说明.txt

800X800锤式破碎机的设计

收藏

压缩包内文档预览:
预览图
编号:22756463    类型:共享资源    大小:1000.12KB    格式:RAR    上传时间:2019-10-30 上传人:qq77****057 IP属地:江苏
30
积分
关 键 词:
800 X800 破碎 设计
资源描述:
800X800锤式破碎机的设计,800,X800,破碎,设计
内容简介:
目 录摘要 IAbstract II第1章 绪论 11.1 锤式破碎机和破碎机的分类1 1.1.1 锤式破碎机的分类1 1.1.2 破碎机的分类11.2 锤式破碎机的优缺点1 1.2.1 锤式破碎机的优点1 1.2.1 锤式破碎机的缺点 11.3 锤式破碎机的规格和型号 2第2章 锤式破碎机的工作原理及破碎实质 32.1 锤式破碎机的工作原理 32.2 锤式破碎机的破碎实质 32.2.1 破碎的目的和意义 .32.2.2 矿石的力学性能与锤式破碎机的选择 .32.2.3 破碎过程的实质 .4第3章 锤式破碎机的总体及主要参数设计 63.1 型号为锤式破碎机的总体方案设计 63.2 该型号破碎机的工作参数设计计算 .73.2.1 转子转速的计算 73.2.2 生产率的计算 83.2.3 电机功率的计算 83.3 该种破碎机的主要结构参数设计计算 8 3.3.1 转子的直径与长度 8 3.3.2 给料口的宽度和长度 8 3.3.3 排料口的尺寸 93.3.4 锤头质量的计算 9第4章 锤式破碎机的主要结构设计 114.1 锤头设计与计算 114.2 圆盘的结构设计与计算 114.3 主轴的设计及强度计算 124.3.1 轴的材料的选择 134.3.2 轴的最小直径和长度的估算 134.3.3 结构设计的合理性检验 13 4.3.4 轴的弯扭合成强度计算 15 4.3.5 轴的疲劳强度条件的校核计算 204.4 轴承的选择 22 4.4.1 材料的选择 22 4.4.2轴承类型的选择 224.4.3 轴承的游动和轴向位移 234.4.4 轴承的安装和拆卸 234.5 传动方式的选择与计算(V带传动计算) 244.6 飞轮的设计与计算 264.7 棘轮的选择 264.8 蓖条位置调整弹簧的选择 274.9 箱体结构以及其相关设计 284.9.1铸造方法 284.9.2截面形状的选择 284.9.3 肋板的布置 29第5章 专题部分 305.1 锤头结构的改进问题 315.1.1改进的介绍 315.1.2 改进的效果 315.2 延长锤头使用寿命的研究 315.2.1 锤式破碎机中单颗粒物料的最大破碎力研究 325.2.2锤头合理调配的研究与应用 345.2.3 锤头材质的选择及改性 41第6章 部分零部件上的公差和配合 456.1 配合的选择 45 6.1.1 配合的类别的选择 45 6.1.2配合的种类的选择 456.2 一般公差的选取 456.3 形位公差 466.3.1形位公差项目的选择 466.3.2公差原则的选择 466.3.3形位公差值的选择或确定 47结论 49致谢 50参考文献 51附录1 52附录2 52摘要锤式破碎机大量应用于水泥厂、电厂等各个部门,所以,它的设计有着广泛的前景和丰富的可借鉴的经验。其设计的实质是,在完成总体的设计方案以后,就指各个主要零部件的设计、安装、定位等问题,并对个别零件进行强度校核和试验。并在相关专题中,对锤头的寿命延长进行比较详细的分析。在各个零部件的设计中,要包括材料的选择、尺寸的确定、加工的要求,结构工艺性的满足,以及与其他零件的配合的要求等。在强度的校核是,要运用的相关公式,进行危险部位的分析、查表、作图和计算等。并随后对整体进行安装、工作过程以及工作后的各方面的检查,同时兼顾到维修、保险装置等方面的问题,最后对两个主要工作零件的加工精度、公差选择进行分析,以保证破碎机最终设计的经济性和可靠性。关键词 锤式破碎机 锤头 强度 公差 Abstract Hammer type breakers are applied to such each department as the cement plant , power plant ,etc. in a large amount, so its design has an extensive prospect and experience that can be used for reference. Its design essence is, formerly after total conceptual design, a design which points each main spare part , question of installing and making a reservation etc., and carry on the intensity to check and test to the specific part, and in relevant thematic parts, analysis of comparing question that the life-span of very beginning of the hammer lengthens in detail . In the design of each spare part , should include the choice , sureness , demand processed , structure