资源目录
压缩包内文档预览:(预览前20页/共67页)
编号:22584517
类型:共享资源
大小:7.79MB
格式:RAR
上传时间:2019-10-19
上传人:闰***
认证信息
个人认证
冯**(实名认证)
河南
IP属地:河南
50
积分
- 关 键 词:
-
灯罩
注塑
模具设计
- 资源描述:
-
台灯罩后盖注塑模具设计,灯罩,注塑,模具设计
- 内容简介:
-
本科毕业论文(设计)题目一种灯罩注塑模具设计 作者院(系)专业班级学号指导教师答辩日期一种灯罩注塑模具设计一种灯罩注塑模具设计摘要:近代塑料工业的快速发展,让塑 料被广泛应用。本课 题延续了设计 注塑模具的一般流程,意在设计生产灯罩的注塑模具。设计模具之前,应先 对所选材料的成形特性有所掌握,在确定制品的生产要求后,可直接对制品 进行工艺性分析和成型零部件的设计运算。其次,可参考制品的形状尺寸和 精度要求来选定模具结构,再对注塑机的型号进行选择。最后,对所选用的 成型设备以及各种计算数据进行校核,保证设计的安全性和合理性。通过本 课题的研究,不仅对专业课知识有充分的检验,而且锻炼了自己勤动手、多 思考和知识整合的能力。总之,设计灯罩注塑模具,其根本问题就是设计凹 模和凸模、导向机构、侧向分型与抽芯机构、排气、加热和冷却系统、注塑 机的选择等环节。关键词:箱体外壳;模具结构;注塑模设计I本科毕业论文(设计)Design of Injection Mold for Meter BoxAbstract: The rapid development of modern plastics industry, so that plastics are widely used. This topic continues the design of the general process of injection mold, intended to design and produce the meter box of injection mold. Before designing the mold, you should first understand the forming characteristics of the selected materials. After determining the production requirements of the products, it can be directly on the process of product analysis and the design calculation of molding parts. Second, the mold structure can be selected by reference to the shape and size of products and accuracy requirements, and then choose the type of injection molding machine. Finally, the selected molding equipment and a variety of calculation data to check, so as to ensure the safety and rationality of the design. Through the study of this subject, not only can check the professional knowledge, but also exercise manual ability, more thinking and knowledge integration ability. All in all, the fundamental problem of the design of the meter box shell injection mold is that the design of cavity and core, guidance mechanism, lateral classification and core pulling mechanism, exhaust, heating and cooling systems, selection of injection molding machine and other links.Key words:Box shell,Mold structure,Injection mold designII一种灯罩注塑模具设计目录摘要IAbstractII1 绪论31.1 研究的背景及意义31.2 国内外模具发展现状31.2.1 国内注塑模具的发展现状31.2.2 国外注塑模具的发展现状31.3 注塑模具的发展趋势41.4 研究的内容42 塑件结构工艺性分析52.1 塑件的几何形状分析52.1.1 塑件结构分析52.1.2 尺寸精度分析52.1.3 生产批量62.2 塑件材料的成型特性62.2.1 塑件材料的选择62.2.2 性能简述62.3 成型设备的要求72.4 性能指标73 注塑机和成型方案的确定83.1 塑件的参数计算83.1.1 分析塑件的表面质量83.1.2 体积和重量的确定83.2 注塑机的确定83.3 拟定成型方案93.3.1 成型设备93.3.2 主要特点103.3.3 注射工艺参数103.3.4 成型流程114 型腔数目的确定和分型面的筛选124.1 确定型腔数124.2 筛选分型面125西安文理学院毕业论文(设计)4.2.1 分型面的筛选原则124.3 型腔的布置方式135 成型零部件的设计145.1 凸模的设计145.2 凹模的设计145.3 成型零件工作尺寸的计算145.3.1 模腔工作尺寸的计算145.3.2 型腔壁厚和底板厚度计算166 浇注系统的设计176.1 浇注系统设计原则176.2 主流道的设计176.3 分流道的设计176.3.1 分流道的截面形状186.3.2 分流道的尺寸186.4 浇口的设计186.4.1 浇口的主要作用186.4.2 浇口的类型与位置187 排气和冷却系统设计197.1 冷却系统设计的规则197.2 排气系统设计198 注射机和模具各参数的校核208.1 工艺参数的校核208.2 模具装配尺寸的校核218.2.1 喷嘴的校核218.2.2 定位圈尺寸的校核218.2.3 模具外形尺寸的校核218.2.4 模具厚度的校核218.3 开模行程的校核229 总结23参考文献24致 谢26附 录26一种灯罩注塑模具设计1 绪论1.1 研究的背景及意义近年来,我国模具发展的速度是非常迅速的。模具是一个国家制造水平的权 衡标志之一。模具的发展也会带动其他制造业的发展。他支撑着许制造业,所以 模具的发展是非常重要的。模具制造业是我国的根基工业,受到我国高度的重视, 所以近年来模具制造业的成绩是显而易见的。在现代社会,塑料制品的制作很大一部分先是设计注塑模具,注塑模具在我 们的生活中有很大的用途,通过设计注塑模具,可以让我们对塑料制品的成型过 程有一个完整的了解,也让我们对各种塑料的力学性能,化学性能等得到了充分 的了。通过对本课题的研究和分析让我们能够更好的学习和运用大学期间所学的 所有课程知识以及理论和毕业实习中学到的理论知识,提高了我们总体设计概念 和计算能力的提升,更加深刻的认识模具。让我们对模具有了更好的认识,也让 我们对文献以及手册的运用的更加的灵活。在本课题中我们需要用计算机绘图, 这必然会让我们更加熟练的运用计算机。通过上网查资料,也丰富了我们的头脑。 通过该设计,让我们的外语翻译水平得到了提升,通过计算机绘图,让我们可以 更加熟练的运用计算机。通过最终的努力,让我们能够熟练的运用所学到的知识 解决生活中遇到的问题。1.2 国内外模具发展现状1.2.1 国内注塑模具的发展现状近几年来,我国注塑模具的发展相对于其他发达国家来说也已经相当不错 了。我国小模数塑料齿轮等精密塑料模具的生产水平已能够和其他国家同类产品 相比较,在一些方面还能够处于领先地位。齿轮模具设计中可以运用齿轮设计软 件,可以在加工过程中减少齿形误差,使之达到了标准参数要求。尽管在近几年中注塑模具工业的发展相当迅速,但是距离工业比较发达的国 家在很多方面与还是有较大的差距。我国还不能广泛的应用在许多先进的模具技 术,在模具的技术上和其他国家还存在很大的差距,所以好多模具产品只能从国 外进口,国内的产品达不到我们所需的要求。1.2.2 国外注塑模具的发展现状国外的模具的发展方向是朝着智能化、网络化的。在要求保证再生产过程中 产品的精度的同时,也追求着生产效率。目前,国际上许多工业大国模具的精度 要求已经可以达到 75%到 85%之间,降低了生产的成本,节约了生产实间,是产 品能更好的满足顾客的要求1。1.3 注塑模具的发展趋势在我国磨具的发展是非常快的,但是塑料磨具将远远领先于其他模具的发展 速度,塑料磨具的方向将是自动化,规模化,并向着“专”和“精”的方向发展,为 了满足客户的要求,模具制造也必将面向交货期短”、“精度高”、“质量好”、“价 格低”1。(1)模具产品发展将大型化、精密化(2)多功能复合模具将进一步发展(3)气体辅助注射模具和适应高压注射成形等工艺的模具将积极发展(4)模具使用优质材料及应用先进的表面处理技术将进一步受重视(5)模具高速扫描及数字化系统将发挥更大的作用(6)模具研磨抛光将向自动化、智能化方向发展1.4 研究的内容(1)搜集模具相关资料及前期准备工作, 灯罩注塑模具零件结构工艺性的 分析:零件的结构、材料的性能、成型工艺等,确定模具总体方案;(2)进行模具工艺参数设计,模具基本类型与工作部分零件尺寸计算,模 具总体结构设计:确定型腔数目,分型面,浇注系统结构,推出方式,成型零件 结构,温度调节系统等;(3)进行模具结构设计及计算,模具整体设计和绘制装配图:模具零件结构 尺寸设计;初选设备,设计浇注系统,设计推出机构,动、定模导向机构设计, 成型零件设计及注塑机校核等;采用计算机软件绘制模具装配图以及各零件图。一种灯罩注塑模具设计2 塑件结构工艺性分析2.1 塑件的几何形状分析2.1.1 塑件结构分析产品名称:台式灯罩设计本设计的台灯灯罩的三维立体图如图 2.1 所示,其灯罩二维图尺寸图如图 2.2所示。图 2.1 灯罩三维图图 2.1 灯罩二维图该塑件的形状为不规则图形,考虑到分模的方向没有阻碍,内部不太深,很 容易脱模。2.1.2 尺寸精度分析(1)尺寸精度的选择; 塑件尺寸精度的选择是非常重要的,我们在选择尺寸精度 时,可以先选择适合此设计的塑料,然后根据塑件的使用用途,确定选用低精度, 一般精度还是高精度2。(2)尺寸精度的组成和影响; 制品尺寸误差构成为: a=b+2c+d+e 式中a 一制件总的成型误差;西安文理学院毕业论文(设计)b 一塑料收缩率引起的误差;c 一模具在制做过程中所形成的误差;d 一模具在使用过程中因磨损而引起的误差; e 一安装模具,配合间隙形成的误差;在我们的生活中,影响塑料制品的因素特别多,主要有以下三个方面1)模具一模具的制作精度间接影响塑件的尺寸精度。2)塑料材料一主要的影响是收缩率。3)成型工艺一成型工艺条件的变化影响。在本设计中,设计壁厚为 4mm,因为灯罩属于日常的生活用品,所以精度 要求不是很高,所以选择一般精度等级 5 级精度3。2.1.3 生产批量出于对制品产出批要求,因此课题中模具工作时应满足时间短、速度快的特 点。结合模具的复杂构造、模具需多面抽芯,运用一模 2 件的构造来批量产出制 品。在对浇口进行筛选时,侧浇口则最为适合。2.2 塑件材料的成型特性2.2.1 塑件材料的选择本课题设计的是灯罩,他是一种壳类零件,从结构上来说,结构比较复杂, 而且壁厚很薄,为了美观,也需要有很高的表面光洁度,经分析可知,聚丙烯(PP) 是制作此制品注塑的最佳材料4。2.2.2 性能简述聚丙烯具有许多优良特性:(1)密度非常小。(2)有良好的力学性能,成型加工性能好。(3)可以在高达 110-120的环境下使用,耐高温能力非常的强。(4)他与大多数的东西不发生反应,化学性能稳定。(5)质地纯净,无毒性。(6)电绝缘性好。(7)聚丙烯制品的透明性比高密度聚乙烯制品的透明性好 当然它有很多优点但也有缺点:(1)在低温下不能更好的发挥作用。(2)长时间可以因为风化而老化。(3)着色性不好。9一种灯罩注塑模具设计(4)易燃烧。2.3 成型设备的要求可初步确定成型设备的基本要求:(1)注射机的采用:一般选取自动化注塑机。(2)干燥处置:不需干燥。(3)熔化温度:在注塑设备正常工作的情况下,其温度可以达到融化塑料 的温度以上就可以。(4)注塑压力:注塑压力一般不宜过高或者过低,保持适当。(5)熔胶背压:用熔胶背压。2.4 性能指标聚丙烯材料的特性指标如表 2.1 所示,表 2.1 PP 材料的特性指标特性名称取值范围特性名称取值范围密度( g cm3 )0.90 : 0.91抗拉屈服强度56 : 67比体积 v(cm3 g)1.10 : 1.11sb (Mpa)弯曲弹性模量 /GPa1.45收缩率 S()1.0 : 3.0拉弯强度s(w Mpa)67.0热变形温度 T ( oC)102.0 : 115.0布氏硬度(HB)8.65熔点 T ( oC)170.0 : 176.0体积电阻率1014pv(W m)西安文理学院毕业论文(设计)3 注塑机和成型方案的确定3.1 塑件的参数计算3.1.1 分析塑件的表面质量作为生活用品,为了保证其结构有该有的性能外,还需考虑其外观的精美程 度,因此每个成型面都应该进行打磨抛光处理。3.1.2 体积和重量的确定通过制品重量的计算筛选注塑机以及确定型腔数。 制品的体积:V = 86.9 cm3制品的质量公式:W = V r由表 2.1 可查得聚丙烯 PP 的密度取 0.90 / cm3即制品的重量:W = 86.9 0.9 = 78.21图 3.1 体积测量图3.2 注塑机的确定注射机的类型和规格有很多,按结构形式可分为三类,这三类注射机的特 点如如下:一种灯罩注塑模具设计表 3.1 三种注塑机的优缺点立式注射机卧式注射机直角式注射机优点(1)占地面积小(2)安装或拆卸小型模具很方(3)嵌件不容易倾斜或坠落(1)机体比较低,容易加 料和操作 (2)易实现全自动操作 (3)机床中心比较低,安 装稳妥(1)结构简单,便于自 制缺点(1)需要人工取出(1)安装比较麻烦(1) 受 冲 击 震 动 比 较 大根据开模行程,锁模力,以及注射容量的计算,加上注射机的 特点,选择注 射机为 SZY - 300 其注射机的工艺参数如表 3.2 所示。表 3.2 注塑机 SZY-300 主要技术参数表参数名称参数值参数名称参数值额定注射量320mm2柱塞直径60mm注射压力125MPa模板尺寸520 620(mm柱杆空间400 300(mm锁模力1500KN喷嘴圆弧半径12mm喷嘴孔径3mm最大开模行程340mm模具最大厚度450mm模具最少厚度300mm3.3 拟定成型方案3.3.1 成型设备塑料种类的不同造成了成型的方案各不一样。我们常见的成型方法有以下几 种:1.注塑成型2.液压与气动成型西安文理学院毕业论文(设计)塑件三维图3.冲压成型。 通过对本课题的研究,本课题选取注塑成型技术。3.3.2 主要特点主要特点如下:(1) 易于实现自动化(2) 成型周期短(3) 生产效率高(4) 对塑料的适应性强3.3.3 注射工艺参数在进行注射的同时,我们需要对成型设备的工艺参数进行确认,此套模具的 工艺参数如下表 3.3 所示,表 3.3 工艺参数制 品 名 称电表箱外壳材料名称缩写PP单个塑件重量58.41g注塑机型号SZY - 300每模的型腔数2成型设备的工艺参数材料干燥干燥设备名称烘箱温度 /110 : 120时间 /h8 : 12成型过程料 筒 温 度后段 /200 : 220中段 /180 : 200前段 /160 : 180喷嘴 /240 : 250模具温度 /80 : 90时间注射 /s20 : 90保压 /s0 : 5冷却 /s20 : 90压力注射 /MPa80 : 130保压 /MPa48 : 90制品后处 理温度 /70时间 /h2 : 419一种灯罩注塑模具设计3.3.4 成型流程一个完整的注射成型流程包含:(1)前期的准备;(2)注射过程;(3)制品 的后处理5。前期的准备: 在生产前我们需要做许多准备工作,进行原料的处理,系统的清洗,塑件要进行预热,选择好脱模剂等工作。