




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1?n? ?SK13.1(?) 56e?1317? 1.U?,? ZZ R xydxdy, ?R0 6 x 6 1;0 6 y 6 1. )?f(x,y) = xy34?/?RY,l?f(x,y) = xy3R?.?AA? ?:Pik?A?. ?|?x = i n,y = k n(n N,i,k = 1,2,.,n 1)?Rn 2?/?Rik,? 4Rik= 1 n2,?Pik(i,k) = ? i n, k n ? (i,k = 1,2,.,n).? n X i,k=1 f(i,k)4Rik= n X i,k=1 i n k n 1 n2 = 1 n4 n X i=1 i n X k=1 k = 1 n4 ?n(n + 1) 2 ?2 = 1 4 ? 1 + 1 n ?2 . u,RRRxydxdy = lim n Pn i,k=1f(i,k)4Rik = lim n 1 4 ? 1 + 1 n ?2 . 3.?R0 6 x 6 1;0 6 y 6 1.(x,y) R, f(x,y) = ? 1,x = y 0,x 6= y. y:f(x,y)3R?,?RRRf(x,y)dxdy = 0. yyy?f(x,y)3R?Y:?3?y = x,0 6 x 6 1?.?n3,f(x,y)3R? .d,?AA?:Pk?A?. ?T?/?Rn?:R1,R2,.,Rn.?O4R1,4R2,.,4Rn.3 Rk?:Pk(k,k).k6= k(o?U?),l?f(k,k) = 0,k = 1,2,.,n.? ? n X k=1 f(k,k)4Rk= 0 u,RRRf(x,y)dxdy =lim kTk0 n P k=1 f(k,k)4Rk= 0. 5.y:ef(x,y)3k.4?RY,?f(x,y) 0,K ZZ R f(x,y)dxdy 0. yyy fi ?f(x,y)3k.4?RY,?10.2n6,f(x,y)3R?m.?(x,y) R,kf(x,y) 0,f(x,y) m 0.l?,f(x,y)3R? n X k=1 f(k,k)4k n X k=1 m4k= m n X k=1 4k= m R, 1 ?RR?,?.u ZZ R f(x,y)dxdy =lim kTk0 n X k=1 f(k,k)4k R 0. 6.y:ef(x,y)?g(x,y)3k.4?RY,?g(x,y) 0,K(,) R, ZZ R f(x,y)g(x,y)dxdy = f(,) ZZ R g(x,y)dxdy. yyy fi ?f(x,y)3RY,?10.2n6,f(x,y)3R?m?M,=(x,y) R,k m 6 f(x,y) 6 M, ?(x,y) R,kg(x,y) 0, mg(x,y) 6 f(x,y)g(x,y) 6 Mg(x,y). l?,k m ZZ R g(x,y)dxdy 6 ZZ R f(x,y)g(x,y)dxdy 6 M ZZ R g(x,y)dxdy. ?n8,RRRg(x,y)dxdy 0. eRRRg(x,y)dxdy = 0,KRRRf(x,y)g(x,y)dxdy = 0.u,(,) R,k ZZ R f(x,y)g(x,y)dxdy = f(,) ZZ R g(x,y)dxdy; eRRRg(x,y)dxdy 0,k m 6 RR Rf(x,y)g(x,y)dxdy RR Rg(x,y)dxdy 6 M. ?10.2n7(Y?0?5),(,) R, RR Rf(x,y)g(x,y)dxdy RR Rg(x,y)dxdy = f(,), =RRRf(x,y)g(x,y)dxdy = f(,) RR Rg(x,y)dxdy. 7.y:ef(x,y)3?RY,?k.4?D R?k ZZ D f(x,y)dxdy = 0 K(x,y) R,kf(x,y) = 0. yyy?y.b?P(x0,y0) R,?f(x0,y0) 6= 0,?f(x0,y0) 0.?Y ?5,r 0,=?3:P(x0,y0)?%r?U(P,r),?(x,y) G = U(P,r) R,k f(x,y) f(x0,y0) 2 ( 0). l?, ZZ G f(x,y)dxdy f(x0,y0) 2 ZZ D dxdy = f(x0,y0) 2 G 0, 2 ? G?G?,?fi ?g.u,(x,y) R,k f(x,y) = 0. 