




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一人带着一只狼 、 一只羊和一箱蔬菜要过河 ,但只有一条小船 .乘船时 , 每次只能带狼 、 羊和蔬菜中的一种 .当有人在场时 , 狼 、 羊 、 蔬菜都相安无事 .一旦人不在 ,狼会吃羊 ,羊会吃菜 .请设计一个方案 ,安全地将狼 、羊和蔬菜带过河 . 过河游戏 趣味益智游戏 如何发电子邮件? 假如你的朋友不会发电子邮件,你能教会他么? 发邮件的方法很多,下面就是其中一种的操作步骤: 第一步 登陆电子信箱 第二步 点击“写信” 第三步 输入收件人地址 第四步 输入主题 第五步 输入信件内容 第六步 点击“发送” 一般地 ,对于一类问题的机械式地 、 统一地 、 按部就班地求解过程称为算法 (algorithm)它是解决某一问题的程序或步骤 . 按照这样的理解 ,我们可以设计出很多具体数学问题的算法 .下面看几个例子 : 所谓 “ 算法 ” 就是解题方法的精确描述 .从更广义的角度来看 ,并不是只有 “ 计算 ” 的问题才有算法 ,日常生活中处处都有 .如 乐谱 是乐队演奏的算法 ,菜谱 是做菜肴的算法 ,珠算口诀 是使用算盘的算法 . 请你写出解下面二元一次方程组的详细过程 . 2121xyxy 第二步 解得 1;5x 第三步 - 2得 5y=3; 第四步 解 得 3;5y 1,53.5xy 第五步 得到方程组的解为 第一步 + 2得 5x=1; 解: 做一做 你能 写出解一般的二元一次方程组的步骤吗? 第一步 , 第二步 ,解( 3)得 1 2 2 11 2 2 1.c b c bxa b a b思考 2 1 1 22 1 1 2.a c a cya b a b第四步 ,解( 4)得 21( 1 ) ( 2 )aa 得 :第三步 , 2 1 1 2 2 1 1 2 .a b a b y a c a c ( 4 )第五步 ,得到方程组的解为 上述步骤构成了解二元一次方程组的一个算法,我们可以进一步根据这一算法编制计算机程序,让计算机来解二元一次方程组 . 练习 1. 给出求 1+2+3+4+5+6的一个算法 . 解法 1.按照逐一相加的程序进行 . 第一步 :计算 1+2,得 3; 第二步 :将第一步中的运算结果 3与 3相加得 6; 第三步 :将第二步中的运算结果 6与 4相加得 10; 第四步 :将第三步中的运算结果 10与 5相加得 15; 第五步 :将第四步中的运算结果 15与 6相加得 21. 解法 2.可以运用下面公式直接计算 . ( 1 )1 2 3 42nnn 第一步 ,取 n =6; 第二步 ,计算 ; 2)1( nn第三步 ,输出计算结果 . 点评 :解法 1繁琐 ,步骤较多 ; 解法 2简单 , 步骤较少 . 找出好的算法是我们的追求目标 . 现在你对算法有了新的认识了吗? 在数学中 , 算法通常是指按照一定规则解决某一类问题的明确和有限的步骤 .现在 ,算法通常可以编成计算机程序 , 让计算机执行并解决问题 . 2.算法的要求 (1)写出的算法 ,必须能解决一类问题 (例如解任意一个二元一次方程组 ),并且能重复使用 ; (2) 算法过程要能一步一步执行 ,每一步执行的操作 ,必须确切 ,不能含混不清 ,而且在有限步之内完成后能得出结果 . 1.算法的定义 3.算法的基本特征 : 明确性 :算法对每一个步骤都有确切的 、 非二义性的规定 ,即每一步对于利用算法解决问题的人或计算机来说都是可读的 、 可执行的 ,而不需要计算者临时动脑筋 . 有效性 :算法的每一个步骤都能够通过基本运算有效地进行 ,并得到确定的结果;对于相同的输入 ,无论谁执行算法 ,都能够得到相同的最终结果 有限性 :算法应由有限步组成 ,至少对某些输入,算法应在有限多步内结束 ,并给出计算结果 例 1:(1)设计一个算法判断 7是否为质数 . 第一步 用 2除 7,得到余数 1.因为余数不为 0, 所以 2不能整除 7. 第二步 用 3除 7,得到余数 1.因为余数不为 0, 所以 3不能整除 7. 第三步 用 4除 7,得到余数 3.因为余数不为 0, 所以 4不能整除 7. 第四步 用 5除 7,得到余数 2.因为余数不为 0, 所以 5不能整除 7. 第五步 用 6除 7,得到余数 1.因为余数不为 0, 所以 6不能整除 7.因此, 7是质数 . 例 1:(2)设计一个算法判断 35是否为质数 . 第一步 , 用 2除 35,得到余数 1.因为余数不为 0, 所以 2不能整除 35. 第二步 , 用 3除 35,得到余数 2.因为余数不为 0, 所以 3不能整除 35. 