来确保塑件制品的质量,使注射成型顺利进行。 注射过程:注射过程一般包括:加料,塑化,注射,冷却,脱模。 加料: 为了保证塑件的质量,提高生产效率高,确保操作稳定。 塑化:塑化的目的是为了把粉状或固态变成为均匀的连续的熔融状态的液体。 注射: 柱塞或螺杆从机筒内的计量位置开始,通过注射油缸和活塞施加高压,将塑化好的塑料熔体经过机筒 注射通常分为流动性充模、倒流、补缩保压三个阶段。 冷却:当熔融塑料充满型腔,我们需要通过冷却水冷却型腔里的熔融塑料来定型, 在用冷却水冷却的这一阶段叫做冷却。脱模: 在塑件冷却到一定的温度时,我们可以推出塑件,这个过程我们叫做脱模。西安文理学院毕业论文(设计)4 型腔数目的确定和分型面的筛选4.1 确定型腔数通常情况下,我们可以通过很多方法在确定型腔的数目,下面我们通过注射 量来计算:N = G - CV式中: G - -注射机的公称注射量 / cm3 V - -单个制品的体积 / cm3C - -浇道和浇口(浇注的总体积)的体积/cm3N = 0.7G = 2.3G = 2.3 300 = 7.94(个)(4-1)0.3VV86.9在正常的生产中,注射器实际的注射量应该为公称注射量的 (0.45 : 0.75)倍 , 此设计采用 0.7G 进行设计。 每件产品实际的浇注体积应是产品总体积的(0.2 : 1)倍 ,此设计中采纳 C = 0.3V 进行计算。 为了时两边的熔融液分布均匀,我们一般选双数的型腔数,根据计算选 N=2.4.2 筛选分型面4.2.1 分型面的筛选原则(1)分型面选择的总体原则一般情况下,选择分型面的原则有以下几点:1)最主要的是保证塑件质量。2)有利于塑件的脱模以达到提高生产力的要求。3)模具结构尽量简单。 (2) 怎样选择分型面型腔与模具的关系一般可分三类: 第一类型腔完全处于动模中; 第二类型腔完全处于定模中; 第三类型腔分别处于动、定模中。 为了让大家对分型面有充分的了解,我来做一下介绍。一种灯罩注塑模具设计长型构件的分型,如果采用第三种的话,会使塑件两端尺寸差异不致过大。 有利于排气的分型。在其末尾段不能有遮挡,且分型面应该设置在熔体流料末端。保证同轴度的分型。为了保证精度要求,通常我们将有同轴度要求的塑件都 分设计在同一个动模版内即可6。壁厚均匀的分型。要达到这样的要求,一般情况下,不用平面来做分型面。4.3 型腔的布置方式因为制品在成型时采取“一模两腔”的方案以及浇注系统和模具结构的复杂 性,所以本设计选取图 4.1 的型腔布置方式。图 4.1 型腔分布图西安文理学院毕业论文(设计)5.1 凸模的设计5 成型零部件的设计凸模的作用是成型塑件制品表面的内表面,起支撑作用,本设计为灯罩凸模 的设计如图 5.1 所示。5.2 凹模的设计图 5.1 凸模凹模亦称型腔,其主要的作用是成型塑件制品的外表面,本设计为灯罩的设 计,凹模如图 5.2 所示。图 5.2 凹模5.3 成型零件工作尺寸的计算计算零部件的工作尺寸时,应求尺寸、收缩率、制造公差以及磨损量的平均 值,由文献可查得聚丙烯的收缩率Smax = 3%, Smin = 1.5% ,求平均可知聚丙烯的 平均收缩率是 K = 2.25% ,所以此模具制造的尺寸公差可取为 z = V 3 7。5.3.1 模腔工作尺寸的计算(1)凹模的内形尺寸计算 凹模的作用是成型塑件的外表面,在长期的使用中,会因为摩擦导致其尺寸一种灯罩注塑模具设计变大。为了使用的工程中能有修复的空间,在设计莫觉得时候,我们应该尽量让包容尺寸取下限尺寸,尺寸公差取上偏差8。凹0L = L(1+ k ) -(3 4)DdZD0= L(1+ k ) -(3 4 )D 3(5-1)式中: L凹 为型腔内形尺寸( mm );L 为制品外形基本尺寸( mm );K 为塑料平均收缩率( % );D塑件 为制品的公差。用 AutoCAD 可测得这个制品的外部形状尺寸分别为 400mm,55mm,经过计 算可得:凹10L= 401.54+0.45凹20L= 56.18+0.62凹模(型腔)深度的计算:DdZ3h凹 = h塑件 (1+ k ) - (2 3)D0式中: h凹 为型腔的高度 (mm) ;= h塑件(1+ k ) - (2 3)D0(5-2)h塑件 为制品的内部形状深度 (mm) ,经过测量得 80mm ;凹0D塑件以及K的含义在前边已做出解释。 将以上数据带入(5-2)式中计算得: h = 56.16+0.28表 5.1 聚丙烯塑件精度等级取 5 级时的公差取值制品基本尺寸mm范 围 内 取 值mm制品基本尺寸mm范 围 内 取 值mm3 : 618 : 2480 : 100100 : 1200.24140 : 1600.24200 : 2251.00280 : 3501.14315 : 3551.441.922.502.80(2)凸模的外形尺寸计算 凸模的模具零件是成型制品内形的,工作中凸模的磨损会导致其尺寸稍微变小是因为工作时的尺寸为包容尺寸。为了使用的工程中能有修复的空间,在设计 模具的时候,我们应该尽量让包容尺寸尽量取上限尺寸,尺寸公差取下偏差9。00zL凸 =L塑件 (1+ k) + (3 4)Dd=L塑件 (1+ k) + (3 4)DD 3(5-3)式中: L凸 为型芯外形尺寸 (mm) ;L塑件 为制品内部形状基本尺寸;D塑件以及K的含义在前边已做出解释。在 AutoCAD 可测得制品的内部形状尺寸分别为127mm, 77mm 。将以上数据西安文理学院毕业论文(设计)带入公式(5-3)中可得:凸1-0.43L= 130.820L= 79.380凸2-0.29凸模(型芯)的深度计算:凸塑件D 3h = h(1+ k ) + (2 3)D0式中: h凸 为型芯的高度 (mm) ;h塑件 为制品的内部形状深度 (mm) ,测量得 78.5mm ;D塑件以及K的含义在前边已做出解释。将以上数据带入(5-4)式中计算得:凸-0.29h = 80.8405.3.2 型腔壁厚和底板厚度计算(5-4)在型腔壁厚和底板厚度的计算中,主要考虑的是凹模。凹模是应该型腔壁厚 的主要因素之一。因为在注塑的模具设计中,凹模会承受很大的外界压力,如果 外界压力过大,会使凹模发生形变,甚至会出现裂缝,影响塑件制品的品质质量 10。所以必须要进行刚度和强度的校核。通过查表可知调质 45 钢,弹性模量E = 2105 Mpa强度计算的许用应力s=160Mpa ,凹模的压力p = 50Mpa 。(1)整体式型腔壁厚:A按刚度条件计算s(5-5)B按强度条件计算s(2)整体式型腔底板厚:A按刚度要求计算h 3cpb 4Ed(5-6)(5-7)B按强度要求计算h(5-8)根据型腔壁厚和型腔底板厚的计算,以及对刚度和强度计算的比较,我们可 以确定凹模壁厚是 30mm ,凹模底板是 20mm 。一种灯罩注塑模具设计6 浇注系统的设计6.1 浇注系统设计原则在模具的设计中,浇注系统的选择是非常重要的,在选择浇注系统时,我们 应该对塑件的材料,几何形状,以及机床设备的优缺点进行了解分析,分型面的 选择对浇注系统的选择也有一定的影响。一般根据以下几个原则进行设计浇注系 统11:(1)能顺利的引导塑件注入到行腔各个部位且在填充过程中不致产生涡流或紊 乱,使型腔内气体能顺利排出(2)应选择最短流程以缩短填充时间(3)尽量避免直接撞击型芯嵌件(4)应尽量减少弯折,有较高光洁度(5)对于一模多腔时应尽量与模板中心对称(6)进料口位置与形状应结合塑件的形状和技术而确定(7)浇注系统的容积应取最小值 还有对与一模多种产品是应考虑把误差最小的放一个模具内,对与有要求的产品要多方位的考虑交口的成行方式6.2 主流道的设计考虑到主流道要反复与高温熔融塑料接触,所以一般情况下,我们将主流道 衬套设计为易于拆卸的可更换式的。为了让塑料能更好的从主流道流出来,我们一般将主流道设计成为圆锥形 的,将锥角的角度控制在 15的范围内,把表面粗糙度一般控制在 Ra0.7m 以下的范围内,小端直一般为 59mm 之间,通过实际不难发现,喷嘴直径的大 小限制了小端直径的大小,小端直径大小是否合理决定了凝料能否顺利并且快速 的流出,所以本设计小端直径取最小值,为 1mm 左右。6.3 分流道的设计分流道是主流道和浇口之间的一个通道,分流道常常应用在多型腔的模具 中,在单型面的模具中可以不设计分流道。在设计分流道的过程中,我们应该做 到以下几点:(1)尽量减小分流道的容积(2)减小在流道内的压力损失西安文理学院毕业论文(设计)(3)避免温度的降低。6.3.1 分流道的截面形状分流道的截面形状很多,有梯形,圆形,六角形等,在此次灯罩的模具设计 中,设计的流道形状如下6.3.2 分流道的尺寸因为各种塑料的流动性存在着不同程度的差异性,所以我们通常可以根据塑料的品种来 粗略地估计分流道的直径大小12。6.4 浇口的设计6.4.1 浇口的主要作用浇口的主要作用有以下几点:(1)可防止熔体想流道回流。(2)使熔体升温,有助于充模。(3)使于二次加工方便。(4)可以平衡进料,有时也可以控制熔合纹在制品中的位置。6.4.2 浇口的类型与位置在注塑模设计中常见的浇口形式有如下几种:(1)矩形侧浇口(2)直接浇口(3)点浇口扇形浇口(4)膜状浇口(5)潜伏浇口(6)护耳浇口 浇口的位置对塑件制品的质量影响很大,在设计浇口位置时,应注意如下几点:(1)能使型腔各个地方同时充满的位置。(2)设置在制品壁厚较厚的部位(3)设置在有利于排除气体的部位。(4)设置在避免引起熔体断裂的现象的位置。(5)设置在不影响制品外观的位置。(6)在承受冲击的部位不设置浇口。一种灯罩注塑模具设计7 排气和冷却系统设计在实际的加工生产中,温度的变化会引起塑件制品质量的不稳定性,故而会 产生形变,是精度达不到顾客要求,还可能会出现力学特性不好的现象。冷却系统的设计主要是控制温度的设计。在塑件生产的过程中,塑件的加热 和冷却决定了塑件制品的质量。调节温度的两个重要环节是加热和冷却。必须通过注塑成型的各种要求来选 择最终对模具进行加热还是冷却。对于本课题的冷却系统的设计,主要是在其凹模与凸模之间加入一个水循环 冷却系统。通过水流来调节温度的高低变化,从而达到我们所需要的温度,确保 产品的质量,使产品质量达到顾客的要求。7.1 冷却系统设计的规则冷却系统的规则如下:(1) 尽量维持模具的热平衡,保证塑件收缩均匀,;(2) 为了使冷却均匀,我们应该尽可能多的设计水孔。(3) 我们应该尽可能的让进水口的距离和型腔表面的距离基本相等。(4) 因为在浇口处温度最高,所以在浇口位置应该加强冷却。(5) 为了达到更好的冷却效果,进水口的水的温度应该尽可能的低。(6) 要根据设计的塑件来确定冷却管道的结构形状。(7) 冷却系统的进水口是非常重要的,所以我们应该合理的确定进水口的位 置。(8)冷却系统的水道不能阻碍其他结构的正常工作。 (9)避免模具在搬运过程中造成损坏7.2 排气系统设计注塑模属于型腔模,在注塑模具中,当熔体流入到型腔中时,我们要将型腔 里面多余的空气及时的排除,当熔体冷却之后,有需要空气及时的进入到型腔中, 这种在适当的时候把空气及时的引进排出的机构系统就叫做排气系统。具体地 说,此次灯罩的排气系统包括以下两个方面:(1) 注塑模在注塑时,将模具内多余的空气排出型腔外的结构,叫模具的 排气系统。(2) 大型制品在开模时内部会出现真空现象,此时需要把部分气体引入 到注塑模具中的结构,叫引起系统。西安文理学院毕业论文(设计)8 注射机和模具各参数的校核8.1 工艺参数的校核(1)注射量在体积方面的校核 在生产实践中,我们所选取的注塑机的最大注射量必须比所注塑的产品的总体积大得多,在通常情况下注塑机的实际的注射量只是自身最大注射量的百分之 八十上下。所以我们在选择注塑机时最大注射量必须满足以下要求:0.8V机 nV塑 +V浇(8-1)3式中:V机 注塑机的最大注射量,V机 = 300cm ;3V塑 塑件的总体积,V塑 = 64.9cm ;3V浇 浇注系统的体积,V浇 = 15cm ;327所以: 0.8V机 2 V塑 +V浇 ,所选定的V机 = 300cm(2)校核注塑机的锁模力,完全符合要求。在注射时,模具将会被锁模力锁定,这么做的目的是为了防止在分型面的地 方发生溢料现象,造成塑件制品成型不完整。所以我们在设计模具的时候,校核 注塑机的锁模力变得尤为重要。通过查文献,计算如下:F = K A Pm式中: F 注塑机的额定锁模力(KN); A 塑件与流道在分型面上的投影(cm2) Pm 凹模平均计算压力(MPa)。K 安全系数, 通常取K1.1 : 1.2 ;(8-2)则: K A Pm1.2 2526.54 30 = 90.9 KN1500 KN ,即完全符合。(3)校核注塑机的最大注射压力 查资料可知,最大注射力指的是安全系数和成型时所需的注射压力之间的乘积。公式为:Pmax = K P0式中: Pmax 注塑机额定注射压力(MPa),范围在10 : 150MPa ;P0 成型时所需的注射压力( MPa ) ;K 安全系数,一般取 K = 1.25 : 1.4,取1.3则: K P0 = 1.3 45 = 58.5MPaPmax = 150MPa ,即完全合理。(8-3)一种灯罩注塑模具设计8.2 模具装配尺寸的校核8.2.1 喷嘴的校核喷嘴的校核一般是比较简单的,需要主流道衬套的球面半径大于喷嘴的球头 半径即可。目的是为了让熔融流体能够快速的进入注塑模具主流道。8.2.2 定位圈尺寸的校核定位孔是注塑机的定模扳中间位置有一个圆孔,定位口的孔外就是定位圈。 定位全的作用是为了让模具的结构之间,能够形成间隙配合。定位孔的深度必须高于模具凸台端面的高度。8.2.3 模具外形尺寸的校核在一般情况下,模具的形状尺寸不能高于注塑机的工作台面。注塑机的拉杆 间距应和模具的长和宽相互匹配,这样模具在安装时就能穿过拉杆空间在动、定 模固定板上固定。8.2.4 模具厚度的校核(1)校核模具厚度时应使其尺寸符合下面式子:Hmin Hm H max(8-4)式中: Hm模具应设计的厚度, mm ;Hmin 注塑机接受模具的最小厚度, mm ;Hmax 注塑机接受模具的最大厚度, mm ;(2)模具各模板的厚度分别为:H1 定模座板H2 型腔固定板H3 型芯固定板H4 垫块H5 动模座板 以上尺寸均可在 AutoCAD 图中得到。模具合模后的设计厚度: H = H1 + H 2 + H3 + H 4 + H5 = 420mm ;该注塑机可 接受模具的最小厚度 Hmin =300mm ,最大厚度 Hmax =450mm 。该模具完成符合装配需求,即 Hmin 420mm H max 。 从上述中可以看出该模具的厚度是完全符合所选注塑机的要求,所以可以放心使用。西安文理学院毕业论文(设计)8.3 开模行程的校核模具开模后为了方便取出制品,要求有充足的开模距离,因此在设计时应使 取制品的开模距离小于注塑机的最大开模行程。故需对注塑机的最大开模行程进 行校核。查资料可知本课题选用的注射机的最大开模行程为 300mm。可知模具 所需开模距离公式为:s = H6 + H7 + (5 : 10)式中: H6 脱模时需推出制品的长度 (mm) ;H7 所生产的制品高度 (mm) ;(8-5)即:因此符合要求。s = 80 + 74 +10=164mm模具的组装图如图 8.1 所示。图 7.1 磨具组装图一种灯罩注塑模具设计9 总结在这次的模具设计中,用 CAD 绘制了二维图,组装图,用 creo 绘制了三维 图以及装配图,在这整个过程中,我遇到了很多问题,通过老师细心的指导,以 及同学们热心的帮助,我克服了许多困难,最终完成了此次设计。在绘制零件图 以及装配的过程中,让我能够更加熟练的用计算机绘图,让我们巩固了在课堂上 学到的 cad 和 creo 知识。除了用计算机绘图,还需要画纸质版的图,纸质绘图一 直是我的一个弱点,在这次的绘图中,我能感觉到自己面对纸质图能够得心应手, 能够很合理的分配好每个零件的位置。本课题设计的是一种灯罩的注塑模具,在设计的过程中,遇到的问题还是比 较多的,通过自己上网查资料,找老师请教,终于弄清楚了,模具的一些知识, 也提高了我自己查阅资料的能力。通过这次设计,让我对注塑模具的知识有了一 个全方位的了解。毕业设计结束了,通过这次模具设计,检验了我们大学所学的知识,更让 我们知道我们的优缺点,磨练了我们的意志,在我们以后的生活和工作中有很大 的帮助。西安文理学院毕业论文(设计)参考文献1 叶久新、王群,塑料成形工艺及模具设计M,北京: 机械工业出版社,2008.2 陈志刚,塑料成形工艺及模具设计M,北京: 机械工业出版社,2007.3 孙 桓,陈作模主编.