craft satisfication of the size of the material , and the demand for cooperating with other parts, etc. When the intensity is checked , should use relevant formulae , carry on the analysis of the dangerous position, need to check form , mapping , calculation ,etc. Then to to install , work course , work situation after predict that carries on more overall inspection whole, give consideration to the question in such respects as maintaining and safety ,etc. at the same time . Finally , choose to analyse in machining accuracy , public errand to two groundwork parts, economy and dependability that the breaker soed as to ensure is designed finally.Key Words Hammer type breakers hammer intensity tolerance第1章 绪论1.1锤式破碎机和破碎机的分类:1.1.1锤式破碎机的分类:、按回转轴数分为:单转子和双转子。、按转子的回转方向分:不可逆式和可逆式。、按锤头的排列方式分:单排式和多排式。、按锤头在转子上的连接方式:固定锤式和活动锤式。1.1.2破碎机的分类:、按破碎作业的粒度要求分为:粗碎破碎机、中碎破碎机、细碎破碎机。、按结构和工作原理分为:颚式破碎机、旋回破碎机、圆锥破碎机、锟式破碎机、锤式破碎机、反击式破碎机。1.2锤式破碎机的优缺点1.2.1锤式破碎机的优点:、构造简单、尺寸紧凑、自重较小,单位产品的功率消耗小。、生产率高,破碎比大(单转子式的破碎比可达i=1015),产品的粒度小而均匀,呈立方体,过度破碎现象少。、工作连续可靠,维护修理方便。易损零部件容易检修和拆换。1.2.2锤式破碎机的缺点:、主要工作部件,如:锤头、蓖条、衬板、转子、圆盘等磨损较快,尤其工作对象十分坚硬时,磨损更快。、破碎腔中落入不易破碎的金属块时,易发生事故。、含水量12%的物料,或较多的粘土,出料篦条易堵塞使生产率下降,并增大能量损耗,以至加快了易损零部件的磨损。1.3锤式破碎机的规格和型号锤式破碎机的规格用转子的直径D和长度L来表示,如1000mm1200mm的锤式破碎机,表示转子的直径D=1000mm,转子的长度L=1200mm。常见的型号有:不可逆式的:800mm600mm,1000mm800mm,1300mm1600mm,1600mm1600mm,2000mm1200mm。可逆式的:1430mm1000mm,1000mm1000mm。第2章 锤式破碎机的工作原理及破碎实质2.1锤式破碎机的工作原理 物料进入破碎机中,立即受到高速回转的锤头的冲击而粉碎。破碎了的物料,从锤头处获得动能,以高速向机壳内壁的衬板和篦条上冲击而第二次破碎。此后,小于篦条缝隙的物料,便从缝隙中排出,而粒度较大的物料,就弹回到衬板和篦条上的粒状物料,还将受到锤头的附加冲击破碎,在物料 破碎的整个过程中,物料之间也相互冲击粉碎。2.2锤式破碎机的破碎实质2.2.1破碎的目的和意义、目的:在冶金、矿山、化工、水泥等工业部门,每年都有大量的原料和再利用的废料都需要用破碎机进行加工处理,如在选矿厂,为使矿石中的有用矿物达到单体分离,就需要用破碎机将原矿破碎到磨矿工艺所要求的粒度。磨机再将破碎机提供的原料磨至有用矿物单体分离的粒度。再如在水泥厂,须将原料破碎,以便烧成熟料,然后在将熟料用磨机磨成水泥。另外,在建筑和筑路业,需要用破碎机械将原料破碎到下一步作业要求的粒度。在炼焦厂、烧结厂、陶瓷厂、玻璃工业、粉末冶金等部门,须用破碎机械将原料破碎到下一步作业要求的粒度。、意义:在化工、电力部门,破碎粉磨机械将原料破碎,粉磨,增加了物料的表面积,为缩短物料的化学反应的时间创造有利条件。随着工业的迅速发展和资源的迅速减小,各部门生产中废料的再利用是很重要的,这些废料的再加工处理需用破碎机械进行破碎。因此,破碎机械在许多部门起着重要作用。2.2.2矿石的力学性能与锤式破碎机的选择矿石都由许多矿物组成,各矿物的物理机械性能相差很大,故当破碎机的施力方式与矿石性质相适应时,才会有好的破碎效果。对硬矿石,采用折断配合冲击来破碎比较合适,若用研磨粉碎,机件将遭受严重磨损。对于脆性矿石,采用劈裂和弯折破碎较有利,若用研磨粉碎,则产品中细粉会增多。对于韧性及粘性很大的矿石。采用磨碎较好。常见的软矿石有:煤、方铅矿、无烟煤等,它的抗压强度是24Mpa,最大也不超过40Mpa。普式硬度系数一般为24,再如一些中硬矿石:花岗岩、纯褐铁矿、大理石等,抗压强度是120150Mpa,普式硬度系数一般为1215,还有硬矿石、极硬矿石,普式硬度系数一般为1520。可根据矿物的物理机械性能、矿块的形状和所要求的产品粒度来选择破碎施力方式,以及与该破碎施力方式相应的破碎机械。