8.y:ef(x,y)?g(x,y)3k.4?R?,Kf(x,y)g(x,y)3R?. yyy?T?Rn?:R1,R2,.,Rn.?4kRk?,q?k(f),k(g),k(fg) Of(x),g(x),f(x)g(x)31k?Rk ?.qfi ?f(x,y)?g(x,y)3Rk .(?),= M 0,(x,y) R,k|f(x,y)| 6 M?|g(x,y)| 6 M. ?:P0 k,P 00 k Rk,k |f(P0 k)g(P 0 k) f(P 00 k)g(P 00 k)| 6|f(P0 k)g(P 0 k) f(P 00 k)g(P 0 k)| + |f(P 00 k)g(P 0 k) f(P 00 k)g(P 00 k)| 6|g(P0 k)|f(P 0 k) f(P 00 k)| + |f(P 00 k)|g(P 0 k) g(P 00 k)| 6Mk(f) + k(g). u,k(fg) 6 Mk(f) + k(g),k = 1,2,.,n. n X k=1 k(fg)4k6 M ? n X k=1 k(f)4k+ n X k=1 k(g)4k ? . fi ?f(x,y)?g(x,y)3R?,= 0, 0,T :k T kYn,k lim d(G)0 1 G ZZ G f(x,y)dxdy = f(x0,y0) . 3 10.y:eY?fn(x,y)3k.4?R?uf(x,y),K lim n ZZ R fn(x,y)dxdy = ZZ R f(x,y)dxdy. yyy fi ?f(x,y)3RY,l?.qfi ?fn(x,y)3k.4?R?uf(x,y),= 0,N N,n N,(x,y) R,k |fn(x,y) f(x,y)| 0)?.X13.h(I). ?C?,?u = xy,v = y x. ?C?xy?I?RC?uv?I?o?:u = 1,u = 2,v = 1,v = 4 ?/?R, X13.h(II). (u,v) (x,y) = ? ? ? ? ? ? yx y x2 1 x ? ? ? ? ? ? = 2y x = 2v (x,y) (u,v) = 1 (u,v) (x,y) = 1 2v . u, V = ZZ R x2y2dxdy = ZZ R0 u2 1 2vdudv = Z 4 1 dv Z 2 1 u2 2vdu = 7 2 ln2 . (2)f(x,y) = px2 + y2,Ra26 x2+ y26 b2,a ? ? ? ?1 3 ?s2 3 ?2? ? ? ? = 1. l?, n P k=1 k4 k P R2 k4 k P R2 4k= 1 s 2 3(R2?),= lim kTk0 n X k=1 k4 k6= 0. u,f(x,y)3R?. (2)gR 1 0 dx R1 0 f(x,y)dy?3. yyyx 0,1. ?xkn,f(x,y) = 3y230,1(uy)?,? Z 1 0 f(x,y)dy = Z 1 0 3y2dy = 1; ?xn,f(x,y) = 130,1(uy)?,? Z 1 0 f(x,y)dy = Z 1 0 dy = 1; l?,x 0,1,f(x,y)30,1(uy)?,? Z 1 0 f(x,y)dy = 1, u,gR 1 0 dx R1 0 f(x,y)dy?3. (3)kx?y ?g?3. yyyy0 0,1,?y06= 1 3,?f(x,y0)30,1?. fl ?,0,1?T.31k?mxk1,xk? k= |1 3y2 0|(?),k = 1,2,.,n. 13 l? n P k=1 k4 xk= |1 3y2 0| n P k=1 4xk= |1 3y2 0|, =lim l(T)0 n P k=1 k4 xk6= 0. u,f(x,y0)30,1?,l?kx?y ?g?3. 13.?f(x,y)Y,F(t) = RR R1 f(x,y)dxdy,?Rt: x2+ y26 t2,F0(t). )?x = rcos,y = rsin,|J| = r.k F(t) = ZZ R1 f(x,y)dxdy = Z r 0 dr Z 2 0 rf(rcos,rsin)d, ?12.3n1,?R 2 0 rf(rcos,rsin)dr?Y.?8.4n1,k F0(t) = Z 2 0 tf(tcos,tsin)d. 14.y:ef(x,y)3Ra16 x 6 b1;a26 y 6 b2Y,(,) R,-Ra16 x 6 ;a26 y 6 ,K 2 ZZ R f(x,y)dxdy = f(,). yyy fi ?f(x,y)3RY,(,) R,? F(,) = ZZ R f(x,y)dxdy = Z a1 dx Z a2 f(x,y)dy. fi ?