机械原理M.,北京:高等教育出版社,2013.4 刘国良.模具先进制造技术在塑料成型模具设计方法中的应用研究J,.北京电子科技 职业学院,201141-47.5 刘颜召,PRO/E 野火版 3.0 模具设计与加工M,北京: 电子工业出版社,2007. 6 贺平,塑料成型工艺及模具设计M, 北京: 电子工业出版社,2011.7 孙锡红,我国塑料模具发展现状及发展建议J. 电加工与模具,2010. 8 成大先,机械设计手册(第三版)M, 北京: 化学工业出版社,2010.9 梅红吹,余拔龙;浅谈塑料模具 CAD/CAM 设计与制造工艺J.中国科技信息,2005. 10 付宏生 , 刘京华 , 塑料制品与塑料模具设计M, 北京:化学工业出版社,2009. 11.Mahajan P V etal. Design for stampingM. New York ASME.2009.12.Pearce.R.Sheet Matal FormingM.Bristol philadelphia:Adam hilger.2013.一种灯罩注塑模具设计致谢毕设即将结束,在老师和同学的帮助之下,让我对于模具设计有了更多新 的认知,对模具设计有了更深一步的认识,对模具综合设计的整体脉络了解得更 加的清晰透彻。通过毕业设计,学生对自己大学四年以来所学的知识有更多的认 识。在毕业论文设计的过程中,我遇到了很多的困难。在此我要感谢我的指导老 师董忍娥老师给我悉心的帮助和对我耐心而细致的指导,同时感谢我院、系领导 对我们的教导和关注:感谢大学四年传授我们专业知识的所有老师。还有谢谢我 周围的同窗朋友,他们给了我无数的关心和鼓励,也让我的大学生活充满了温暖 和欢乐。如果没有他们帮助,此次毕业论文将变得十分困难。他们在我设计中给 了我许多宝贵的意见和建议。同时也要感谢自己遇到困难的时候没有一蹶不振, 取而代之的是找到了最好的方法来解诀问题。感谢生我养我的父母。谢谢他们给 了我无私的爱,为我求学所付出的巨大牺牲和努力。 毕业设计,帮助我们总结大学四年收获、认清自我。同时,还帮助我们改变一 些处理事情时懒散的习惯。从最开始时的搜集资料,整理资料,到方案比选,确 定方案,再到着手开始设计,每一步都是环环相扣,衔接紧密,其中任何一个步 骤产生遗漏或者疏忽,就会对以后的设计带来很多的不便。 我的动手能力和资料搜集能力在设计中也得到提升。毕业设计中很多数值、公 式、计算方法都需要我们去耐心地查阅书籍,浏览资料,设计中需要用到辅助设 计软件的地方,也需要我们耐心的学习。掌握其使用的要领,运用到设计当中去。 最后汇总的时候,需要将前期各个阶段的工作认真整理。 毕业设计结束了,通过设计,学生深刻领会到基础的重要性,毕业设计不仅仅 能帮助我们检验大学四年的学习成果,更多的是毕业设计可以帮助我们更加清楚 的认识自我,磨练学生的意志与耐性,这给我在日后的工作和生活带来很大的帮 助。西安文理学院毕业论文(设计)附录 A装配图爆炸图一种灯罩注塑模具设计附录 BInverse thermal mold design for injection moldsAddressing the local cooling demand as quality function for an inverse heat transfer problemCh. Hopmann1 P. Nikoleizig1Received: 26 September 2016 /Accepted: 7 December 2016 Springer-Verlag France 2016Abstract: The thermal mold design and the identification of a proper cooling channel design for injection molds becomes more and more complex. To find a suitable cooling channel system with objective rules based on the local cooling demand of the part a new methodology for the thermal mold design based on an inverse heat transfer problem was introduced. Based on a quality function regarding production efficiency as well as part quality, additional aspects to model the injection molding process are dis- cussed. Aim of those extensions is the improvement of the inverse optimization of the problem.Keywords: Injection molding, Thermal mold design, Inverse heat transfer problem, Heat transferIntroductionWith injection molding, increasingly complex components can be produced, but at the same time the requirements of the necessary injection mold rise. Concurrently due to the economic pressure, e.g. by global competition, strives for high efficiency and short production cycles are essential. Since the injection molding cycle is primarily characterized through the cooling of the melt into a dimensionally stable state, it is contiguous to focus on the cooling channel system of the injection mold for additional improvement in efficiency (Fig.1b). Usually, the cooling channels are realized through bores in the injection mold, which are connected by fittings to a complete channel system. Innovative technologies such as the selective laser melting (SLM) now enable the layered structured buildup of molds from metal pow- der. With this approach, the cooling channel system can be generated almost in any desired shape and course. The creation of a proper cooling channel system is a challenging task, also hindered by these opportunities and at the same time more complex parts.西安文理学院毕业论文(设计)Additionally thermal mold design phase is impeded due to particular thermoplastic materials, which are often used in technical parts and tend to a comparatively large shrinkage (Dependent on temperature and pressure) as a result of the crystallization process (as illustrated in Fig. 1a between points 3 to 5). This shrink- age causes stresses inside the part, if local differences in the shrinkage potential occur. Furthermore, the stresses can only be compensated through a deformation of the part. This so-called warpage may prevent the correct usage of the part and therefore must be avoided 1, 2.State of the artBesides the wish for a fast and efficient injection molding cycle, the aforementioned challenges lead to investigations to describe and simplify the thermal mold design phase. The efforts reach from a transfer of analytical approaches into the computer aided design to full mathematical and computational descriptions of the solidification process. Those efforts have a forward looking character and need an intense interpretation after the solution is calculated. A fully auto- mated thermal mold design phase is still not available.Fig.1Visualisation of the injection molding cycle with process variables (a) and a pie chart (b)Nowadays, this issue is progressively addressed through different research activities into a user independent optimization strategy for a proper cooling channel design (e. g. 35).Mehnen et al. rely on the use of evolutionary algorithms and model a mold29一种灯罩注塑模具设计system based on light exchanging surfaces 3. The heat exchange is then calculated by a ray tracing method, which is faster than solving all governing equations. Spheres are used only in the first step of the sys- tem as parts to be analyzed. Maag and Kufer, in contrast, study a cluster algorithm which is combined with a branch and bound search algorithm to find the ideal cooling channel position 4. Contrarily, Fanacht et al. approach an auto- mated tempering system positioning by an artificial neural network, which covers numerous problems concerning temperature control 5. This also means that solutions may only come from the space of simulated training problems respectively from the possible interpolations in between. Common to all of these approaches is the forward headed nature which emphasizes the cooling channel system, but the evaluation is only possible after the simulation 35.Though also for those computer-aided optimizations a precise definition of the tempering system design is necessary in advance and essential for the quality of the result. Without knowledge regarding the local cooling demand for minimal part warpage and control of the polymer a targeted use of an optimization is not possible. Hassan et al. focus mainly on the criteria of part quality and study possibilities to realize a dynamic cavity tempering as well as a description of the influence of the cooling channel system on shrinkage and cooling of plastics 6. Thereby, an auto- mated generation of cooling channel systems is not the main focus of their work. Finally Agazzi et al. show a promising approach which is based on an inverse heat conduction problem 7, 8. Thus, in this case a part is defined as polymerwith homogeneous temperature. Along a given cooling area, surrounding the part, an optimized temperature distribution is calculated with a conjugate gradient algorithm in respect to a given objective function, which is based on fast heat removal as well as a homogeneous part temperature. Indeed, an inverse design is performed, but also along the analytical approach of thermal homogeneity.Setup