2.2.3破碎过程的实质 破碎过程,必须是外力对被破碎物料做功,克服它内部质点间的内聚力,才能发生破碎。当外力对其做功,使它破碎时,物料的潜能也因功的转化而增加。因此,功率消耗理论实质上就是阐明破碎过程的输入功与破碎前后物料的潜能变化之间的关系。为了寻找这种能耗规律和减小能耗的途径。许多学者从不同的角度提供了若干个不同形式的破碎功耗学说。目前公认的有:面积学说,体积学说,裂缝学说。我们只做简单的介绍: 1面积学说:1867年,Rittinger提出的,破碎消耗的有用功与新生成的物料的表面积成正比。 2体积学说:1874年,俄国基尔皮切夫与18885年的基克先后独立提出,外力作用于物体发生变形,外力所做的功储存在物体内,成为物体的变形能。但一些脆性物料,在弹性范围内,它的应力与应变并不严格遵从虎克定律。变形能储至极限就会破裂。可以这样叙述:几何形状相似的同种物料,破碎成同样形状的产物,所需的功与她们的体积或质量成正比。 3裂缝学说:1952年,Bond和中国留美学者王仁东提出的。外力使矿块发生变形,并贮存了部分变形能,一旦局部变形超过了临界点,则产生垂直与表面的断裂口。断裂口形成后贮存在料块的内部的变形能就释放,裂口扩展成新的表面。输入功一部分转化为新的生成面的表面能,另一部分因分子摩擦转化为热能释放。所以,破碎功包括变形能和表面能。变形能和体积成正比,表面能和面积成正比。三个学说各有一定的适用范围,Hukki实验研究表明:粗碎时,体积学说比较准确,裂缝学说与实际相差很大。细碎时, 面积学说比较准确,裂缝学说计算的数据较小。粗碎、细碎之间的较宽的范围,裂缝学说较符合实际。只要正确的运用它们,就可以为分析研究破碎过程提供理论根据和方法。第3章 锤式破碎机的总体及主要参数设计3.1型号为锤式破碎机的总体方案设计本次设计的是单转子、多排锤、不可逆式锤式破碎机,型号为pc-80000。由机壳、转子、蓖条、打击板、锤头、支架、衬板等组成。1.机壳由上机体、后上盖、左侧壁和右侧壁组成,各部分用螺栓连结成一体,上部开有进料口,内部镶有高锰钢衬板,磨损后可以更换,机壳和轴之间漏灰现象十分严重,为了防止漏灰,设有轴封。机壳下部直接安放在混凝土基础上,并用地脚螺栓固定。为了便于检修、调整和更换蓖条,下机体的前后两面都开有一个检修孔。为了便于检修、更换锤头方便,两侧壁也对称的开有检修孔。2.转子由主轴、圆盘、销轴等组成,圆盘上开有6个均匀分布的销孔,通过销轴将68个锤头悬挂起来。为了防止圆盘和锤子的轴向窜动。销轴两端用锁紧螺母固定。转子支承在两个滚动轴承上。此外,为了使转子在运动中储存一定的动能,避免破碎大块物料时,锤头的速度损失不致过大和减小电动机的尖峰负荷,在主轴的一端还装有一个飞轮。3.主轴是支承转子的主要零件,冲击力由它来承受。因此,要求其材质具有较高的韧性和强度。通常断面为圆形,且有平键和其他零件连接。4.打击板有两块,折线型。一个可以调整,一个是固定的。调整的一个靠的是安装在箱体上的螺杆装置。5.锤头是主要的工作部件。其质量、形状、和材质对破碎机的生产能力有很大的影响。因此,根据不同的进料尺寸来选择适当的锤头质量。要破碎中等硬度的物料,可以采用如图3-1所示的形状。锤头用高碳钢铸造或锻造,也可用高锰钢铸造。为了提高耐磨性,有的锤头表面涂上一层硬质合金,有的采用高铬铸铁。6.蓖条的排列形式是与锤头的运动方向垂直的。与转子的回转半径有一定的间隙的圆弧状,合格的产品通过蓖缝排出。其断面形状为梯形,常用锰钢铸成。蓖条多为一组尺寸相等的钢条。安装时,插入蓖条架上的凹槽,两蓖条之间用垫片隔开。截面形状用梯形。7.蓖条和锤头间隙用凸轮装置调整(通过棘轮带动凸轮)。8.给定的原始数据是:(1) 破碎能力为20到30吨。(2) 破碎机转子的转速在900和1100 之间(3) 破碎机的最大物料给料粒度为:小于150(4) 破碎机的最大排料粒度不能超过:10(5) 破碎机的物料容许湿度小于9%。(6) 破碎机的破碎程度为:中、细。(7) 破碎机的应用场所是:水泥厂、选煤厂、火力电厂等。(8) 破碎机的破碎对象是:石灰石、煤块、焦碳、石膏等软物料3.2 该型号破碎机的工作参数设计计算3.2.1 转子转速的计算锤式破碎机的转子转速按所需的圆周速度计算,锤头的圆周速度根据被破碎物料的性质、破碎产品的粒度、锤头的磨损等因素来确定。按公式 来计算。式中 锤头的圆周速度(m/s) 转子的直径(m)一般中小型破碎机转速为750到1500,圆周速度为25到70,速度越高,产品的粒度越小。锤头及衬板、蓖条的磨损越大。功耗增加。对机器零部件的加工、安装精度要求随之提高。在满足其粒度要求的情况下,圆周速度应偏低选取。3.2.2 生产率的计算生产率与锤式破碎机的规格、转速、排料蓖条间隙的宽度、给料粒度、给料状况以及物料性质等因素有关。一般采用经验公式:式中 Q 生产率() 物料的密度() 经验系数因为该型号的破碎机破碎的是中、硬物料。取值在30到45之间。3.2.3 电机功率的计算电机功率的消耗取决于物料的性质、给料的圆周速度。破碎比和生产率。目前,尚无一个完整的计算公式,一般根据实践经验和实验数据,根据经验公式进行计算: 系数取值在0.1到0.15之间。3.3 该种破碎机的主要结构参数设计计算 3.3.1转子的直径与长度:锤式破碎机的规格用转子的直径D和长度L来表示,所以转子的直径D=800mm,转子的长度L=800mm 。3.3.2给料口的宽度和长度:锤式破碎机的给料口的长度与转子的相同。其宽度B2。3.3.3排料口的尺寸 该尺寸由蓖条间隙来控制,而蓖条间隙由产品的粒度的大小来决定。对该破碎机来说,产品的平均粒度为间隙的1/5到1/3。