等总成不致因承受过大尺寸及质量过大,应将传动系的传动比以尽可能大的比率分配给驱动桥。这就导致一些重型汽车大型汽车的主减速比必须很大,还有一些越野汽车要求在坏路上和无路地区具有良好的通过性,即要求汽车在满载情况下能以平均车速通过各种坏路及无路地带时有足够离地间隙(如松软的土壤、沙漠、山地、雪地沼泽等),因此在设计上述重型汽车、大型公共汽车、越野汽车时,需要在车轮旁附加轮边减速器。 我国研制汽车轮边减速器始于20世纪70年代中期,由于各种原因,至今发展不快,只有几个厂家从事生产,技术水平只相当国外20世纪80年代末的水平,数量和质量也远远满足不了国内运输业发展的需要。进入21世纪以来,我国经济形势发生了很大的变化。公路运输得到了很快的发展,为了降低运输成本,缓解铁路压力,促使了汽车的运输能力和载货量逐渐加大。因此,重型汽车轮边减速器在我国的应用前景十分广阔。自从我国加入WTO之后,减速器行业面临极大的压力与挑战,为了应对这一严峻形势,一方面要引进更多更好的国外产品与相关技术,另一方面必须迅速发展民族工业。国外的汽车减速器应用得比较好,技术也比较先进,但价格比较高。一般情况是:国外的整机的价格是国内价格的23倍,而易损件、备件的价格却是58倍,因此,发展我国的轮边减速器产品是非常必要的。轮边减速器属于汽车减速零部件的关键总成,是为了提高汽车的驱动力,以满足或修正整个传动系统力的匹配。本论文就是对轮边减速器进行研究,找出合适的方法,为自主研发出具有结构简单,高精度和高可靠性的减速器提供理论支持。 (1)重型汽车轮边减速器多以行星齿轮为主,世界上的一些发达国家,如日本、瑞典、俄罗斯和美国等,对行星齿轮传动的研究、生产和应用都十分重视,在传动性能、传递功率、结构优化、转矩等方面均处于领先地位。发展比较快且取得一定科研成果的是在行星齿轮传动动力学方面。近几年来,随着我国对制造业的扶持和资金的投入以及科学技术不断进步,机械科技人员经过不懈的努力以及技术引进和消化吸收,在行星齿轮理论研究和优化设计等方面取得了定的研究成果,在行星齿轮传动非线性动力学模型和方程方面的研究是国内两个关于行星齿轮传动动力学的代表,他们的研究成果取得了一定的成就并把许多技术应用于实际当中。与此同时,现代优化设计理论也应用到行星齿轮传动技术中,根据不同的优化目标,通过建立轮边减速器行星齿轮数学模型,产生了多种优化设计方法。在已经取得的成果中,有针对行星轮均载机构和功率分流方面的优化设计,有针对行星齿轮传动啮合效率、结构性能、体积的多目标优化设计研究,有专门针对如重型汽车轮边减速器行星传动机构齿轮模态优化设计,有针对行星机构噪声、振动、固有频率特性研究,这些成果的研究有利于提高了工程技术人员对行星传动技术的认识。在新理论和新数学计算方法出现的同时,行星齿轮减速器的优化设计方法也随着更新,比较新的研究成果:有可靠性工程理论在优化设计中的应用,有遗传算法在行星齿轮优化设计中的应用,有模糊数学在行星齿轮优化设计中的应用,有可靠性工程理论在优化设计中的应用,基于可靠性工程的理论通过引入强度可靠性系数方程来进行优化设计。这些新的设计理论和新的设计方法将许多设计理论概念和研究成果应用到优化设计中,对行星齿轮传动优化设计理论研究的发展有很大的贡献。(2)对于行星齿轮减速器结构设计方面,目前国外已经广泛采用了CADCAECAM一体化的设计方法,这是一种面向零件的参数化的3D实体模型设计技术,与以往传统的二维设计方法相比,这是一条革命性的设计理念。通过三维结构设计与优化设计的完美结合,可以使设计一体化,对工作效率的提高是非常有好处的。当前,国外的一些公司针对产品的不同特点,开发出了很多专用的优化设计模块,这些优化设计模块之间有良好的数据接口,产品的几何模型可以通过它们实体造型模块的优化结果直接输出,这样的设计大大提高了工作效率,对于产品开发周期缩短,企业研发能力的提高都有好处,由于开发的产品周期短、速度快,可以使企业在市场竞争中处于领先地位。目前,我国机械设计发展比较快,设计水平也在不断的提高。