of the proposed methodologyIn the light of the aforementioned technical development, the work of Agazzi et al. seems to be a promising starting point for further investigation.Besides a significant improvement for part warpage, their approach also shows some simplifications. For example the phases of the injection molding cycle are not modelled and implemented in the optimization. This refers especially to the injection and the holding pressure phase. Also the objective function refers to a rapid cooling and a homogeneous part temperature as the two aims 8. This approach seems西安文理学院毕业论文(设计)reasonable, but regarding to the phases of the injection molding cycle and the temperature and pressure dependent pvT-behavior, a different design of the objective function can be considered. Also the derived cooling channels require further investigations.Within the framework of the here proposed expanded methodology a model is favored, which also considers the following aspects. First the methodology should be able to include more phases of the injection molding process. So it is based on a conventional injection molding simulation. Results for pressure, temperature and inner properties can be exported at different stages of the process as boundary conditions for the optimization. So the expanded methodology is based on a hybrid simulation approach, which connects injection molding simulation with optimizing an inverse heat transfer problem. Also the objective function should be redesigned carefully. On one hand, the design should address minimal cycle times to fulfil the request for an efficient process like the one used by Agazzi et al.On the other hand, also part quality should be addressed, which refers to mechanical, visual and geometric requirements. Whereas mechanical and visual properties can be met by appropriate slow cooling rates, especially geometric proper- ties, paraphrased the dimensional accuracy of the part, turn out to be a severe element of the thermal mold design phase. By using a proper tempering system, a locally homogeneous shrinkage should be targeted to minimize the tendency of the part to warp. The objective of the analysis is to bring local heat and cooling demand of the part in equilibrium to local heat and cooling supply of the molds tempering system.The postulate of an even shrinkage potential can be modelled via homogeneous local densities as an objective function, so that the problem is still addressable as an inverse heat conduction problem 9.A modified exemplary extended objective function to be introduced to the39一种灯罩注塑模具设计methodology is given in Eq. 1.This objective function Q(TC ) addresses a quick cooling through the first term, where a desired ejection temperatureTEjec for the surface 1 of the part is given and compared to the actual local temperatures Tloc (xi,t,TC) of the part. The second term addresses density homogeneity, with the differences of local density loc (xi,t,TC) compared to a mean density Ejec, which should be reached on a surface 2 within the part. Both terms are integrated over their respective areas 1/2 and can be weighted with the variable wm/k. The temperatures Tc on the outer mold contour according to Fig. 2b are then varied to minimize the quality function.For the proposed approach the exact modeling of the designed methodology will be carried out as a hybrid simulation approach, containing an injection molding simulation as input for a heat conduction simulation calculated with a multiphysics simulation. With this hybrid approach, all plastics related properties and more phases of the injection molding cycle can be modelled and made available for a thermal optimization at the same time.With the presented objective function an exemplary cooling channel system for a plate shaped specimen with ribs is analyzed 10,13,14. Measurements of the specimen are shown on Fig. 2a. Simultaneously, the specimen contains typical elements of injection molded parts with three ribs in different heights. The thickness of the specimen is 1.5 mm, which is typical for injection molded parts. Based on the specimens geometry a cooling area is generated, with a constant distance to the part and an area inside the part, for which the objective function is solved (see Fig. 2b). The specimen is optimized using a 2D calculation approach, in order to save computing time.After solving the optimization for density and cooling time, as stated in Eq.1 also with a conjugate gradient algorithm, the cooling channels can be derived from isothermal lines of the desired mold temperature of 80C 10. The gradient algorithm follows the steepest ascent of the objective function and calculates the necessary temperature distribution along the outer mold contour defined as cooling area to minimize the objective function. The input datafields for the optimization are shown in Fig.3a. Based on the result of the optimization, which is shown in Fig. 3b, the cooling channels were identified. Although, temperature distribution of the optimization lead to very low temperatures of 100 C, this distribution can be used to西安文理学院毕业论文(设计)derive the contour of a cooling channel by using an isothermal line. Those derived 2D channel contours are then modelled as extruded 3D geometries. With the injection molding simulation software Sigmasoft, Sigma engineering GmbH, Aachen, Germany, an entire 3D injection molding simulation is set up using the boundary conditions presented in Table 1. The implemented material is a widely used polyamide 6 (unfilled B 30 S) of Lanxess AG, Cologne, Germany (see Table 2 for properties). In Fig.4 two different setups of the specimen are presented and compared. One is modelled without cooling channels as a neutral reference and a second one with the derived cooling channels from the optimization. Figure 4a illustrates the resulting temperature distribution inside the mold. Figure 4b shows the resulting warpage of the specimen. Comparing these two cases, a significant reduction of the specimens warpage can be achieved, with the second case resulting in a relatively low warpage of the specimen. Merely, the end of the ribs show bigger deviations from the original geometry in both cases. Here, it has to be noted, that in the scope of the optimization, heat has to be brought into the system as shown in Fig. 3b. This demand is not yet considered, as the standard process uses just cooling. In addition the natural thermal shrinkage of the part has to be taken into account, which is already included in the results, due to the simulation software. This natural shrinkage is not part of the optimization yet.Fig. 2 Specimen with ribs and measurements (a) and outer contour around part(b)Fig. 3 Mold contours, initial temperatures (a), optimization,results and derived一种灯罩注塑模具设计cooling channel system (b)a) Initial data of temperature and pressure distributionb) Temperature distribution at optimization pointFurther extension of methodologyWith the principle functionality