3.3.4锤头质量的计算:因为铰接在转子上,所以正确选择锤头质量对破碎效率和能耗都有很大影响,如果锤头质量选得过小,则可能满足不了锤击一次就将物料破碎的要求。若选得过大,无用功耗过大,离心力也大,对其他零件会有影响并易损坏。根据动量定理计算锤头质量时,考虑到锤头打击物料后,必然会产生速度损失,若损失过大,就会使锤头绕本身的悬挂轴向后偏倒。降低生产率和增加无用功的消耗。为了使锤头打击物料后出现偏倒,能够通过离心力作用而在下一次破碎时物料很快恢复到正确工作位置。所以,要求锤头打击物料后的速度损失不宜过大。一般允许速度损失40%到60%(根据实践经验)即:式中 锤头打击物料后的圆周线速度(m/s) 锤头打击物料前的圆周线速度(m/s)若锤头与物料为了弹性碰撞。且设物料碰撞之前的运动速度为0,根据动量定理,可得: (3-1)由上式可知, 式中 锤头折算到打击中心处的质量(kg) 最大物料块的质量(kg)综上所述, 但是,只是锤头的打击质量。实际质量应根据打击质量的转动顺序和锤头的转动惯量求得,式中 锤头打击中心到悬挂点的距离(m) 锤头质心到悬挂点的距离 (m)第4章 锤式破碎机的主要结构设计4.1锤头设计与计算锤头是主要工作零件,其设计主要是指结构的设计。因为锤头的形状、质量、材质与破碎机的生产能力有很大影响。尤其形状对质量的分布、材料的充分利用有很大的影响。关于锤头 的结构设计及相关改进在专题中有较详细的论述。总之,其形状、结构的设计,对于其工作能力,对整个机器的生产能力。以及经济性等各方面有深远的影响。锤头形状大体分轻型、中型、重型。本型号的锤式破碎机主要是设计中型的 锤头。其形状如前面的图3-1所示。并有相关的计算。锤头材料的选择问题是很关键的问题。材料的选择取决于工作零件的工作状况和要求。因为破碎机要破碎的是石灰石等中等硬度的物料。一般用高碳钢锻造或铸造,也可用高锰钢铸造。为了提高其耐磨性,采用高锰低合金钢,有的在工作表面涂上一层硬质合金。有的采用高铬铸铁,其耐磨性比高锰钢锤头提高数倍。关于材料的选择问题,在专题部分:提高锤头的耐磨性研究中,有专门的论述。就不详细介绍了。总之,锤头材料的选择,不仅关系到锤头的工作寿命,机器的生产能力、生产效率,还关系到各方面的经济性。 4.2圆盘的结构设计与计算根据设计的要求,每根销轴上需要有8个锤子。圆盘是用来悬挂锤头的,一共需有9个圆盘,最两侧的两个,共有的特点是,一侧设置了锁紧螺母,另一端用轴肩定位。所用的螺母为GB-812-85,这样每个圆盘均匀分布6个圆孔,即可以通过六根销轴,用来悬挂锤头,锤头和院盘之间的间隙除了通过削轴连接,还有隔套隔开,为了保护圆盘的侧面,减少或尽量避免其侧面的磨损。圆盘的大小取决于转子的直径,转子的直径的大小是圆盘的设计大小的依据。因为,该型号的破碎机,光凭其型号就可以知道,转子的直径为800mm,所以,圆盘的大小的取值就有了一定的范围。不妨取做560 mm,圆孔沿径向的距离也是依据起承受载荷的能力和强度,尽可能取整数;圆孔的大小和锤头的圆孔的大小近似相等即可。圆盘是通过键与主轴相连接的,而随主轴高速回转的。所以结构中一定有键槽,其厚度也是满足强度要求、工作状况的。不宜过大。圆盘之间也是通过主轴的轴套隔开(其作用是,在高速回转时,保证圆盘的运动平稳,并使其轴向定位)。圆盘的结构,如图4-1所示。4.3主轴的设计及强度计算通常轴的设计包括两个部分,一个是结构设计,一个是工作能力计算。后者主要是指强度计算。主轴的结构设计根据轴上零件的安装、定位以及轴的制造、工艺等方面的要求,合理确定出其结构和尺寸,轴的工作能力的计算不仅指轴的强度计算,还有刚度、稳定性等方面的计算,当然大多数情况下,只需要对轴的强度进行计算即可。因为其工作能力一般主要取决于轴的强度。此时只做强度计算,以防止或检验断裂和塑性变形。而对于刚度要求高的轴和受力大的细长轴,还应该进行刚度计算,防止产生过大的线性变形。对于高速运转的轴,还应该进行振动稳定性计算。以防止产生共振破坏。因此,对该破碎机的主轴来说,只需进行强度计算。4.3.1 轴的材料的选择轴的材料主要是碳素钢和合金钢。钢轴的毛坯多数用轧制圆钢和锻件。有的则直接用圆钢。碳素钢比合金钢低廉,对应力集中的敏感性较低,同时也可以用热处理或化学热处理的方法提高其耐磨性和抗疲劳强度的。故采用碳钢制造轴尤为广泛。最常用的是45号钢。4.3.2 轴的最小直径和长度的估算零件在轴上的安装和拆卸方案确定了之后,轴的形状便大体确定了,因为对该主轴来说,其安装顺序为:先安装中间的转子部分,然后放置在箱体上,再安装轴承端盖,接着是轴承、外轴承座。最后两端分别是带轮和飞轮。各轴段的直径所需要的轴径与轴上的载荷的大小有关。在初步确定其直径的同时,还通常不知道支反力的作用点,不能确定其弯矩的大小及分布情况。因此还不能按轴上的所受的具体载荷及其引起的应力来确定主轴的直径。但是,在对其进行结构设计之前,通常能求出主轴的扭矩。所以,先按轴的扭矩初步估计所要的轴的直径。并记此时所求出的最小直径为。然后再按照主轴的装配方案和定位要求,从处逐一确定各轴段的直径的大小。另外 ,有配合要求的轴段,应尽量采用标准直径,比如安装轴承的轴段,安装标准件的部位的轴段,都应取为相应的标准直径及所选的配合的公差。确定主轴的各段的长度,尽可能使其结构紧凑,同时还要保证,转子以及带轮、飞轮、轴承所需要的装配和调整的空间,也就是说,所确定的轴的各段长度,必须考虑到各零件与主轴配合部分的轴向尺寸和相邻零件间必要的间隙。前面已经通过设计计算,得到转子、飞轮、带轮的大体尺寸,所以轴的长度也可大致确定了。