(3)随着计算机广泛应用于设计领域,在产品的研发初期,可以应用计算机辅助工程(CAE),通过计算机模拟实际工作情况,对产品的各项性能进行检测,比如对其静态的,动态的性能进行测试,这样可以在设计时发现产品的缺陷,避免样机制造的风险,用CAE技术不仅可以降低研发成本,缩短研发周期,而且可以对设计的结果进行验证,这样可以整体了解产品的性能,省去一些不需要的环节,节省研发费用,现在对于一些特别复杂的机械零件,由于在CAE中不易建模而采用在三维CAD中进行建模,把所建好的实体模型数据,用另一种可以让CAE软件识别的格式保存,然后导入到CAE软件中。目前,采用ADAMS、ANSYS等有限元分析软件对所设计的机械产品进行有限元分析在设计中得到了广泛的应用。随着计算机性能的提高和设计人员经验的积累,对产品设计的仿真模型与实际模型相差很小,这样可以保证仿真性能的可靠性。近些年由于国家对制造业的重视,许多国内高校及科研部门对计算机辅助方面有了一定的投入,特别在有限元方面,并取得了一定得成果。随着有限元方法的应用,普及以及设计人员的经验积累,实体建模将越来越接近真实结构,这样的研究成果才能真正指导生产实践。二、研究的基本内容,拟解决的主要问题: 本论文就是对轮边减速器进行研究,找出合适的方法,为自主研发出具有结构简单,高精度和高可靠性的减速器提供理论支持。1查找相关参数及结构特点,进行车轮减速器和桥壳总成的设计;2确定轮边减速器和桥壳的结构形式;3确定轮边减速器和桥壳的主要性能参数;4轮边减速器和桥壳的总成的设计、计算、分析、制图;5其他相关零部件的设计;6结合本课题查阅并翻译不少于5000字的英文资料;7编写设计说明书;三、研究步骤、方法及措施: 方法主要有文献研究法:通过对中国学术期刊网,万方数据资源系统等中英文数据库的检索,收集有关资料,并对收集的资料进行归纳分析,为论文作铺垫。(1)重要零部件选型设计:选择轮边减速器和桥壳的结构形式及零部件的结构设计,选择和计算基本参数。 (2主要零部件的强度校核:利用有限元发对轮边减速器行星架的结构强度进行分析校核。(3总装图与零件图的计算机绘制:本项目的所有图纸运用CATIA软件进行绘制,均采用电子文本,部分重要零部件采用三维图,并在计算机上进行模拟装配,以求减少设计失误。四、研究工作进度: 第1-4周 :调查研究,收集资料,翻译外文资料,确定轮边减速器的结构形式。第5-8周 :确定轮边减速器的总体尺寸和结构参数,计算性能参数并进行结构设计。第9-12周 :绘制轮边减速器和桥壳总成图。第13-16周:绘制零部件二维工程图,整理资料,撰写毕业论文。第17-18周:毕业答辩五、主要参考文献: 【1】刘淮信主编.汽车设计.北京; 清华大学出版社,2001【2】陈家瑞主编.汽车构造,机械工业出版社,1997【3】机械设计手册编委会.机械设计手册.北京;机械工业出版社,2004【5】邓勋、张文明、郭耀斌.BZQ3390矿用自卸车轮边减速器的设计.煤矿机械,2008,vol.29(No.6);16-18【6】张华增、曹人乐.改进轮边减速器垫片结构.科技创新报,2008,No.22;78【7】焦万铭、冯雅丽、杨钰.狂勇气车轮边二级行星减速器设计.矿山机械,2008,vol.36;38-39【8】刘玉春、罗维东等.矿用汽车轮边减速器可靠性优化设计.机械设计制造,2006,No.9;18-20.【9】杨锁望、韩玉琪、杨钰.矿用自卸车驱动桥壳结构分析与改进设计.专用汽车,2005,No.1;21-23【10】杨钟胜.矿用自卸车驱动桥轮边减速器的研究与制造.汽车工艺与材料,2011,No.10;37-47【11】项生田、李剑敏等.轮边减速器行星架结构强度和疲劳寿命分析.汽车工程,2011,vol.33(no.5);417-421【12】张宝成.轮边减速器内齿圈的结构改进设计.北京矿冶研究总院.【13】李必文、张春良.轮边减速器优化设计存在的问题及对策.中国工程机械学报,2008,vol.6(no.1);53-57【14】汪振晓、李增辉.轮边减速器总成的设计.汽车科技增刊,2008,【15】陈海、洪恒恒等.驱动桥桥壳有限元分析及结构优化.开发研究,2011,no.7;48-49【16】尹道骏.重型汽车轮边减速器的研究.