of the methodology shown, it will be investigated to what extent a more accurate.Table 1 Settings for the optimization calculation and the injection molding simulation of cooling and shrinkage and warpage.ParameterMelt temperature270 CEjection temperature110 CCooling fluid temperature80 CInjection pressure1000 barHolding pressure800 barCycle time5.6 sHandling time1.5 sInjection time0.248 sHolding pressure time3.1 sTable 2 Material properties of the implemented mold and plastic 11, 12西安文理学院毕业论文(设计)ParameterDensity steel7830 kg/m3 Heat conductivity steel 46.5 W/m K Heat capacity steel 440 J/kg KDensity modeling PA 6Tait-approachacc. to material supplierViscositymodelingPA6Cross-WLF-approachacc.tomaterial supplierHeat conductivity PA 60.2 W/m KHeat capacity PA 6 2390 J/kg KHeat transfer coefficients 2000W/m2Fig.4 Resulting temperatures (a) and warpage (b) of the specimen for a 3D simulation without (upper part) and with automatically derived cooling channels for minimal part warpage (lower part)a) Temperature distribution at the end of the cooling phase after 15 cycles Without cooling channels:With derived cooling channels:b) Deformation of the part: Visual amplification factor: 20一种灯罩注塑模具设计Modeling of the injection molding process can increase the quality of the results, in comparison to the work of Agazzi et al.This will be presented with the following three additional aspects. The implementation of a multi- cycle approach should be discussed first. The influence of a modeling of the handling times will follow. And finally the modeling of the injection phase will be investigated. Unless specifically stated, besides heat conductivity of the mold, which is changed to more suitable mold making steel of 25.3 W/m K, all other material properties and boundary conditions remain the same 14.Implementation of multicycle analysisUsually the injection molding process is used to produce a large quantity of molded parts with the same geometry.This is done through the periodic repetition of the molding. Assuming a uniform temperature distribution in the mold at the beginning of the first cycle, a temperature distribution adjusts itself after some cycles 1. Local cooling demand for warpage minimized cooling of the part should be deter- mined in the stable state, because it is otherwise influenced by the heat change in the mold. For this reason, the model used for the generation of heating/cooling systems should use the initial values of a stable cycle for the optimization. Since these temperatures are but strongly dependent on the cooling channel system to be determined, an estimation or determination before optimization is not useful. Therefore, the method is expanded so that it determines the initial temperature field in the mold itself. The methodology so far uses, as well as the approach of Agazzi et al,a multicycle approach, but is now compared to a single cycle setup.Fig.5 Influence of multicycle analysis on minimal part temperatures (a) and quality function (b)Z01: Optimization covering one cycle Z15: Optimization covering 15 cycles Minimal temperature within part CTime sQuality function value -西安文理学院毕业论文(设计)TimesFig. 6 Results of optimization(a) and derived cooling channel contours (b)a) Temperature distribution at optimization point Z01: Optimization covering onecycleZ15: Optimization covering 15 cyclesb) Contours of isothermal lines of T= 80 CFor the quality function, still only the last cycle should be considered to save computation time.First, it is examined how many cycles are necessary to achieve a stable cycle at the time of optimization. To check this, the boundary conditions determined in the optimization are used to perform simulations with additional cycles. If the temperature field in these additional cycles does not change anymore, it can be assumed, that steady state is achieved. Figure 5a shows the curves of minimum temperature in the cavity for 25 cycles. It has to be recognized that the mini- mum一种灯罩注塑模具设计temperatures using the boundary conditions, which are determined by optimizing one cycle (Z01, black line), first take a nearly periodic course after about ten cycles. At the time at which the boundary conditions are optimized, the process is therefore still not in steady state. The significant changes of the temperature in the later cycles arise because the cooling demand is determined not only for the temperature of the part, but also for the temperature of the mold. The blue curve in the graph a) represents the minimum temperature in the part, which is calculated with the help of the boundary conditions obtained from the optimization over 15 cycles (Z15, blue line). The curves of the quality function value of the two calculations are shown in Fig. 5b. It can be seen that the quality function value with the boundary conditions determined in the optimization of Z15 remains low in the long run. In the calculation, which uses the boundary conditions determined in the optimization Z01, the value of the quality function increases from 0.0083 at the end of the first cycle to 0.6477 at the end of the 25th. According to the modeling of the methodology, which is used to derive the quality function, this should correspond to a significant increase of the part warpage.Fig. 7 Resulting temperature distribution (a) and warpage (b) without and with multi cycle considerationa) Temperature distribution at the end of the cooling phaseZ01:Optimization covering one cycleZ15:Optimization covering 15 cyclesb) Deformation of the part西安文理学院毕业论文(设计)Table 3 Warpage of the cooling channel systems Z01 and Z15Total deformationMeasuringMeasuringMeasuringpoint1mmpoint2mmpoint 3 mmZ011.8901.2472.848Z151.6161.0071.807Since the change of the quality function is less than 1 % when viewing 15 cycles against 25 cycles, thus 15 cycles can be seen as a useful optimization range. Figure 6a shows the temperature distribution at the point of optimization of the setups Z01 and Z15. The local cooling demand is estimated on the basis of the reference temperatures. In both cases temperature distribution alternates between high and low values compared to the calculated reference temperatures. The reference temperatures, which are determined in optimizing Z01, vary much more than those which are determined in the optimization of Z15. Because in the inner side of the corners the cooling demand is greater than in the plate-shaped sections, very low reference temperatures are intended here. Figure 6b also shows the 80C isothermal lines of the temperature for three different cycle numbers (1 cycle, 15 cycles and 50 cycles). The isothermal lines optained by Z15 do not differ significantly from those obtained by the optimization at 50 cycles. However, the difference to the isothermal lines of Z01 is considerable. This is evident, for example, in the lower areas of the ribs, where more isothermal lines lines emerge for the multicycle optimization Z15.The cooling channel systems are analysed in