其草图如下:4.3.3 结构设计的合理性检验 对于轴的结构必须满足:. 主轴和安装在主轴上的零件要有准确的工作位置;轴上的零件便于安装和拆卸、调整。轴应有良好的制造工艺性。1.轴上零件的安放顺序如下:飞轮、轴承、圆盘、轴套、轴承、带轮因为主轴是阶梯轴,根据阶梯轴的特点,并且轴上零件的安装要求也不高,所以上面提到的第二条容易满足。至于第三条:轴的制造工艺性,主要是指便于加工和装配轴上的零件。并且生产率高、成本低。一般来说,结构越简单,工艺性越好。所以应该尽量简化轴的结构。为了便于装配零件并去掉毛刺,轴端应制出45度倒角。在需要切制螺纹的轴段,应留有退刀槽。起尺寸都可查有关的标准和手册。若需要磨削加工的轴段,应留有砂轮和越程槽。具体分析如下:该主轴有3个轴段有键槽,为了减少装夹工件所需的时间,应在这些不同的轴段上开的键槽在轴的同一条母线上。另外,还为了减少加工刀具的种类和提高劳动生产率,轴上直径近似的地方,圆角、倒角、键槽宽度、砂轮越程槽宽度,退刀槽宽度等尽可能采用相同的尺寸。2.下面仍就轴上零件的定位问题,详细地阐述一下,一些轴向和周向定位零件的使用及特点。先说轴上零件的轴向定位,就以此主轴为例,主要有轴肩、套筒、圆螺母、轴端挡圈、轴承端盖等,靠这些定位元件来保证的。轴肩主要分为两大类,定位轴肩和非定位轴肩。在该主轴上,轴肩很多,这两大类都包括。虽然利用轴肩定位是最方便可靠的方法,但是采用轴肩就必然导致一个问题,那就是不可避免的使轴径加大,而且轴肩处将因为截面突变而引起应力集中。另外,轴肩也不利于加工。所以,在考虑轴的设计时,尽量避免过多的轴肩定位。而且,还有一点需要说明,轴肩多用于轴向力比较大的场合。值得注意的是,定位每一个滚动轴承的轴肩,都有两处,且都是定位轴肩。对这种定位轴肩来说,有一个要求:轴肩的高度必须低于轴承内圈端面的高度,以便拆卸轴承。轴肩的高度可查机械设计手册中的轴承安装尺寸。还有,为了使零件能紧靠轴肩而得到准确可靠的定位,轴肩处的过渡圆角半径必须小于与之相配的零件毂孔的端部的圆角半径或倒角尺寸。轴和零件上的倒角和圆角尺寸的常用规范可以查教材下册中的第651页的表。非定位轴肩是为了加工和装配方便而设置的。高度没有严格的规定,一般可取为1到2毫米。在该主轴上,还采用了套筒定位,这种定位方式的特点是,结构简单,定位可靠,轴上不需要开槽、钻孔和切制螺纹,不会影响到轴的疲劳强度。所以,在两个零件之间,且间距不大时,可以采用这种定位。同时,套筒定位还保证了两个圆盘,或者,圆盘和锤头(销轴套筒)之间的轴向定位。当然,若两零件的间距太大,则不宜用套筒定位这种方式,因为,那样就会增大套筒质量以及材料用量。另外,套筒与轴的配合比较松,如果轴的转速较高,也不宜采用套筒定位。在该主轴的轴端,以及销轴的轴端,都采用了圆螺母定位。这种定位可以承受大的轴向力,但是,轴上的螺纹处将会有较大的应力集中,降低轴的疲劳强度,所以,一般用于固定轴端的零件。就如上面所述,若两零件的间距太大,不宜用套筒定位这种方式的时候,就可以考虑采用圆螺母定位。在该主轴上,还采用了轴承端盖通过螺钉与其他部分连接。而使滚动轴承的外圈得到轴向定位。有时,整个轴的轴向定位也可以靠轴承端盖来实现。再说轴向零件一般也常用到周向定位。周向定位的目的是限制轴上零件与轴发生相对运动。在该主轴上,有三处都采用的是平键连接,其他的常用周向定位元件有,花键、销、紧定螺钉和过盈配合等。圆盘、飞轮、带轮都是用平键连接的。其他的,如齿轮、半联轴器等与轴的周向定位也都采用这种连接方式。按其直径,由手册查地平键剖面bh,键槽用键槽铣刀加工的 。轴的草图如图4-2所示。4.3.4 轴的弯扭合成强度计算在初步完成轴的结构设计之后,对上面的草图略加修改,即可进行强度的校核计算了。前面提到过,多数情况下,轴的工作能力一般主要取决于轴的强度。此时只做强度计算,以防止或检验断裂和塑性变形。而对于刚度要求高的轴和受力大的细长轴,还应该进行刚度计算,防止产生过大的线性变形。对于高速运转的轴,还应该进行振动稳定性计算。以防止产生共振破坏。在进行轴的强度校核计算时,应根据轴的具体载荷和应力情况,采用相应的计算方法,并恰当的选择其许用应力。根据计算原则,对于传动轴(仅仅或主要承受扭矩)按照扭矩强度条件进行计算,对于心轴(只承受弯矩)应该按照弯曲疲劳强度进行计算,对于该主轴,既承受扭矩还承受弯矩,是一个转轴,所以必须进行弯扭合成强度条件进行计算,需要时还应该进行疲劳强度的精确校核。先按照弯扭合成强度条件进行计算:通过对该主轴的结构设计,轴的主要结构尺寸,轴上的零件的位置以及外载荷和支反力的作用位置已经确定。轴上的载荷可以求得,因此可以按弯扭合成强度条件对该主轴进行强度的校核计算,其计算步骤如下:做出轴的计算简图(力学模型)轴上受的载荷是由轴上的零件传来的,所以,计算时,可以将轴上的分布载荷情况简化为集中力。其作用点可以一律简化,取为分布载荷的中点,作用在轴上的扭矩,一般从传动件轮毂宽度的中点算起,通常把当作置于铰链支座上的梁,支反力的作用点与轴承的类型和布置方式有关。在做计算简图时,应该先求出轴上的受力零件的载荷(若为空间力系, 再分解为水平分力和垂直分力。然后求出各支承的水平反力和垂直反力),如图4-4所示。做弯矩图: 根据前面的简图,分别按水平面和垂直面计算各力产生的弯矩图,并按计算结果分别作出水平面上的弯矩图和垂直面上的弯矩图上,然后按照后面的公式推导出总弯矩,并作出图,如图4-4所示。作出扭矩图,如图4-3所示:作出计算弯矩图根据已经作出的总弯矩图和扭矩图,求出计算弯矩,并做出图。