(x) = R a2 f(x,y)dy3a1,Y.?8.4n1,k F = Z a2 f(,y)dy. qfi ?f(,y)3a2,b2Y,2?8.4n1,k 2F = f(,), = 2 ZZ R f(x,y)dxdy = f(,). ?SK13.2 56e?1358? 1.e?n: (1)RRRVxy2z3dxdydz,?Vz = xy?y = x,x = 1,z = 0?. )NVV?z = xy?n?y = x,x = 1,z = 0?,X13.q.NV3xy? I?Kn?y = 0,x = 1,x = y?n?/?D,X13.q.kz,?g 3?K?D?,= 14 ZZZ V xy2z3dxdydz= ZZ D xy2dxdy Z xy 0 z3dz = Z 1 0 xdx Z x 0 y2dy Z xy 0 z3dz = 1 4 Z 1 0 x5dx Z x 0 y5dy = 1 28 Z 1 0 x12dx = 1 364. (3)RRRVxyzdxdydz. ?V = (x,y,z)|x2+ y2+ z26 1,x 0,y 0,z 0. )NV?N?o?,X13.r.NV3xy?I?K?D(x2+ y26 1,x 0,y 0).kz,?g3?K?D?,= ZZZ V xy2z3dxdydz= ZZ D xydxdy Z 1x2y2 0 zdz = 1 2 Z 1 0 xdx Z 1x2 0 y(1 x2 y2)dy = Z 1 0 x(1 x2)2dx = 1 48. 2.?e?nU?gSS?: (1) R1 0 dx R1x 0 dy Rx+y 0 f(x,y,z)dz. )NV:0 6 z 6 x + y,0 6 y 6 1 x,0 6 x 6 1,=NV?:x = 0,y = 0,z = 0,x + y = z,x + y = 1?,X13.s. ky.?NV?K?xy?I?,?K?/?D(0 6 x 6 1;0 6 z 6 1). z = x?NV?N:V1?V2,X13.s.u 15 Z 1 0 dx Z 1x 0 dy Z x+y 0 f(x,y,z)dz = ZZZ V1 f(x,y,z)dxdydz + ZZZ V2 f(x,y,z)dxdydz = Z 1 0 dx Z x 0 dz Z 1x 0 f(x,y,z)dy + Z 1 0 dx Z 1 x dz Z 1x zx f(x,y,z)dy. kx,?NV?K?yz?I?.?K?/?G(0 6 y 6 1;0 6 z 6 1). z = y?NV?N:V1?V2.u,?k Z 1 0 dx Z 1x 0 dy Z x+y 0 f(x,y,z)dz = Z 1 0 dz Z 1 z dy Z 1y 0 f(x,y,z)dx + Z 1 0 dz Z z 0 dy Z 1y zx f(x,y,z)dx. (2)R 1 1dx R 1x2 1x2 dy R1 x2+y2 f(x,y,z)dz. )NV:px2+ y26 z 6 1,1 x26 y 6 1 x2,1 6 x 6 1,=NVI z2= x2+ y2?z = 1?,X13.t. ky,?NV?K?xz?I?.?Kn?/?D(x = z,x = z,z = 1)?.u ,ky,?gx,?z,k Z 1 1 dx Z 1x2 1x2 dy Z 1 x2+y2 f(x,y,z)dz = Z 1 0 dz Z z z dx Z z2x2 z2x2 f(x,y,z)dy. ky,?gz,?x.x=0(yz?I)?NV?N:V1?V2,X 13.t.u, Z 1 1 dx Z 1x2 1x2 dy Z 1 x2+y2 f(x,y,z)dz = ZZZ V1 f(x,y,z)dxdydz + ZZZ V2 f(x,y,z)dxdydz = Z 1 0 dx Z 1 x dz Z z2x2 z2x2 f(x,y,z)dy + Z 0 1 dx Z 1 x dz Z z2x2 z2x2 f(x,y,z)dy. 16 kx,)?,l?. 3.?C?e?n? (1)RRRV(x2+ y2)dxdydz,?Vx2+ y2= 2z?z = 2?. )NV=?x2+ y2= 2z?z = 2?,X13.u. ?IO?: x = rcos,y = rsin,z = z. |J| = r.?NVC?NV: r2 2 6 z 6 2,0 6 r 6 2,0 6 6 2. u,RRRV(x2+ y2)dxdydz = RRR V0 r2 r drddz = Z 2 0 d Z 2 0 r3dr Z 2 r2 2 dz = 16 3 . (2)RRRvzpx2+ y2dxdydz,?Vy = 2x x2?z = 0,z = a,y = 0?