conventional injection molding一种灯罩注塑模具设计simulations to investigate the effects of the differences between the systems on the value of the quality function and the part warpage. For the cooling channel system a heat transfer coefficient of =10 000 W/m2 K and a fluid temperature of T= 80C is chosen. The setup is given in Fig. 7a, which shows the temperature distribution at the end of the cooling phase of the 15th cycle. All the other parameters of the simulation remain unchanged compared to the values used prior. The fluctuations of the temperature on the surface of the cavity and especially in the corners are lower with the tempering system Z15.The calculated total deformation is visualized in Fig. 7b and the values of three measuring points which are located at the ends of the ribs, are shown in Table 3. The resulting warpage, which is achieved with the tempering system Z15, is overall lower than the one, which is determined with the tempering system Z01. At the measuring points the total deformation, resulting from use of the cooling channel sys- tem Z15, is between 14.50 % at MP1 and 36.55 % at MP3 lower compared to the system Z01. Therefore, the accuracy of the methodology can be increased by the extension of the model by using multiple cycles.Implementation of handling timesInitially, only the cooling phase of the injection molding process was modeled. To further enhance the accuracy of the model, a view on the influence of mold opening and closing as well as part ejection is made. These process phases are generally much shorter than the cooling phase. Still, heat is transferred during these phases, so the implementation can make a difference for the optimization. Modeling of the opening and closing process elongates the optimization duration of each cycle to the duration of these processes. During these times (hereafter summarized called handling times) the cooling channel fluid (usually water) will continue to remove heat out of the mold.Fig. 8 Optimization results (a) and derived isothermal lines (b) without and with handling timesa) Temperature distribution at the end of cooling phase of cycle 15Without handling times西安文理学院毕业论文(设计)Without handling timesb) Isothermal lines at the end of the cooling phase of cycle 15 Modeling without handling times80C Isothermal line 65C Isothermal lineModeling with handling times 80C Isothermal line 65C Isothermal lineTable 4 Quality function values for simulations without and with handling times Quality functionEjectionDensityCumulatedtemperatureterm -quality term -functionvalue- Without handling times0.002 850.003 48 0.006 42With handling times0.003 280.003 200.006 76The definition of the optimization variables requires no further adjustments. The model starts with the simulation of the cooling phase. This remains unchanged compared to the previous simulations. After the cooling phase the heat distribution in the mold is ongoingly simulated. With the opening of the mold, the contact between47一种灯罩注塑模具设计mold and the part on the side of the nozzle is removed. For this reason also the con- tact pressure between the moving side and fixed side of the mold decreases and the thermal contact resistance increases significantly 15. While this effect can not be estimated easily, the constant heat transfer coefficient is not changed on both sides of the mold, but heat transfer is continued. The extension of the model consists of the elongation of the calculated cycle time and to neglect the heat transfer across the surface of the cavity during that time. This is still a simplification as it does not consider e.g. the convection at the open mold surface, ejection force on the part during ejection, what can affect part warpage, or asymetric heat removal of the part. As all those aspects affect warpage, but are hard to estimate, it was choosen to focus on the mold itself and its thermal balance first.To investigate the modeling of the handling times, again two simulations are carried out. Both simulations consider 15 cycles. The optimized temperature distribution in the mold at the end of the cooling phase of the 15th cycle is shown in Fig. 8a. Optimized reference temperatures on the outer contour in the optimization, in which the handling time is taken into account, are closer to the temperature, which are aimed at the end of the cooling phase on the surface of the part. The temperatures near the part are also lower in this case. This slightly undercooling the part is also visible in the values of the quality function, which are presented in Table 4. Overall, the quality function value in the simulation with handling time is higher and therefore should lead to higher warpage. However, the term which describes the variation of density is lower than in the other case, so a lower warpage can be expected.Figure 8b shows the isothermal lines of the temperature fields. The 80 C isothermal line of the calculation, which takes the handling times into account, intersects the part. For this reason, the cooling channel system, which is derived from this temperature field, is generated from the 65 C isothermal line. For comparability, the system generated from the simulation without handling times, is also derived from the 65 C isothermal line (Fig. 8b). The mold, cooled with the cooling channel system derived with the extended optimization, has lower temperatures at all areas compared to the one without the extension. This is partly due to the differences in the sizes of the cooling channel system and its distance from the part, on the other hand, of course, because the cooling channel removes more heat from the mold over the duration of the opening and closing process.To investigate whether the accuracy of the method has improved by expanding西安文理学院毕业论文(设计)the model, the cooling channel systems are examined in injection molding simulations.Because the injection molding simulation model the entire injection molding process, they also consider the handling time in each calculation naturally. In Fig. 9b and Table 5 the warpage is shown, which is calculated using the two cooling channel systems and a fluid temperature of 65 C. In comparison the simulation covering the handling times results in lower warpage. This indicates, that the implementation of handling times is useful. However, the two cooling channel systems derived from the 65 C isothermal lines, result in higher warpage compared to the cooling channel system derived from the 80 C isothermal line and without covering handling times (see Table 5). This shows that the quality of the generated cooling channel system depends on the set of isothermal lines, which are selected to derive the cooling channels. It can be stated, that the result is affected by the handling times, but no universal claim can be made. From the perspective of calculation time, it seems useful to disregard the handling times in order to save computation time.Fig. 9 Resulting temperature distribution (a) and warpage (b) compared