同时写出其计算公式: =上式中, 考虑扭矩和弯矩的加载情况以及产生应力的循环特性差异的系数。因为通常由弯矩产生的弯曲应力是对称循环的变应力,故在求计算弯矩 时,必须计算这种循环特性差异的影响。根据经验,当扭转切应力为静应力时,取 ;当扭转切应力为脉动循环变应力时, ;当扭转切应力为对称循环变应力时,取。校核轴的强度已知轴的计算弯矩后,即可针对某些危险截面(即计算弯矩大而轴的直径可能不足的截面)作强度校核计算。按第三强度理论,计算弯曲应力上式中, 轴的抗弯截面系数()。 轴的许用弯曲应力()。由表可查 为60 Mpa的计算公式,根据截面的不同而不同。对该主轴来说,其需要计算的截面,都带有键槽,而且是单键槽。所以,其计算公式为:=主轴的载荷分析图如下图4-4所示:求轴上的支反力及弯矩根据以上确定的结构图可以确定出简支梁的支承距离。据此可以求出下列各值,并列表如下,主要包括,载荷、支反力、弯矩、总弯矩、扭矩、计算弯矩等,相关的计算也往往是考虑最不理想的情况。 表4-1 计算弯矩的求法载荷F垂直面V支反力RR=1000N(总重量按200Kg) 弯矩M 总弯矩M 扭矩TT=9550000=396325计算弯矩 综上所述,按照弯扭合成强度条件进行轴的强度校核计算:进行具体的校核计算时,只需要校核轴上的承受的最大弯矩以及扭矩的剖面(即危险剖面)的强度。按教材中表10.1,对于的碳钢,在承受对称循环变应力时的许用应力。故安全。4.3.5 轴的疲劳强度条件的校核计算:1.对主轴进行疲劳强度计算,不妨设外力为单向不稳定变应力,则根据已经知道的条件和公式:主轴的材料为45号钢。经过调质后的性能为,= 5。现用此材料做试件,进行强度试验,以对称循环变应力作用次,作用次。根据这些条件,试计算该主轴在此条件下的计算安全系数。若以后再以的力,作用于主轴,还能循环多少次,可以保证主轴不出问题。其实,这也等于估算主轴的使用寿命。根据公式 再根据教材书上的公式(7-3.9),则该主轴的计算安全系数为:又根据式子(7-9.a),有 由以上的计算,显然可以得知,若要使主轴破坏,则由教材中式子(7-34),得=1所以,可求出,可以得出结论,该主轴在正常工作,同时考虑到不同工况,估计,在对称循环变应力的作用下,尚可承受次的应力循环。当然,事实上,该主轴可以再工作的循环次数并不会准确的等于以上所求的数值。如果按的范围计算,则所求的的值将分别等于0.50710和2.832。2.再介绍一下提高主轴的疲劳强度的途径:在零件的设计阶段,除了采取提高其强度的一般措施之外,还可以通过以下一些设计措施来提高其疲劳强度:尽可能的降低该主轴上的应力集中的影响。这是提高其疲劳强度的首要措施和主要的途径。而主轴的结构形状和尺寸的突变(比如轴肩)是应力集中的结构根源,因此,为了降低应力集中,应该尽量减小零件(即该主轴的)结构形状和尺寸的突变使其变化尽可能的平滑和均匀。为此,要尽可能的增大过渡处的圆角半径;同一段轴上相邻截面处的刚性变化应尽可能的小等等。在不可避免的要产生较大的应力集中的结构处,可采用减荷槽来降低应力集中的影响。选用疲劳强度高的材料和规定能够提高材料疲劳强度的热处理方法和强化工艺。提高主轴的表面质量。比如将处在应力较高区域的主轴表面加工得较为光洁。或者,如果,有的轴段,工作在腐蚀性介质中,则要对该轴段规定适当的表面保护。尽可能地减小或消除主轴表面可能发生的初始裂纹的尺寸,对于延长其疲劳寿命有着提高材料性能更为显著的作用。因此,对于重要的轴段,在设计图纸上应规定出严格的检验方法和要求。降温、减载荷,对于发热摩擦副的轴颈采取降温设计,也可显著提高其疲劳寿命。因为主轴是一个转动件,所以,在低应力下运转一定周数后,再逐步提高到设计的应力水平。4.4轴承的选择因为轴承,尤其是常用的一些轴承,主要是指一些滚动轴承,绝大数都已标准化,因而,我们需要进行一部分设计内容,根据具体的工作条件,正确选择轴承的类型和尺寸。另外是轴承组合的设计,它包括安装、调整、润滑、密封等一系列内容的设计。4.4.1材料的选择轴承的内圈、外圈、滚动体,一般是用轴承铬钢制造的,热处理后,其硬度一般不低于HRC60。一般这些元件需要150度回火处理,所以其通常的工作温度不高于120度,此时,硬度不会下降。 4.4.2轴承类型的选择轴承的类型有很多种,主要根据其承载情况和调心等要求,进行选择。因为该型号的破碎机,其转子的转速在900到1100之间。所以主轴上轴承的转速很高,负荷很大,且工作时间很长,最主要的是,经过很长时间工作后,会因为锤头的不均匀磨损而产生不平衡附加作用力(当锤头的不均匀磨损严重时,此力就成为总负荷中的主要部分)。轴承间距大,轴会产生挠曲,此外,轴承的中心也难保证同心,因此选用调心滚子轴承。 图4-54.4.3 轴承的游动和轴向位移轴承在实际工作时,工作前后的温差大,为了适应轴和外壳不同热膨胀的影响,防止轴承卡死。可以使一端的轴承轴向固定(比如用圆螺母)另一端使之可以轴向位移。这样,轴承在内外圈的轴向相对位置有不大的变化时,仍然可以正常工作。也可以使外圆与座孔配合较松,以保证外圆相对于座孔能做轴向窜动。4.4.4 轴承的安装和拆卸为了便于轴承在主轴上的安装和拆卸,必须考虑到轴承座有剖分面,这样就不必考虑沿轴向安装和拆卸轴承部件,优先选用内外圈可分离的轴承了。 图4-64.5 传动方式的选择与计算(V带传动计算)该部分的设计主要体现在V带轮的设计上,带轮的结构型式,主要由带轮的基准直径选择。其基准直径又与相连接的电动机的型号有关。根据前面对电动机功率的计算,以及转速的要求,可以采用Y系列的三相异步电动机,其额定功率为45KW。