(a0). )NV?e.?(x 1)2+ y26 1(y 0)p?a1z?N,X13.v ?IO?: x = rcos,y = rsin,z = z,|J| = r. ?NVC?NV: 0 6 z 6 a,0 6 6 2 ,0 6 r 6 2cos. u,RRRvzpx2+ y2dxdydz = Ra 0 dz R 2 0 d R2cos 0 zr rdr = 4a2 3 Z 2 0 cos3d = 8 9a 2 (3)RRRv s 1 x2 a2 y2 b2 z2 c2dxdydz,?V ? x2 a2 + y2 b2 + z2 c2 6 1. )2?IO?: x = arsincos,y = brsinsin,z = crcos. ? ? ? ? ? ? asincosarcoscosarsinsin bsinsinbrcossinbrsincos ccoscrsin0 ? ? ? ? ? ? = abcr2sin. ?NVC?NV:0 6 r 6 1,0 6 6 ,0 6 6 2.u ZZZ v s 1 x2 a2 y2 b2 z2 c2dxdydz 17 = abc Z 2 0 d Z 0 sind Z 1 0 p 1 r2r2dr = 4abc Z 1 0 r2 p 1 r2dr = 2 4 abc. (4)RRRV(x2+ y2)dxdydz,?Vz = pb2 x2 y2?z = pa2 x2 y2(b a 0)9 z = 0?. )NV%3?:?a?b?xy?I?. ?IO?: x = rsincos, y = rsinsin, z = rcos. (x,y,z) (r,) = r2sin. ?NVC?NV:a 6 r 6 b,0 6 6 2,0 6 6 2.u ZZZ V (x2+ y2)dxdydz = Z 2 0 d Z 2 0 sin3d Z b a r2 r2dr = 2 5 (b5 a5) Z 2 0 sin3d = 2 5 (b5 a5) 2 3 = 4 15(b 5 a5). 4.e?N?N: (1)z = xy,x2+ y2= x,z = 0. )NV3xy?I?K?D : x2+ y26 x.x?D?D1: x2+y26 x,y 0?D2: x2+y26 x,y 6 .0X13.w.3D1?V?z = xy 03xy? I?, 3D2?V?z = xy 6 03xy?I?e?,?NVux. d,NV?N1?%?N?2?.u,NV ?N I = 2 ZZ D1 dxdy Z xy 0 dz = 2 Z 1 0 dx Z xx2 0 dy Z xy 0 dz = 2 Z 1 0 xdx Z xx2 0 ydy = Z 1 0 x(x x2)dx = 1 12. (2)z = x2+ y2,z = 2(x2+ y2),y = x,y = x2. )NV3xy?I?K?D : y = x?y = x2?.NV3xy?I?,e ?=?z = x2+ y2,?=?z = 2(x2+ y2).u,NV?N I = ZZZ V dxdydz = Z 1 0 dx Z x x2 dy Z 2(x2+y2) x2+y2 dz = Z 1 0 dx Z x x2 (x2+ y2)dy = 3 35. (3)x2+ y2+ z2= a2,x2+ y2+ z2= b2,x2+ y2= z2(z 0,0 0). ?IO?: x = rcos, y = rsin, z = z. |J| = r. NV 3?IXNV : 0 6 6 2,0 6 r 6 1,r 6 z 6 p 2 r2. 20 duz?=.?“,k Jz= ZZZ V (x2+ y2)dxdydz = Z 2 0 d Z 1 0 dr Z 2r2 r r2 rdz =2 Z 1 0 r3( p 2 r2 r)dr = 4 15(4 2 5). 7.y: Z x 0 dv Z v 0 du Z u 0 f(t)dt = 1 2 Z x 0 (x t)2f(t)dt. yyy?“?z?n,?NV 0 : 0 6 t 6 u,0 6 u 6 v,0 6 v 6 x,= NVtuv?m?IXo?:t = 0,t = u,u = v?v = x?,X13.y. ?