when using no handling times with using handling timesa) Temperature distribution at the end of cooling phase of cycle 15 Without handling timesWithout handling timesb) Deformation of the part一种灯罩注塑模具设计Visual amplification factor: 2Table 5 Warpage for simulations without and with handling timesTotal deformationMeasuringMeasuringMeasuringpoint 1 mmpoint 2 mmpoint 3 mmWithout handling times2.1681.4652.883Without handling times2.0481.1652.775Implementation of injection phaseSimilar to the handling times, the filling phase, also called injection phase, takes only a short part of the injection molding cycle. Since the melt is heavily sheared and still transfers heat to the mold, a variation of the melt temperature different from the initial melt temperature is obvious. In expanded methodology, the melt is injected into a cavity which is surrounded by a mold without cooling channels. The temperatures which are established immediately at the end of the injection phase in the molded part are used as initial temperatures in the optimization. With this method, the shear heating as well as the simultaneous cooling is taken into account in the optimization largely. Use of this initial temperature field is based on the assumption that the cooling channel system has little effect on the heat transfer in the melt during the (short) injection process. In the following, this assumption will be examined. The aim of the investigation is to determine whether the injection phase needs to be considered directly in the optimization or whether this can be avoided by the use of appropriate initial temperature distribution.西安文理学院毕业论文(设计)The direct modeling of the injection process inside the optimization would require considerable additional computation time, since it requires the solution of fluid dynamic processes in the cavity. Also this approach needs a much more accurate discretization of space and time.Here, three different optimizations are performed. In the first optimization a uniform initial temperature throughout the melt is used. The hereby generated temperature system is characterized in the following with T1. For the second optimization, the injection process is simulated in a mold having a uniform temperature of 80 C. The temperature and pressure distribution of the part at the end of the injection phase is then used as the initial temperature of the melt in the optimization (T2). The derived cooling channel system from T2 is then used in a third injection molding simulation, to determine the temperatures at the end of the injection phase again. These recursive generated temperatures are used as initial temperatures for a third optimization named T3. In Fig. 10, the differences in the assumed initial temperatures are shown. The difference between the temperature field of T2 compared to the uniform optimization T1 is shown in Fig. 10a. Numbers indicate, that the temperatures differ more than 5 K. The difference between the second simulation T2 and the third simulation T3 is visualized in Fig. 10b and here the temperature difference is significantly lower. The arithmetic mean of the amount of the temperature difference is only 0.95 K. The shear heating has therefore a much higher impact on the temperature of the melt immediately after the short injection phase than the heat removel from the cooling channel system. Figure 11a shows the contours of the cooling channel systems, generated with these three initial temperatures. Also the temperature distribution inside the mold for the three setups is given in Fig. 11bd. The superimposed outline shows that the differences between the generated heating/cooling systems are relatively low. The two contours using initial Temperatures T2 and T3 are but mostly closer together than the contour that obtained by adopting a uniform initial temperature (T1). Therefore, the investigations show that shear heating has an influence on the generated cooling channel systems. Due to the shearing of the melt, higher temperatures are reached and a bigger cooling demand is necessary. Due to small differences in the cooling systems T2 and T3, the temperature fields, which occur at the end of the injection phase, differ only slightly (Fig.11bd).Figure 12bd show the part warpage for the three configurations, in addition, the values of the three measuring points are shown in Table 6. The values一种灯罩注塑模具设计show that the biggest warpage is set under the cooling channel system of T1. The warpage which is determined using the cooling channel system of T3 is between the warpage identified at T1 and T2 at all three measuring points. This is an interesting finding as it states, that the recursive approach is not in accordance with the description of the quality function. However, the warpage of T3 is closer to the one of T2 than T1, so one can assume, that there is just a little fluctuation between T2 and T3. Maybe this is caused by numerical reasons, but also needs further investigation Also, with the difference in the micrometer range, the significance of the values should be further investigated. The comparison of T1 and T2 on the other hand shows in improvement of17.21%, 17.66 % and 30.53 %, which is a more noteable improvement.As we consider the setup of T2 as the basic setup for further design investigations, we compared this setup with a setup, which uses the quality function as proposed by Agazzi et al. and is also covering a homogeneous temperature distribution. Analysing the warpage of this corrensponding setup results in higher warpage for all three measuring points (+21.10 %, +39.52 % and +12.01 %) when compared to T2. Based on this result, the modified quality function and the implementation of additional injection molding phases turn out to be better suitable in regard of quality.Conclusion and outlookOverall, the outlined investigations show the increase in accuracy of the methodology through an alternatively pro- posed quality function and a enhanced detailed modeling of the injection molding process. Here, the quality function is based on the local cooling demand of the part and the prevention of local density variations inside the part. A steady state is achieved with the simulation of several cooling cycles at the time of optimization. This will derive a cooling channel system much better forming local cooling requirements, which are required for an economic and quality driven cooling phase, what is specified by the extension of the model to other phases of the injection molding cycle. First, the extension of the model to multicycle optimization delivers much better results. Second the implementation of the handling times may improve the results, but may force the selection of new isothermal lines. No explicit recommendation can be given here, but future work will need to focus on deriving a proper cooling channel system from the result of the optimization. Also computation time for handling times, should be considered to decide if a