2019秋高中数学第三章三角恒等变换单元评估验收(三)(含解析)新人教A版必修4.docx_第1页
2019秋高中数学第三章三角恒等变换单元评估验收(三)(含解析)新人教A版必修4.docx_第2页
2019秋高中数学第三章三角恒等变换单元评估验收(三)(含解析)新人教A版必修4.docx_第3页
2019秋高中数学第三章三角恒等变换单元评估验收(三)(含解析)新人教A版必修4.docx_第4页
2019秋高中数学第三章三角恒等变换单元评估验收(三)(含解析)新人教A版必修4.docx_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

单元评估验收(三)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)12sin2151的值是()A. B C. D解析:2sin2151(12sin215)cos 30.答案:D2在ABC中,已知sin Asin Bcos Acos B,则ABC是()A直角三角形 B钝角三角形C锐角三角形 D等腰三角形解析:sin Asin Bcos Acos B,即sin Asin Bcos Acos B0,cos(AB)0,所以cos C0,从而C为钝角,ABC为钝角三角形答案:B3已知cos,0,则sin 2的值是()A. B. C D解析:由已知得sin ,又0,故cos ,所以sin 22sin cos 2.答案:D4函数f(x)sin xcos xcos 2x的最小正周期和振幅分别是()A,1 B,2 C2,1 D2,2解析:因为f(x)sin xcos xcos 2xsin 2xcos 2xsin,所以函数f(x)的最小正周期和振幅分别是,1.答案:A5在ABC中,C120,tan Atan B,则tan Atan B的值为()A. B. C. D.解析:ABC中,C120,得AB60,所以(tan Atan B)tan(AB)(1tan Atan B)(1tan Atan B).所以tan Atan B.答案:B6已知为锐角,cos ,则tan()A3 B C D7解析:由为锐角,cos ,得sin ,所以tan 2,tan 2,所以tan.答案:B7若cos,则sin 的值为()A. B. C. D.解析:由题意可得,所以sin,sin sinsincos cos sin .答案:A8已知sin cos ,则tan 的值为()A5 B6 C7 D8解析:将方程sin cos 两边平方,可得1sin 2,即sin 2,则tan 8.答案:D9已知cos,x(0,),则sin x的值为()A. B. C. D.解析:由cos,且0x,得0x,所以sin, 所以sin xsinsincos cossin .答案:B10已知sin,则cos()A B. C. D解析:由题意可得,coscoscos 22cos212sin21.答案:A11(2018全国卷)若f(x)cos xsin x在a,a是减函数,则a的最大值是()A. B. C. D答案:A12设函数f(x)sin(x)cos(x)(0,|)的最小正周期为,且f(x)f(x),则()Af(x)在上单调递减Bf(x)在上单调递减Cf(x)在上单调递增Df(x)在上单调递增解析:f(x)sin(x)cos(x)coscos因为f(x)的最小正周期为,所以,2.又f(x)f(x),即f(x)是偶函数,所以k(kZ)因为|,所以,所以f(x)cos 2x,由02x得0x,此时,f(x)单调递减答案:A二、填空题(本大题共4个小题,每小题5分,共20分把答案填在题中的横线上)13已知2cos2xsin 2xAsin(x)b(A0),则A_,b_解析:因为2cos2xsin 2x1cos 2xsin 2xsin(2x)1Asin(x)b,所以A,b1.答案:114若tan,则tan _解析:tan,解得tan .答案:15函数f(x)sin2sin2x的最小正周期是_解析:由f(x)sin2sin2xsin 2xcos 2x2sin 2xcos 2xsin,故最小正周期为.答案:16.我国古代数学家赵爽的弦图是由四个全等的直角三角形与一个小正方形拼成的一个大正方形(如图)如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为,那么cos 2的值等于_解析:题图中小正方形的面积为1,大正方形的面积为25,故每个直角三角形的面积为6.设直角三角形的两条直角边长分别为a,b,则有所以两条直角边的长分别为3,4.则cos ,cos 22cos21.答案:三、解答题(本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤)17(本小题满分10分)已知0,sin .(1)求的值;(2)求tan的值解:(1)由0,sin ,得cos .所以20.(2)因为tan ,所以tan.18(本小题满分12分)已知函数f(x)cos,xR.(1)求f ;(2)若cos ,求f.解:(1)fcoscoscos 1.(2)f coscoscos 2sin 2.因为cos ,所以sin .所以sin 22sin cos. cos 2cos2sin2.所以f cos 2sin 2.19(本小题满分12分)已知函数f(x)sin 2x2cos2x.(1)求f(x)的最大值;(2)若tan 2,求f()的值解:(1)f(x)sin 2x2cos2xsin 2xcos 2x12sin1.当2x2k,即xk,kZ时,f(x)的最大值为1.(2)f()sin 22cos2,因为tan 2,所以f().20(本小题满分12分)已知向量m(sin A,cos A),n(,1)且mn1,且A为锐角(1)求角A的大小;(2)求函数f(x)cos 2x4cos Asin x(xR)的值域解:(1)由题意得mnsin Acos A2sin1,sin.由A为锐角得A,所以A.(2)由(1)知cos A,所以f(x)cos 2x2sin x12sin2x2sin x2.因为xR,所以sin x1,1,因此,当sin x时,f(x)有最大值,当sin x1时,f(x)有最小值3,所以所求函数f(x)的值域为.21(本小题满分12分)(2018上海卷)设常数aR,函数f(x)asin 2x2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f 1,求方程f(x)1在区间,上的解解:(1)f(x)asin 2x2cos2x11asin 2xcos 2x1,f(x)asin(2x)cos(2x)1asin 2xcos 2x1,当f(x)为偶函数时,f(x)f(x),则aa,解得a0.(2)f asin2cos2,由题意f a11,所以a,所以f(x)sin 2x2cos2xsin 2xcos 2x12sin1,当x,时,即2x,令f(x)1,则2sin11,解得:x,.22(本小题满分12分)已知函数f(x)2cos x(sin xcos x)(1)求f 的值;(2)求函数f(x)的最小正周期及单调递增区间解:法一(1)f 2cos 2cos 2.(2)因为f(x)2sin xcosx2cos2xsin 2xcos 2x1sin1,所以T,故函数f(x)的最小正周期为.由2k2x2k,k

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论