“?g?gS:kv,?gu,?t.?NV? K?tu?I?,n?t = u,u = x,t = 0?n?/?D,X13.y.u Z x 0 dv Z v 0 du Z u 0 f(t)dt = Z x 0 dt Z x t du Z x u f(t)dv = Z x 0 dt Z x t f(t)(x u)du = Z x 0 f(t)dt Z x t (x u)d(x u) = 1 2 Z x 0 (x t)2f(t)dt. 8.?F(t) = RRR V f(x2+ y2+ z2)dxdydz,?V : x2+ y2+ z26 t2,f?,F0(t). ) ?IO?: x = rsincos, y = rsinsin, z = rcos. |J| = r2sin. L?IO?,NV3?IX?NV: 0 6 r 6 t,0 6 6 ,0 6 6 2. l?,k F(t) = Z 02d Z 0 d Z t 0 f(r2)r2sindr =4 Z t 0 r2f(r2)dr u,F0(t) = 4t2f(t2). 21 9.?f(x,y,z)3NV : x2+ y2+ z26 1Y,Vr: x2+ y2+ z26 r2,(0 0,31?%?,? 4 6 6 2.l?1?%?NV1: 0 6 6 2, 4 6 6 2,0 6 r 6 a pcos2. u,NV?N I= ZZZ V dxdydz = 8 ZZZ V1 r2sindrdd =8 Z 2 0 d Z 2 4 d Z acos2 0 r2sindr =8 2 a3 3 Z 2 4 (cos2) 3 2sind = 4 3a 3 Z 2 4 (1 2cos2) 3 2sind (?u = cos) = 4 3a 3 Z 2 2 0 (1 2u2) 3 2du (?u = 1 2sint) = 4 3 1 2a3 Z 2 0 cos4tdt = 2a3 42. 22 (2) ?x2 a2 + y2 b2 + z2 c2 ?2 = x h (h 0). )w,x 0,=?NV?uyz?Ix?. XJ:(x,y,z)(? ?K?,x 0)3?,Kux?:(x,y,z)?3?.d, ? NVux,l?NV?N1?%?NV1?N?4?.?O?1?%? ?NV1?N,?2?IO?: x = arsincos, y = brsinsin, z = crcos. |J| = abcr2sin. 3?IX? r4= a hrsincos r = 3 s a hrsincos. 1?%?NV1: 0 6 6 2,0 6 6 2,0 6 r 6 3 s a hrsincos. u,NV?N I= ZZZ V dxdydz = 4 ZZZ V1 dxdydz =4 Z 2 0 d Z 2 0 d Z 3 v u u ta h r sincos 0 abcr2sindr = 4a2bc 3h Z 2 0 cosd Z 2 0 sin2d = a2bc 3h . 11.n ZZZ V dxdydz px2 + y2+ (z a)2 , ?VNx2+ y2+ z26 1,?a 1. )?IO?: x = rsincos, y =
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 计算机网络技术的应用趋势与分析试题及答案
- 市场竞争分析策略试题及答案
- 2025年软件水平知识的深入探索
- 基于数字孪生的智能办公系统设计与实现研究
- 校招:电气工程师笔试题库及答案
- 2025年软考网络管理员考试模拟题及答案
- 2025年法学概论考点总结及试题及答案
- 小学体育校招面试题目及答案
- 信息处理技术员复习攻略试题及答案
- 深入解析2025年网络管理员考试内容与试题答案
- 国有融资担保公司笔试真题解析
- 24秋国家开放大学《社会教育及管理》形考任务1-3参考答案
- 2024年江西省高考化学试卷(真题+答案)
- 大美劳动智慧树知到期末考试答案章节答案2024年江西财经大学
- MOOC 光纤光学-华中科技大学 中国大学慕课答案
- 建筑史智慧树知到期末考试答案2024年
- 高级英语第一册Unit2Hiroshima课后练习答案
- 地下停车场交安设施施工方案_车库交通安全设施施工方案_标志_标线_交通设施00000
- 《苏幕遮燎沉香》教学设计
- 个人征信报告模板2020年word版可编辑带水印
- 保险建议书范本
评论
0/150
提交评论