modelling of西安文理学院毕业论文(设计)the handling times is worth the effort. Thirdly the injection phase was considered within the optimization. Here, the implementation of the share of the shear stress warming is undoubtly an improvement for the methodology. The share of the influence of the cooling channel system on the other hand, does not lead to a further improvement, but requires more calculation time. As a conclusion an implementation here is not clear without ambiguity.Further investigation will first focus on a more accurate modeling of the holding pressure phase. Currently, this phase is simplified, due to numerical reasons. Second, material properties of pvT data and modeling of shrinkage and warpage come to the fore in respect to the proposed quality function covering part density. Also, in the future, more complex, three-dimensional geometries should be included in continuing investigations. In total, the proposed method- ology with the presented extensions already offers a promising approach to the automated thermal mold design for injection molds.AcknowledgmentsThe depicted research was funded by the Deutschen Forschungsgemeinschaft (DFG) as part of the Collaborative Research Centres 1120 “Precision Manufacturing by Controlling Melt Dynamics and Solidification in Production Processes”, as part of the research group B1 “Algorithms for Interpreting a Temperature Layout for Injection molding Tools While Considering Local Cooling Demands”. We would like to extend our thanks to the DFG.Compliance with Ethical Standards Conflict of interestsThe authors declare that they have no conflict of interest.Fig. 10 Influence of shear stress warming and cooling on the temperature distribution of the part for setup T2T1 (a) and T3T2 (b)a) Warming of the melt through shear stress during injection phaseDifference between homogeneous initial temperature (T1) and shear stress adjusted temperature (T2) at the end of filling.b) Influence of cooling channel system during injection phaseDifference between and shear stress adjusted temperature (T2) and temperature with cooling channel system (T3)一种灯罩注塑模具设计Fig. 11 Resulting isothermal lines (a) and temperature distribution for T1 (b), T2(c), and T3 (d)a) Contours of isothermal lines of T= 80 Cb) T1: homogeneous initial melt temperaturec) T2: initial melt temperature adjusted with shear stress西安文理学院毕业论文(设计)d) T3: initial melt temperature adjusted with shear stress and influence of a cooling channel systemFig. 12 Resulting part warpage for the cooling channel systems T1 (a), T2 (b) and T3(c)a) T1: homogeneous initial melt temperatureb) T2: initial melt temperature adjusted with shear stress48c) T3: initial melt temperature adjusted with shear stress and influence of a一种灯罩注塑模具设计cooling channel systemTable 6 Warpage of the cooling channel systems T1, T2 and T3 DeformationMeasuringMeasuringMeasuringpoint1mmpoint2mmpoint 3 mm System T11.9521.2232.601System T21.6161.0071.807System T31.6771.1811.876注塑模具的反向热模设计解决局部冷却需求作为一个逆热传递问题的质量函数霍普曼,尼古拉齐格收到:2016 年 9 月 26 日接受:2016 年 12 月 7 日Springer-Verlag 2016 法国 摘要:注塑模具的热模设计和适当冷却通道设计的识别变得越来越复杂。为了找到合适的冷却通道系统,根据部件局部冷却需求的客观规则,引入了基于反 向传热问题的热模设计的新方法。 基于关于生产效率和部件质量的质量功能, 讨论了注塑成型过程建模的其他方面。 这些扩展的目的是改进问题的逆优化。关键词:注塑,热模设计,反热传递问题,传热介绍通过注塑,可以生产越来越复杂的部件,但同时对注塑模具的要求不断上升。 并且考虑经济压力,例如通过全球竞争,努力实现高效率和短暂的生产周期至关 重要。由于注射成型周期的主要特征是通过将熔体冷却成尺寸稳定的状态,因此 它连续地集中在注射模具的冷却通道系统上,以进一步提高效率(图 1b)。通 常,冷却通道通过注射模具中的孔实现,其通过配件连接到完整的通道系统。选 择性激光熔化(SLM)等创新技术现在可以实现金属粉末分层结构的模具积累。 利用这种方法,冷却通道系统几乎可以产生任何所需的形状和过程。创建适当的 冷却通道系统是一项具有挑战性的任务,也受到这些机会的阻碍,同时也是更复 杂的部分。另外,热模具设计阶段由于特殊的热塑性材料而受到阻碍,热塑性材 料通常用于技术部件,并且由于结晶过程而倾向于相对较大的收缩(取决于温度 和压力)(如图 1a 中所示) 35)。如果发生收缩电位的局部差异,这种收缩 会导致零件内的应力。此外,应力只能通过零件的变形来补偿。这种所谓的翘曲49西安文理学院毕业论文(设计)可能会阻止零件的正确使用,因此必须避免1,2。 除了希望快速高效的注塑周期之外,上述挑战导致了对热模具设计阶段的描述和简化的研究。 从分析方法转移到计算机辅助设计到凝固过程的完整数学和 计算描述的努力。 这些努力具有前瞻性,在解决方案得到解决之后需要强烈的 解释。 完全自动的热模具设计现阶段并不能实现。图 1 注射成型循环与过程变量(a)和饼状图(b)如今,通过不同的研究逐渐将这个问题解决成用于适当冷却通道设计的用户 独立优化策略(例如3-5)。Mehnen 等依靠使用进化算法和模拟基于光交换面的模具系统3。然后通 过光线跟踪方法计算热交换,其比求解所有控制方程更快。球体仅用作系统的第 一步,作为要分析的部件。相比之下,Maag 和 Kufer 研究了一种与分支和边界 搜索算法相结合以找到理想的冷却通道位置的集群算法4。相反,Fanachtet 等通过人工神经网络进行自动回火系统定位,涵盖了许多有关温度控制的问题 5。这也意味着解决方案只能分别来自模拟训练问题的空间,可能来自于可能 的内插。所有这些方法的共同点是强调冷却通道系统的前瞻性,但是在模拟之后 只能进行评估3-5。尽管对于那些计算机辅助优化,还需要提前对回火系统设计进行精确定义, 并对结果的质量至关重要。没有关于局部冷却需求的知识,对于最小部分翘曲和 聚合物的控制是不可能的。哈桑等人主要关注部件质量标准和研究实现动态空腔 回火的可能性,以及对冷却通道系统对塑料收缩和冷却的影响的描述6。因此, 自动生成的冷却通道系统不是其工作的主要焦点。最后 Agazzi 等显示出一种基 于逆热传导问题的有希望的方法7,8。因此,在这种情况下,将部分定义为聚56一种灯罩注塑模具设计合物具有均匀的温度。沿着给定的冷却区域,围绕该部分,利用共轭梯度算法计 算出相对于给定目标函数的优化温度分布,其基于快速除热以及均匀的部分温 度。实际上,进行逆设计,而且还沿着热均匀性的分析方法。建议的方法论鉴于上述技术发展,Agazzi 等人的工作似乎是进一步调查的有前途的起点。 除了部分翘曲的显着改进外,他们的方法也显示出一些简化。例如,注塑周期的各个阶段都不会在优化中进行建模和实现。这尤其涉及注射和保压期。目标 函数是指两个目标的快速冷却和均匀的部分温度8。这种方法似乎是合理的, 但是关于注塑循环阶段的与温度和压力有关的 pvT 行为(气体状态方程.同温同 压同体积的理想气体,所含物质的量相等),可以考虑目标函数的不同设计。衍 生的冷却通道也需要进一步的研究。在这里提出的扩展方法的框架内,一个模型受到青睐,它也考虑了以下几个 方面。首先,该方法应该能够包括注塑过程的更多阶段。所以它是基于传统的注 塑模拟。压力,温度和内部特性的结果可以作为优化边界条件在不同阶段输出。 因此,扩展的方法是基于混合模拟方法,其连接注塑模拟和优化逆热传递问题。 还应仔细重新设计目标函数。一方面,设计应该解决最小的周期时间,以满足 Agazzi 等人使用的有效过程的要求。另一方面,应该解决零件质量,这涉及机械, 视觉和几何要求。尽管通过适当的缓慢冷却速度,特别是几何特性可以满足机械 和视觉性能,但是对部件的尺寸精度进行了说明,这是热模具设计阶段的一个重 要因素。通过使用适当的回火系统,局部均匀收缩的目标是使部件翘曲的趋势最 小化。分析的目的是使部件的局部热和冷却需求与模具回火系统的局部加热和冷 却供应达到平衡。均匀收缩电位的假设可以通过均匀局部密度作为目标函数进行建模,使得该 问题仍然可解决为反向热传导问题9。在方程式中给出了要引入的方法修改后的示例性扩展目标函数 1。 效率质量该目标函数 Q(TC)解决了通过第一项的快速冷却中期望的喷射温度。 给定零件表面1 的 TEjec ,并与零件的实际局部温度 Tloc (xi,t,TC)进行比较。 第二项涉及密度均匀性,与局部密度 rloc (xi,t,TC)的差异与平均密度 TEjec 相比,该平均密度 TEjec 应在部件内的表面2 上达到。 这两个术语都集 成在各自的区域1/ 2 上,并且可以用变量 wm k 进行加权。 根据图 2 的外模西安文理学院毕业论文(设计)轮廓的温度 Tc 。 然后改变 2b 以使质量功能最小化。 对于所提出的方法,设计方法的精确建模将作为混合模拟方法进行,其中包含注塑模拟作为通过多物理场模拟计算的热传导模拟的输入。 采用这种混合方 法,所有与塑料相关的特性和注塑周期的更多阶段都可以建模,并可用于同时进 行热优化。利用所提出的目标函数,分析了具有肋的板状样品的示例性冷却通道系统 10,13,14。样品的测量如图 1 中的 2a。同时,样品含有具有不同高度的三个肋 的注塑部件的典型元件。样品的厚度为 1.5 mm,这是注塑件的典型值。基于样 本几何形状,产生冷却区域,与部件的距离恒定,部件内部区域被解决(参见图 2b)。使用 2D 计算方法优化样本,以节省计算时间。在求解密度和冷却时间的优化后,如公式 1 还具有共轭梯度算法,冷却通道 可以从所需模具温度的等温线导出 80o C 10。梯度算法遵循目标函数的最大上 升,并计算沿着定义为冷却区域的外模轮廓所需的温度分布,以最小化目标函数。 那些导出的 2D 通道轮廓然后被建模为挤出的 3D 几何形状。使用注塑模拟软件 Sigmasoft, Sigma engineering GmbH,德国亚琛,使用表 1 所示的边界条件设置了 整个 3D 注塑模拟。实施的材料是 Lanxess AG,德国科隆广泛使用的聚酰胺 6(未 填充的 B 30 S)(参见表 2 的性能)。在图 4 中,提出了两个不同的样品设置并 进行了比较。一个模型没有冷却通道作为中性参考,另一个是来自优化的衍生冷 却通道。图 4a 示出了模具内部产生的温度分布。图 4b 示出了所得样品的翘曲。 与这两种情况相比,可以实现样品翘曲的显着降低,第二种情况导致试样的翘曲 相对较低 只有在这两种情况下,肋骨的末端与原始几何形状有较大的偏差。此 外必须注意的是,在优化的范围内必须将热量带入系统,如图 3b 所示。 这个需 求还没有被考虑,因为标准流程只是冷却。 另外由于仿真软件必须考虑到部件 的自然热收缩,这种自然收缩不是优化的一部分。图 2 具有肋和测量(a)的样品和(b)周围的外轮廓图 3 温度曲线、初始温度(a)、优化、结果和衍生冷却通道系统(b)a)温度和压力分布的初始数据一种灯罩注塑模具设计b)优化点的温度分布进一步延伸方法论 随着所示方法的主要功能,将会在很大程度上进行考查。 表 1 冷却收缩和翘曲的优化计算和注塑模拟设计。参数熔体温度270喷射温度110冷却液温度80注射压力1000bar保持压力800bar西安文理学院毕业论文(设计)循环时间5.6 秒处理时间1.5 秒注射时间0.248s保压时间3.1s表 2 实施的模具和塑料的材料性质11,12 参数密度钢7830 kg / m3导热钢46.5 W / m K热容钢440 J / kg K密度建模PA6 台式方法,到材料供应商粘度建模PA6 交叉 WLF 方法,到材料供应商导热系数PA6 0.2W/mK热容PA6 2390J/kgK传热系数2000W/m2图 4 没有(上半部分)和自动导出的冷却通道用于最小部分翘曲(下部)的3D 模拟样品的温度(a)和翘曲(b)a)15 个循环后冷却阶段结束时的温度分布 无冷却通道:衍生冷却通道:b)零件变形:视觉放大系数:20与 Agazzi 等人的工作相比,注塑过程的建模可以提高结果的质量。这将提 出以下三个附加方面。 应首先讨论多循环方法的实施。 处理时间的建模的影响 将随之而来。 最后研究注射阶段的建模。 除了具体说明,除了模具的导热性,一种灯罩注塑模具设计其被改变为更合适的 25.3W/m K 的模具
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。