合肥工业大学.2010【17】C.Yuksel、A.kahraman.Dynamic tooth loads of planetary gear sets having tooth profile wear.The university of Toledo,2004.【18】C.H.Mcmurray、W.J.Blanchflower.Multi-Channel,Probe Colorimeter for Use with the Micro-elisa Test,Which Makes Use of Disposable Flat-bottom Microhemagglutination plates,Clinical Chemistry,1979,vol.25(no.4);570-576【19】Yichao Guo、Robert G.Parker,Purely rotational model and vibration modes of compound planetary gears.Mechanism and Machine Theory,2010六、导师意见: 指导教师(签字) 年 月 日七、审核意见: 审查结果: 1、通过; 2、完善后通过;3、未通过 负责人(签字):年月日XXXXXXXX学院全日制普通本科生毕业论文轮边减速器设计学生姓名:XXXX学 号:XXXXX年级专业及班级:XXXXX指导老师及职称:XXXX学 部:XXXXXXXX提交日期:XXXX年X月目 录摘要1关键词1第一章 绪论21.1 课题设计的目的和意义41.2 本设计所要完成的主要任务4第二章 减速器的方案设计52.1 减速器的功用及分类52.2 减速器方案的选择及传动方案的确定 62.2.1 减速器方案的选择72.2.2 行星减速器传动方案的选定82.2.3 减速器传动比的分配82.2.4 传动比公式推导82.3 行星减速器齿轮配齿与计算92.3.1 行星排齿轮的配齿92.3.2 行星齿轮模数计算与确定102.4 啮合参数计算112.5 变位系数选取122.6 各行星齿轮几何尺寸计算132.6.1 第排行星齿轮的几何尺寸132.6.2 第排行星轮的几何尺寸162.7 各行星齿轮强度校核192.7.1 太阳轮和行星轮接触疲劳强度校核192.7.2 太阳轮和行星轮弯曲疲劳强度校核212.7.3 内齿轮材料选择22第三章 减速器结构的设计233.1 齿轮轴的设计计算233.2 传递连接243.3 轴承选用与校核与其他附件说明243.3.1 轴承选用与校核243.3.2 其他附件说明26第四章 设计工作总结26参考文献27致 谢27附 录2830摘 要轮边减速器是传动系中最后一级减速增扭装置,采用轮边减速器可满足在总传动比相同的条件下,使变速器、传动轴、主减速器、差速器、半轴等部件的载荷减少,尺寸变小以及使驱动桥获得较大的离地间隙等优点,它被广泛应用于载重货车、大型客车、越野汽车及其他一些大型工矿用车。因此对轮边减速器的研究,具有很重要的实际意义和企业实用性。在本论文研究中,主要开展了如下工作:首先介绍了轮边减速器的原理,并对行星式轮边减速器的特点、传动类型及传动装置进行了阐述与分析。其次根据轮边减速器的工作要求,进行了传动设计计算,确定其主要部件的参数并校核了齿轮的强度。关键词 轮边减速器; 齿向误差;校核强度第一章 绪论1.1 课题设计的目的和意义汽车轮边减速器多以行星齿轮为主,世界上的一些发达国家,如日本、瑞典、俄罗斯和美国等,对行星齿轮传动的研究、生产和应用都十分重视,在传动性能、传递功率、结构优化、转矩等方面均处于领先地位。发展比较快且取得一定科研成果的是在行星齿轮传动动力学方面。近几年来,随着我国对制造业的扶持和资金的投入以及科学技术不断进步,机械科技人员经过不懈的努力以及技术引进和消化吸收,在行星齿轮理论研究和优化设计等方面取得了一定的研究成果,在行星齿轮传动非线性动力学模型和方程方面的研究是国内两个关于行星齿轮传动动力学的代表,他们的研究成果取得了一定的成就并把许多技术应用于实际当中。