型号是Y225M-2。满载转速2970r/min,额定转速3000r/min。因为要求的大带轮的转速在900 r/min到1100 r/min之间,所以,当小带轮的直径依据电动机选择160mm时,这样大带轮的基准直径依据传动比,可以求出475左右,因为带轮的基准直径有标准系列,所以可取475mm。要求带的根数,必须按以下的计算步骤:1先确定出带的型号。由表可查到,根据计算功率P和小带轮的转速进行选择。经过查表得, 式中 名义传动功率。 工作情况系数。再查表可知,取1.4,则可以计算出计算功率P为63KW。再由表,可查出带的型号为A型。2需要确定单根V带的基本额定功率查表13.4,(教材书下册)可以知道,对A型带,因为其小带轮转速接近2800 r/min,基准直径为160mm的情况下,为基本额定功率, 取4.06KW。为长度系数, 取0.99。为包角系数, 取0.935。为单根V带的基本额定功率的增量, 取0.34KW。其值由带的型号、小带轮转速以及传动比确定。则带的根数就可以用下式求出:将上面的数据代入,就可以求出,。这样,整个带轮的尺寸的具体的确定过程如下:根据其参数,仍然由教材书上的表可查到。 靠近两端的槽中心到带轮端部的距离。 相邻槽间的距离。另外,根带的型号和其基准直径D,可以确定出轮槽角的大小和,。 轮槽的根部到带轮键槽的最小要求距离。 相邻带轮在中心线上的距离。 齿顶高的最小距离。 齿根高的最小距离。其键槽可以由其宽度进行选择标准的长度。这样,其他的尺寸也可以确定了。4.6飞轮的设计与计算飞轮的作用是,是转子在运动中储存一定的动能,避免破碎大块或较影的物料时,速度损失不致过大和减小电机的尖峰负荷。其结构采用腹板式。 图4-7其具体的尺寸可以采用常见的类型。只要较好的实现其功能即可。如图4-8。 4.7棘轮的选择蓖条与锤头端部的间隙由两个装置来实现:凸轮和弹簧,凸轮是用来增加这两者的间隙的。操作是靠手柄来实现的。而弹簧用来进行“微调”,当手柄操作不能达到满意的位置时,需要用弹簧进行再调整。凸轮的运动是由棘轮来实现的, 棘轮也因为已经基本标准化,所以,只需要根据具体的条件和要求,进行选择。因为其尺寸的确定是比较自由的,所以,棘轮只需要根据凸轮的工作状况,实现其驱动功能即可。另外,考虑经济性和可能性,稳定性,做合理的选择。棘轮机构的结构简单,制造方便,运动可靠。而且,棘轮轴每次转动角度的大小可以在较大范围内调节。这些都是它的优点。其缺点是工作时有较大 图4-8的冲击和噪声,而且运动精度较低。其典型的结构形式是由摇杆、棘爪、棘轮和止动爪等组成:弹簧用来使止动爪和棘轮保持接触。同样,可在摇杆和棘爪之间设置弹簧,以维持棘爪与棘轮的接触。棘轮固定在机构的传动轴上,而摇杆则是空套在传动轴上。当摇杆逆时针摆动时,棘爪便插入到棘轮的齿间,推动棘轮转过一个角度。当摇杆顺时针转动时,止动爪阻止棘轮顺时针运动,同时,棘爪从棘轮的齿背上滑过,所以此时,棘轮静止不动。这样,当摇杆连续往复运动时,棘轮便得到了单向的间歇运动。4.8蓖条位置调整弹簧的选择前面提到了,弹簧所能起到的作用是调整蓖条与锤头间隙的作用。弹簧一般所起到的作用是:1.控制运动方向。2.缓冲和吸振3.储存能4.测力的大小。在这里,它实现的是第一个功能。根据受载荷的情况的不同,弹簧可分为拉伸、压缩、扭转和弯曲弹簧。根据所要求的工作状况。只需要承受拉伸。所以,应该选择拉伸弹簧。在常用的弹簧当中,根据其应用特点和范围,我们可以选用普通的圆柱螺旋弹簧。这种弹簧的特性线呈直线,刚度稳定,承受压力,结构简单,制造方便,应用最广泛。无特殊要求时,可以选右旋。弹簧的选择的一个关键是,对弹簧的特性线和刚度的分析。表示弹簧载荷与变形之间关系的曲线成为弹簧的特性线。使弹簧产生单位变形所需要的载荷成为弹簧的刚度。用表示。4.9箱体结构以及其相关设计一台机器的总重量当中,机座和箱体等零部件的重量占很大的比例。同时在很大程度上影响着机器的工作精度以及抗振性能。所以,正确合理的选择机座和箱体的材料,并且正确合理的选择其结构形式和尺寸,是减小机器质量、节约金属材料。提高工作精度等重要途径。4.9.1铸造方法根据有关资料,机座(机架和基板等)和箱体(包括机壳等)的形式很多。按构造形式可以分为机座类、机架类等。本次设计到的锤式破碎机,是固定式重型机器。而且,机座和箱体的结构复杂,刚度要求也较高,因此,通常都是铸造。铸造材料常用便于施工而又便宜的铸铁。(包括普通灰铸铁、球墨铸铁等)。而且该破碎机的机座,属于大型机座的制造,所以,常采用分零铸造,然后焊成一体的办法。4.9.2截面形状的选择因为绝大数的机座和箱体受力情况较为复杂,因此要产生振动,弯曲等变形。所以,当受到弯曲或扭转时,截面形状对其刚度和强度的影响很大。所以,正确设计出合理的机座和箱体的截面形状,可以起到既不增大截面面积,又不增大(或者减小)零件质量(材料消耗量)的效果。而且增大了截面系数以及截面惯性矩,就能提高其强度和刚度。在使用中,绝大数的机座和箱体都采用这种截面形状,就是这个缘故。虽然矩形截面的弯曲强度不及工字型截面,扭转强度不及圆形截面的,但是它的扭转刚度却大得。而且采用矩形截面的机座和箱体的内外壁比较容易装设其他的机件。所以,对机座和箱体来说,它是结构性能较好的截面形状。4.9.3 肋板的布置一般地说,增加壁厚固然可以增大机座和箱体的强度和刚度,但不如加设肋板来得有利。因为加设肋板时,增大强度和刚度,又可以增大壁厚的同时减小质量;因为该破碎机的机壳是铸件,所以,对于铸件,由于不需要增加壁厚,就可以减少铸造的缺陷;对于有些焊接的部位,壁薄时更容易保证焊接的品质。