第三步 , 用 4除 35,得到余数 3.因为余数不为 0, 所以 4不能整除 35. 第四步 , 用 5除 35,得到余数 0.因为余数为 0, 所以 5能整除 35.因此, 35不是质数 . 变式 : “判断 53是否质数”的算法如下: 第 1步 ,用 2除 53得余数为 1,余数不为 0,所以 2不能整除 53; 第 2步 ,用 3除 53得余数为 2,余数不为 0,所以 3不能整除 53; 第 52步 ,用 52除 53得余数为 1,余数不为 0,故 52不能整除 53; 所以 53是质数 . 上述算法正确吗?请说明理由 . 算法要“面面俱到” ,不能省略任何一个细小的步骤 ,只有这样 ,才能在人设计出算法后 ,把具体的执行过程交给计算机完成 . 设计一个具体问题的算法时 ,与过去熟悉地解数学题的过程 有直接的联系 ,但这个过程必须被分解成 若干个明确的步骤 , 而且这些步骤必须是有效的 . 判断“整数 n(n2)是否是质数”的算法 自然语言描述 第一步 给定大于 2的整数 n. 第二步 令 i=2. 第三步 用 i除 n,得到余数 r. 第四步 判断“ r=0” 是否成立 .若是,则 n不是质 数,结束算法;否则将 i的值增加 1,仍用 i表示 . 第五步 判断“ i(n-1)” 是否成立 .若是,则 n是质数,结束算法;否则返回第三步 . 例 2:用二分法设计一个求方程 近似根的算法 二分法 对于区间 a,b 上连续不断、且 f(a)f(b)0的函数y=f(x),通过不断地把函数 f(x)的零点所在的区间一分 为二,使区间的两个端点逐步逼近零点,进而得到零点或其近似值的方法叫做二分法 . 第四步 , 若 f(a) f(m) 0,则含零点的区间为 a,m; 第二步 , 给定区间 a,b ,满足 f(a) f(b) 0 第三步 , 取中间点 2abm 第五步 ,判断 f(m)是否等于或者 a,b的长度是否小于 d,若是,则 m是方程的近似解 ;否则,返回第三步 将新得到的含零点的仍然记为 a,b . 否则,含零点的区间为 m, b . 算法步骤: 第一步 , 令 ,给定精确度 d. 2( ) 2f x xa b |a-b| 1 2 1 1 1.5 0.5 1.25 1.5 0.25 1.375 1.5 0.125 1.375 1.437 5 0.062 5 1.406 25 1.437 5 0.031 25 1.406 25 1.421 875 0.015 625 1.414 625 1.421 875 0.007 812 5 1.414 062 5 1.417 968 75 0.003 906 25 当 d=0.005时,按照以上算法,可得下面表和图 . y=x2-2 1 2 1.5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/IEC TR 16088:2025 EN Information technology - Computer graphics,image processing and environmental representation - Constructs for visual positioning systems in mixed a
- 【正版授权】 ISO 11890-2:2020/Amd 1:2024 EN Paints and varnishes - Determination of volatile organic compounds(VOC) and/or semi volatile organic compounds (SVOC) content - Part 2: Gas-ch
- GB/T 20165-2025稀土抛光粉
- GB/T 21840-2025硫化促进剂N-叔丁基-13-苯并噻唑-2-次磺酰胺(TBBS)
- 校园门卫安全知识培训课件
- 校园广播安全知识培训课件
- 杀鸡杀鸭测试题及答案
- 病号心理测试题及答案
- 宝鸡焊工考试题及答案
- 民法自考试题及答案
- 2025智联招聘行测题库及答案解析
- GB/T 12643-2025机器人词汇
- 自由职业者合作协议合同范本
- 慈溪教育局劳动合同
- DBJ∕T 13-262-2017 福建省里氏硬度法现场检测建筑钢结构钢材抗拉强度技术规程
- DL-T 5876-2024 水工沥青混凝土应用酸性骨料技术规范
- 价值观使命培训
- 公路工程施工安全技术资料编制指南
- 十期牛黄清心丸
- 2024-2025学年四川成都田家炳中学高一新生入学分班质量检测数学试题【含答案】
- 外科学-心脏疾病课件
评论
0/150
提交评论