与此同时,现代优化设计理论也应用到行星齿轮传动技术中,根据不同的优化目标,通过建立轮边减速器行星齿轮数学模型,产生了多种优化设计方法。在已经取得的成果中,有针对行星轮均载机构和功率分流方面的优化设计,有针对行星齿轮传动啮合效率、结构性能、体积的多目标优化设计研究,有专门针对如重型汽车轮边减速器行星传动机构齿轮模态优化设计,有针对行星机构噪声、振动、固有频率特性研究,这些成果的研究有利于提高了工程技术人员对行星传动技术的认识。在新理论和新数学计算方法出现的同时,行星齿轮减速器的优化设计方法也随着更新,比较新的研究成果:有可靠性工程理论在优化设计中的应用,有遗传算法在行星齿轮优化设计中的应用,有模糊数学在行星齿轮优化设计中的应用,有可靠性工程理论在优化设计中的应用,基于可靠性工程的理论通过引入强度可靠性系数方程来进行优化设计。这些新的设计理论和新的设计方法将许多设计理论概念和研究成果应用到优化设计中,对行星齿轮传动优化设计理论研究的发展有很大的贡献。1.2 本设计所要完成的主要任务1.减速器的功用及分类;2.减速器方案的选择及传动方案的确定;3.行星减速器齿轮配齿与计算;4.减速器结构的设计;5.轴承选用与校核与其他附件说明;6.所有零、部件设计计算、绘制零、部件图。第二章 减速器的方案设计减速机构是本次设计的一个重要环节。减速器是应用于原动机和工作机之间的独立传动装置。减速器的主要功能是降低转速,增大扭矩,以便带动大扭矩的机械。由于其结构紧凑、效率较高、传递运动准确可靠、使用维护简单,并可成批生产,故在现代工程机器中应用很广。2.1 减速器的功用及分类减速器的作用有以下几点: 增扭减速,降低发动机转速,增大扭矩; 变扭变速,工程机械作业时,牵引阻力变化范围大,而内燃机转速和扭矩的变化范围不大,即使用液力机械式传动,采用了液力变矩器也不能满足要求,因此必须通过变换变速箱排档以改变传动系的传动比,改变工程机械的牵引力和运行速度,以适应阻力的变化; 实现空档,以利于发动机启动和发动机在不熄火的情况下停车。减速器的分类按其传动结构特点可分为圆柱齿轮减速器、圆锥齿轮减速器、蜗杆减速器、行星齿轮减速器四大类。下面对以上四种减速器的特点及用途作简要说明: 圆柱齿轮减速器:当传动比在8以下时,可采用单级圆柱齿轮减速器,大于8时,最好选用两级(i=840)和两级以上(i40)的减速器。两级和两级以上的圆柱齿轮减速器的传动布置型式有展开式、分流式和同轴式等到数种。它是图2.1圆柱齿轮减速器Figure 2.1 cylindrical gear reducer所有减速器中应用最广的,它传递功率的范围可从很小至40000KW,圆周速度也可以从很低至6070m/s,有的甚至于高达140m/s。其结构如图2.1示。 圆锥齿轮减速器:它用于输入轴和输出轴位置布置成相交的场合。因为圆锥齿轮常常是悬臂装在轴端的,且由于圆锥齿轮的精加工比较困难,允许的圆周速度又较低,因此圆锥齿轮减速器的应用不如圆柱齿轮减速器那么广。其结构如图2.2示。 蜗杆减速器:主要用于传动比较大(i10)的场合。当传动比较大时,其传动结图2.2 圆锥齿轮减速器 图2.3蜗杆减速器Figure 2.2 tapered gear reducer Figure 2.3 worm reducer构紧凑,轮廓尺寸小。由于蜗杆传动效率较低,所以蜗杆减速器不宜在长期连续使用的动力传递中应用,其结构主要有蜗杆在上和蜗杆在下两种不同的形式。蜗杆圆周速度小于4m/s时最好采用蜗杆在下式,在啮合处能得到良好的润滑和冷却。但蜗杆圆周速度大于4m/s时,为避免搅油太甚, 发热过多,最好采用蜗杆在上式。其结构如图2.3示。 行星减速器:行星减速器的最大特点是传动效率高,传动比范围广,其 图2.4 行星减速器传动效率可从10w到50000kw,体积和重量比普通齿轮减速器、蜗杆减速器小得多。其结构如图2.4示。 2.2 减速器方案的选择及传动方案的确定 2.2.1 减速器方案的选择行星齿轮减速器与普通齿轮减速器相比,前者具有许多突出的优点,已成为世界各国机械传动发展的重点。行星齿轮减速器的主要特点如下: 体积小、重量轻、结构紧凑、传递功率大、承载能力高; 传动效率高,工作可靠。