已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,三、其他未定式,二、,型未定式,一、,型未定式,第二节,机动 目录 上页 下页 返回 结束,洛必达法则,第三章,微分中值定理,函数的性态,导数的性态,函数之商的极限,导数之商的极限,转化,( 或 型),本节研究:,洛必达法则,洛必达 目录 上页 下页 返回 结束,一、,存在 (或为 ),定理 1.,型未定式,(洛必达法则),机动 目录 上页 下页 返回 结束,( 在 x , a 之间),证:,无妨假设,在指出的邻域内任取,则,在以 x, a 为端点的区间上满足柯,故,定理条件:,西定理条件,机动 目录 上页 下页 返回 结束,存在 (或为 ),推论1.,定理 1 中,换为,之一,推论 2.,若,理1条件,则,条件 2) 作相应的修改 , 定理 1 仍然成立.,洛必达法则,定理1 目录 上页 下页 返回 结束,例1. 求,解:,原式,注意: 不是未定式不能用洛必达法则 !,机动 目录 上页 下页 返回 结束,例2. 求,解:,原式,思考: 如何求,( n 为正整数) ?,机动 目录 上页 下页 返回 结束,二、,型未定式,存在 (或为),定理 2.,证:,仅就极限,存在的情形加以证明 .,(洛必达法则),机动 目录 上页 下页 返回 结束,1),的情形,从而,机动 目录 上页 下页 返回 结束,2),的情形.,取常数,可用 1) 中结论,机动 目录 上页 下页 返回 结束,3),时, 结论仍然成立. ( 证明略 ),说明: 定理中,换为,之一,条件 2) 作相应的修改 , 定理仍然成立.,定理2 目录 上页 下页 返回 结束,例3. 求,解:,原式,例4. 求,解: (1) n 为正整数的情形.,原式,机动 目录 上页 下页 返回 结束,例4. 求,(2) n 不为正整数的情形.,从而,由(1),用夹逼准则,存在正整数 k , 使当 x 1 时,机动 目录 上页 下页 返回 结束,例3.,例4.,说明:,1) 例3 , 例4 表明,时,后者比前者趋于,更快 .,例如,而,用洛必达法则,2) 在满足定理条件的某些情况下洛必达法则不能解决 计算问题 .,机动 目录 上页 下页 返回 结束,3) 若,例如,极限不存在,机动 目录 上页 下页 返回 结束,三、其他未定式:,解决方法:,通分,取倒数,取对数,例5. 求,解: 原式,机动 目录 上页 下页 返回 结束,解: 原式,例6. 求,机动 目录 上页 下页 返回 结束,通分,取倒数,取对数,例7. 求,解:,利用 例5,例5 目录 上页 下页 返回 结束,通分,取倒数,取对数,例8. 求,解:,注意到,原式,机动 目录 上页 下页 返回 结束,例9. 求,分析: 为用洛必达法则 , 必须改求,法1 用洛必达法则,但对本题用此法计算很繁 !,法2,原式,例3 目录 上页 下页 返回 结束,内容小结,洛必达法则,机动 目录 上页 下页 返回 结束,思考与练习,1. 设,是未定式极限 , 如果,不存在 , 是否,的极限也不存在 ?,举例说明 .,极限,说明 目录 上页 下页 返回 结束,原式,分析:,分析:,3.,原式,机动 目录 上页 下页 返回 结束,则,4. 求,解: 令,原式,机动 目录 上页 下页 返回 结束,作业,P137 1 (6),(7),(9),(12),(13),(16), 4,第三节 目录 上页 下页 返回 结束,洛必达(1661 1704),法国数学家,他著有无穷小分析,(1696),并在该书中提出了求未定式极,限的方法,后人将其命名为“ 洛必达法,的摆线难题 ,以后又解出了伯努利提出的“ 最速降,线 ” 问题 ,在他去世后的1720 年出版了他的关于圆,锥曲线的书 .,则 ”.,他在15岁时就解决了帕斯卡提出,机动 目录 上页 下页 返回 结束,求下列极限 :,解:,备用题,机动 目录 上页 下页
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025河北雄安新区招聘社区工作者62人备考题库及答案详解(新)
- 2025青海海东市平安区招聘社区专职工作人员(第二批次)15人备考题库附答案详解(a卷)
- 2026广发银行西安分行校园招聘备考题库含答案详解(考试直接用)
- 2026杭州银行秋季校园招聘备考题库及答案详解(名校卷)
- 2025内蒙古兴安盟科右前旗政府专职消防员招录20人备考题库附答案详解(轻巧夺冠)
- 2025中国邮政储蓄银行总行信用审批部社会招聘备考题库有完整答案详解
- 2025广东东莞市公安局警务辅助人员招聘200人备考题库(第一批)附答案详解(典型题)
- 个性化预警方案构建
- 2025年甘肃省武威市古浪县大靖镇选聘大学生村文书备考题库及答案详解(基础+提升)
- 2025河北邢台银行股份有限公司招聘14人备考题库及一套参考答案详解
- 道路运输企业两类人员安全考核题库(含答案)
- JGJ376-2015 建筑外墙外保温系统修缮标准
- 下肢深静脉血栓护理业务学习
- 20212022(2)学期医用物理学学习通超星课后章节答案期末考试题库2023年
- 房地产管理-华中科技大学中国大学mooc课后章节答案期末考试题库2023年
- GB/T 21296.6-2022动态公路车辆自动衡器第6部分:平板模块式
- 中华碑帖精粹:赵孟頫胆巴碑
- 《绿色化学》教学大纲
- 教师职业道德与专业发展知到章节答案智慧树2023年山东师范大学
- 科研方法与论文写作
- 比亚迪F6电器维修手册
评论
0/150
提交评论