行星齿轮传动由于采用了对称的分流传动结构,使作用中心轮和行星架等主要轴承上的作用力互相平衡,有利于提高传动效率;传动比大。适当选择传动类型和齿轮数,便可利用少数几个齿轮而获得很大的传动比;运动平稳、抗冲击和振动能力强。由于采用了数个结构相同的行星齿轮,均匀地分布于中心轮的周围,从而可以使行星轮与转臂的惯性力相互平衡;因此,综合考虑四种减速器的各特点和适用范围,本次设计选用减速器为行星齿轮减速器。 2.2.2 行星减速器传动方案的选定行星减速器的传动形式有很多种,以下对最为典型的三种传动形式作简要说明: 高速马达和定轴行星混合式行走减速机构此种传动系统一般采用定量的柱塞式、叶片式或齿轮式高速液压马达,行走液压系统压力一般采用中压,而马达的转速较高,最高时可以达到3000r/min。所以要求齿轮减速机构的传动比也比较大。这种传动方式的部件通用化程度比较高,便于安装、使用和维修,但是轴向和径向尺寸均较大,对中小型液压轮边减速器的最小轴距和最小离地间隙都有一定的限制。 低速大转矩马达和一级定轴齿轮减速机构一级定轴齿轮减速器安装在履带架上,大齿轮和驱动轮装在同一轴上,小齿轮和行走马达装在同一轴上。这种方案的缺点是马达的径向尺寸大,低速大转矩马达的成本较高,使用寿命也低于高速马达,在中小型液压轮边减速器上的使用也爱到了限制。 斜盘式轴向柱塞马达和双行星排减速机构此机构析液压系统压力可以高达300MPa以上,马达转速一般在2200 r/min以内,双行星排具有较大的传动比,省去了定轴齿轮传动,结构紧凑,适合于专业化批量生产。其中共齿圈式双行星排的结构有以下几种,如图2.5。比较上述三种典型方案:a图为齿圈输出带动驱动轮,输出稳定,结构比较紧凑,布局合理,同时也能获得较大的图为行星架输出,传动比、效率也较高;b图齿圈固定,这种结构设计较为复杂。因此本设计选择a图结构为减速器的传动方案。 (a)轴固定行星减速器 (b)齿圈固定行星减速器图2.5 行星减速器Figure 2.5 a planetary reducer2.2.3 减速器传动比的分配 由于单级齿轮减速器的传动比最大不超过10,当总传动比要求超过此值时,应采用二级或多级减速器。此时就应考虑各级传动比的合理分配问题,否则将影响到减速器外形尺寸的大小、承载能力能否充分发挥等。根据使用要求的不同,可按下列原则分配传动比: (1)使各级传动的承载能力接近于相等; (2)使减速器的外廓尺寸和质量最小; (3)使传动具有最小的转动惯量; (4)使各级传动中大齿轮的浸油深度大致相等。2.2.4 传动比公式推导对于a图的传动公式推导如下:运动学方程为: (2.1) (2.2)式中:为对应的太阳轮转速;为对应的齿轮圈转速;为对应的行星架转速。为特性参数,为对应的齿圈与太阳轮齿数之比(下同)连接方程为:0将连接方程代入运动方程,解得传动比i为: (2.3)其中负号表示,太阳轮输入与齿圈的输出转向方向相反。2.3 行星减速器齿轮配齿与计算2.3.1 行星排齿轮的配齿行星排的正确啮合和传动,应满足四个配齿条件,即是传动比条件、同心条件、装配条件以及相邻条件。根据已知的传动比范围=3344,由表14-5-取行星轮数目C=3,查表3-配齿,可得如下可行传动比方案: =38.998 =38.64 =33.982 =41.625 =43.62 =38.64 该设计的传动比选择方案,配齿结果如下表2.1所示: 表2.1 双行星排各齿轮齿数 Table 2.1 dual planetary row number the gears排数太阳轮A齿数行星轮C齿数齿圈B齿数行星轮数目第行星排1233783第行星排18307832.3.2 行星齿轮模数计算与确定按照接触强度初步计算A-C传动的中心距和模数,根据第三章的参数每条履带的牵引力为7.2吨,则驱动轮的扭矩,为: = (2.4) =7.29.8331 23355.36式中:为单条履带的行走牵引力(吨); 为驱动轮节圆半径(mm)。则太阳轮的输入转矩为: = (2.5) = 665.43式中: 为太阳轮的输入转矩; i 为总传动比; 为传动系统的效率(取0.850.9)。 齿数比u2.75,查表14-5-选取太阳轮和行星轮的材料为20CrMnTi,渗碳淬火处理,齿面硬度分别为6062HRC和5658HRC,查表14-1-得=1500和=340,太阳轮和行星轮的加工精度为6级。内齿轮采用42CrMo,调质硬度207269HB,查表14-1-得=780和=260,内齿轮的加工精度为7级。根据公式得许用接触应力:= (2.6) = 1363.64 根据表14-1-选取齿宽系数=0.6,载荷系数K由文献资料7推荐值K=1.22,取K=1.5,查表14-1-取系数值为483,则初步中心距为: = (2.7) = 124.57 mm下面由中心距初步估算模数m得: m = (2.8) = 5.5查表14-1-取模数标准系列值:m =5(m的含义下同)。2.4 啮合参数计算第行星排的中心距。太阳轮和行星轮: = (2.9) = = 112.5 mm 行星轮 和内齿轮: = (2.10) = =112.5 mm因为=,所以,此行星排不需要角度变位。第行星排的中心距。太阳轮和行星轮: = (2.11) = = 120 mm 行星轮 和内齿轮: = (2.12) = =120 mm因为=,所以,此行星排不需要角度变位。据以上条件知,=120)。根据齿数总和=+=12+33=45,齿数比u=2.75,查图13-1-,取=0.42,所以=0.42。其中行星轮和内齿圈为负变位,太阳轮为正变位,下面将各齿轮的变位系数列于表2.2 表2.2 各齿轮变位系数Table 4.2 each gear shift coefficient齿轮太阳轮A行星轮C内齿圈B变位系数0.42-0.42-0.422.6 各行星齿轮几何尺寸计算2.6.1 第排行星齿轮的几何尺寸(1)太阳轮几何尺寸为了直观方便,现将太阳轮各尺寸计算列于下表2.3。为了表述简洁,以下几个齿轮的几何尺寸计算表中与前面重复出现的参数将不再赘述其意义。表2.3 第排行星排太阳轮几何尺寸Table 2.3 the first row planets round the sun row geometry size项目代号直齿轮(外啮合)计算公式及说明计算结果/mm分度圆直径60齿顶高式中:为齿顶高系数,取标准值=17.1齿根高式中:为齿顶隙系数,取标准值=0.254.15齿全高11.25齿顶圆直径74.2齿根圆直径51.7节圆直径式中:表示第排中行星轮齿数,中心距60基圆直径式中:为分度圆压力角,取标准值56.38齿顶圆压力角表2.3(续)项目代号直齿轮(外啮合)计算公式及说明计算结果/mm重合度对于直齿轮纵向重合度=0,总重合度式中:为行星轮的齿顶圆压力角,见表4.4计算1.46(2)行星轮几何尺寸 表2.4为行星轮的几何尺寸设计表2.4 第排行星轮几何尺寸Table 2.4 the first row of the planet round geometry size项目代号直齿轮(按照外啮合)计算公式及说明计算结果/mm分度圆直径165齿顶高式中:为齿顶高系数,取标准值=12.9齿根高式中:为齿顶隙系数,取标准值=0.258.35齿全高11.25齿顶圆直径170.8齿根圆直径148.3节圆直径165表2.4(续)项目代号直齿轮(按照外啮合)计算公式及说明计算结果/mm基圆直径式中:为分度圆压力角,取标准值155齿顶圆压力角重合度=1.46(3)内齿圈几何尺寸计算 表2.5为内齿圈的几何尺寸计算过程:表2.5 第行星排内齿圈几何尺寸Table 2.5 the first planet gear geometry size within the circle line项目代号直齿轮(内啮合)计算公式及说明计算结果/mm分度圆直径390齿顶高式中:为齿顶高系数,取标准值=1是为了避免过渡曲线干涉而将齿顶高系数的量。此处=0.195。6.12齿根高4.15齿全高10.27齿顶圆直径377.76齿根圆直径398.3表2.5(续)项目代号直齿轮(内啮合)计算公式及说明计算结果/mm节圆直径390基圆直径式中:为分度圆压力角,取标准值366.48齿顶圆压力角重合度对于直齿轮纵向重合度=0,总重合度式中:为行星轮的齿顶圆压力角,见表2.4计算2.022.6.2 第排行星轮的几何尺寸第排行星齿轮的模数,变位系数等都与第行星排的相同。下面将其计算过程列于表2.6和表2.7中。(1) 太阳轮几何尺寸为了直观方便,现将太阳轮各尺寸计算列于下表2.6。为了表述简洁,以下几个齿轮的几何尺寸计算表中与前面重复出现的参数将不再赘述其意义。表2.6 第排行星排太阳轮几何尺寸Table 2.6 the first row planets round the sun row geometry size项目代号直齿轮(外啮合)计算公式及说明计算结果/mm分度圆直径90齿顶高式中:为齿顶高系数,取标准值=17.1表2.6(续)项目代号直齿轮(外啮合)计算公式及说明计算结果/mm齿根高式中:为齿顶隙系数,取标准值=0.254.15齿全高11.25齿顶圆直径104.2齿根圆直径81.7节圆直径式中:表示第排中行星轮齿数,中心距90基圆直径式中:为分度圆压力角,取标准值84.57齿顶圆压力角重合度对于直齿轮纵向重合度=0,总重合度式中:为第排中行星轮的齿顶圆压力角,见表2.7计算1.53(2)行星轮几何尺寸计算表2.7为行星轮的几何尺寸计算过程:表2.7 第排行星轮几何尺寸Table 2.7 the first row of the planet round geometry size项目代号直齿轮(按照外啮合)计算公式及说明计算结果/mm分度圆直径150齿顶高式中:为齿顶高系数,取标准值=12.9齿根高式中:为齿顶隙系数,取标准值=0.258.35齿全高11.25齿顶圆直径155.8齿根圆直径133.3节圆直径150基圆直径式中:为分度圆压力角,取标准值140.95齿顶圆压力角重合度=1.53(3)内齿圈几何尺寸计算 由于第排行星排中内齿圈的齿数、模数、变位系数等参数与第排行星排中相同,所以其几何尺寸也相同,此处便不作赘述。2.7 各行星齿轮强度校核2.7.1 太阳轮和行星轮接触疲劳强度校核经过前面计算,太阳轮齿宽系数0.6, 则太阳轮齿宽为b=0.660=36,根据经验公式,取=46mm。下面计算查取其他校核用参数; 查表14-1-取弹性系数=189.8。 确定和所以用的圆周速度用相对于行星架的圆周速度: (2.13)式中:为太阳轮的转速,为了方便计算初步用马达的输出转速来计算; 为特性参数,见前面部分计算。将上述已知参数代入式(2.13)计算得4.15。查表10-确定使用系数=2.00;查图10-取动载系数=1.04;查表10- 取齿间载荷分配系数=1.1,查表10-利用直插法齿向载荷分配系数=1.182,则计算载荷系数为: (2.14) =1.041.11.182 2.7 太阳轮传递的载荷的计算 太阳轮输入转矩为=665.56,根据公式有太阳轮所传递的扭矩为: (2.15) =244.04式中:为行星齿轮传动载荷不均匀系数,由表14-5-查取,则太阳轮传递的载荷为: (2.16) = 7156.32所以太阳轮接触应力和之配对的行星轮的接触应力为: (2.17) = 1321.5Mpa 许用接触应力计算本轮边减速器的设计工作时间为10年,每年按照365天计算,每天工作8小时,则工作应力循环次数N为:N=60n (2.18) =6014701103658 2.6次式中: n为太阳轮转速,按照液压马达的输出转速计算: j齿轮每转一圈时,同一齿面啮合的次数: 为总工作时间,以小时计算。由图10-和图10-查取寿命系数得:=0.9,取接触疲劳强度安全系数=1,弯曲疲劳强度安全系数=1.3,查图10-和图10-取齿轮的接触疲劳极限=1500,弯曲疲劳强度极限=750。则太阳轮的许用接触应力为:= (2.19) = =1350经计算与太阳轮配对的行星轮,由图10-和图10-查取寿命系数得;=0.94.则由(4.19)式计算得其许用接触应力=1410显然,故以值代入计算。由上述计算得:因为=,所以将后者代入计算。下面将弯曲强度进行检验: (2.22)对于太阳轮: =84.01满足弯曲强度条件。对于行星轮: = 107.34满足强度要求。2.7.3 内齿轮材料选择下面根据接触疲劳强度计算来确定内齿轮材料,取最小安全系数=1由公式: (2.23)式中:为节点区域系数,查图14-1-取=2.51; 为弹性系数,查表14-1-取弹性系数=189.8; 为重合度系数,查图14-1-取=0.82; 为螺旋角系数,查图14-1-取1; 为接触强度计算的寿命系数,查图14-1-取=0.9; 为润滑剂系数,查图14-1-取=1; 为速度系数,查图14-1-取=0.96; 为粗糙度系数,查图14-1-取=0.95; 为工作硬化系数,查图14-1-取=1.2; 为尺寸系数,查图14-1-取=0.8; 为齿圈分度圆直径。内齿圈所传递的扭矩为: = (2.24) = 7785.12式中为驱动轮转矩,则其所传递的载荷为: (2.25) = 39923.69N齿数比u=81/342.364,取齿宽b=44mm。将上述参数代入(4.23)式计算得416.80。根据,选用42Mo,调质硬度209269HB。一般其弯曲强度皆可满足设计要求,这里不再校核。 与第行星排校核计算一样,对于第排的各齿轮接触疲劳和弯曲疲劳强度校核,经检验,其均满足设计强度要求。第三章 减速器结构的设计3.1 齿轮轴的设计计算由于太阳轮的尺寸较小,从强度方面考虑将其做成齿轮轴形式,材料为200CrMnTi。经力学分析,该轴只在扭转情况下工作,故按照扭转强度条件初步估计轴颈: (3.1)式中:为系数值,查表15-取=100(范围:98100.7); 为轴传递功率,KW(取液压马达输出功率); 为轴的转速。将上述已知参数带入(3.1)式计算得35.93,考虑到其将由花键套与制动器输出轴连接,故取轴颈=40,由公式: (3.2) = =36.51式中:为扭转切应力; 为该轴所传递的扭矩,取太阳轮输入力矩值; 为轴的抗扭截面系数。显然=4552,满足要求。该轴的细部结构件附件其零件图。3.2 传递连接本设计采用双壁整体式行星架,行星架与太阳轮采用渐开线花键连接。齿圈和壳体采用螺钉固定链接。动力传递过程为:动力经由液压马达传到制动器。制动器输出轴与齿轮轴采用渐开线花键套连接,齿轮轴另一端由钢球顶住,防止其运转时轴向穿动,动力由制动器传递给齿轮轴。太阳轮将动力传给行星轮,在此动力分流:一部分直接通过和齿圈啮合将动力传递给齿圈然后由齿圈和壳体等传给驱动轮;另一部分动力则由行星架传递给太阳轮。太阳轮和行星轮啮合传动,动力经由此到达齿圈再通过壳体到达驱动轮。另外几处的连接:行星架和齿圈支架的连接采用渐开线花键连接;齿圈支架和制动器的连接采用螺钉连接;壳体与制动器和液压马达的连接采用滚动轴承连接和浮动油封密封;壳体与驱动轮采用螺栓连接;太阳轮与滚针轴承连接,滚针轴承套在齿轮轴上从而齿轮轴转动并不直接影响太阳轮转动。3.3 轴承选用与校核与其他附件说明3.3.1 轴承选用与校核 行星轮用轴承、销套和螺栓连接在行星架上,根据载荷性质查表5-选用圆锥滚子轴承30205,其基本动载荷=32.2.下面进行其强度校核: (3.3)式中:为当量动载荷; 为温度系数,取=1; 为计算指数,对于滚子轴承=; 为轴承的转速; 为轴承预期使用寿命。下面对这些参数进行计算选取:由于是直齿圆齿轮啮合传动,轴承装在销套上面。故其受的轴向载荷较小,忽略计算,根据表13-查取载荷系数=1.5,则当量动载荷为: (3.4)式中根据齿轮啮合传动时径向力进行计算: (3.5)式中:为啮合角,经第四章计算知=。由前章(3.16)式知圆周力=7156.32,所以=2604.69,轴向力=0。X、Y分别为径向和轴向动载荷系数,由表13-查取X =1,Y =0。从而 =1.52604.69=3907.035。 轴承的转速近似取行星轮的转速 = (3.6) = =568.52r/min 按照前章4.7.1,=103658=29200,将得到的已知参数带入(3.3)式: 31.00KN,故满足设计要求。按照相同的方法,第二排行星轮处的轴承选用圆锥滚子轴承30206,经检验满足要求。3.3.2 其他附
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。