在考虑到铸造、焊接工艺时以及结构要求时的限制时,例如为了便于砂型的安装和清除,以及需要在机座内部安装其他的机件等,往往需要把机座设计成两面敞开的,或者至少在某些部位开出比较大的孔洞(就是该机器中的检修孔)。由于这样做,必然大大削弱了机座的刚度,所以,加设肋板是必需的。其结构形状必须考虑到各种重要因素,主要有工艺、成本、重量等。同时还要随具体的应用场合以及不同的工艺要求(如铸造、焊接等)而设计成不同的结构形状。第5章 专题部分 锤头结构改造及耐磨性研究摘要本文从理论上对锤头结构的改进进行了分析,并指出了其应用中体现的改进的效果。考虑分析并总结了锤头寿命的各种因素,并着重从理论到应用分析了锤头材料的改进、研制,提高耐磨性,同时从理论上、应用上对最大破碎力、锤头的合理调配进行了具体的研究。通过对这几种因素的较详细的分析,体现了延长锤头使用寿命的可行性和方法方式的多样性。关键词:改性高锰钢 中碳多元合金钢破碎机中锤头(板锤)是最易磨损的零件,由于锤头是靠高速回转时产生的冲击能来击碎物料的,因而,锤头自身也受到物料的撞击和研磨作用而磨损。锤头(板锤)的磨损与锤头本身的材料、锤头制造质量、所破碎物料的特性、给料粒度的大小及水分、转子的圆周速度和处理量等因素有关。为充分利用锤头的材质。提高锤头的使用寿命,板锤可设计成对称形式。5.1锤头结构的改进问题5.1.1 改进的介绍在厚度上增加了15mm,其端部宽度增加了20mm,悬挂孔到端部的长度增加了10mm,悬挂处外圆的半径由90mm变为75mm.5.1.2 改进的效果1对物料的冲击力增加了。因为锤头的重心在回转半径径向上外移,锤头在运转中线速度加大。锤头对物料的冲击功增加了,从而改善了破碎效果。2锤头的有效磨损量增加了。锤头单重一般按27千克算,有效磨损量占三分之一,即9千克。改进后的结构总重量变化小,有效磨损量达16千克。改进后一套的锤头相当于改进前的两套,降低了使用成本。3降低了出料粒度,提高了台时产量。改进后,悬挂孔到锤头端部长度由350毫米到360毫米,回转直径大约1250到1270毫米,锤头到壳板间隙由25毫米减小到15毫米。故可使出料粒度,由原来的20毫米以下,25%的粉状物,变为810毫米,60%的粉状物,大大改进了破碎机的破碎效果,从而提高了台时产量。4改善了粉磨效果。石灰石等物料经二次破碎后,要从能量消耗和效率上研究,破碎比研磨效率高,电耗小。所以,要求并希望石灰石多破碎,少研磨。出料粒度810毫米,60%的粉状物,极大改善了粉末机的生产效果。产量由每小时12吨提到每小时16吨,降低了生料的生产成本。5.2 延长锤头使用寿命的研究下面重点讨论一下锤头耐磨性提高,使用寿命延长的问题。决定一个板锤的使用寿命,有以下几个因素来评定:1工作是否可靠。在板锤与物料冲击过程中,不准板锤飞离转子,或因板锤的紧固不良,引起其他的机械故障,故板锤的固定是个值得注意的问题。否则,无“寿命”可言。2板锤的装卸是否方便,尤其再生产现象,在工作一段时间后,机器的各部件必不能按理想状况进行,比如偏心、局部磨损等,需要及时调整。能否快速装卸是一个很重要的指标。3板锤的金属利用率是否合理。因板锤的磨损是不可避免的,一块重量一定的板锤,使其不能利用的质量最小,即板锤的形状及空间尺寸如何选择为最佳是值得考虑的问题。4减少无谓的磨损,以提高板锤的使用寿命,要充分利用转子的能量,提高破碎比,就必须研究最大破碎力,同时也具有很大的理论价值。5板锤的及时合理调配非常关键。破碎机在使用中运行不稳,震动大,主要原因是,板锤磨损后,原有的平衡状况被破坏,未用科学的方法合理调配所致。6板锤的材质,是解决锤头耐磨性,使用寿命的最核心的因素。现今应用比较广泛,也经受了实践的考验。比如有改性高锰钢板锤和锤头,中碳多元合金钢锤头。下面就后三种因素,做一些具体的分析:5.2.1 锤式破碎机中单颗粒物料的最大破碎力研究锤式破碎机具有破碎效率高、破碎能耗少等优点,它在矿山、建材、环保等行业中得到了广泛应用。到目前为止,该机型的最大破碎力还没有一个理想的公式进行计算。国外有人根据碰撞理论和破碎力呈线性变化的观点,提出了最大破碎力等于二倍平均破碎力的公式。但在破碎机实际破碎过程中,最大破碎力与平均破碎力并不是呈线性变化,因而,有必要对该机型的最大破碎力做进一步的探讨。 锤式破碎机对物料的破碎过程建立的力学模型为了便于研究,其碰撞过程要做以下几点假设:在破碎过程中,物料与锤头的碰撞是弹性正碰撞。在碰撞前,锤头与转子同速转动。在碰转前,物料水平速度是零。在碰撞处,忽略摩擦力和风阻等影响。根据这些假设和碰撞理论,可以列一系列方程。需要的物理量有,。它们分别表示的意思是: 碰撞后,第i块物料的质量。 锤头的质量。 第i块物料碰撞后的分速度。 碰撞前锤头质心处的线速度。根据物理知识,还有公式如下=cos,=(),要求出碰撞前锤头质心处的线速度,即V的值,还需要知道以下的物理量:,。它们分别表示的意思是: 转子系统对O轴的转动惯量 锤头对其质心轴的转动惯量 第块物料碰撞后的分速度 与碰撞方向的夹角 锤头打击点到锤头质心的距离 锤头打击点到销轴轴心的距离另外,还需要有一些辅助的物理量:,。它们分别表示的意思是: 锤头与物料间的碰撞冲量 锤头销轴间的碰撞反冲量再根据牛顿的恢复系数定义以及冲量定理,可以得出,最大破碎力=/ 锤头对销轴的最大反冲击力/ 在破碎过程中,与时间无关的常数 单颗粒物料破碎时最大破碎力的实验研究为了测出单颗粒物料破碎时的最大破碎力,对单排锤式破碎机,在其转子轴中部对称地粘贴了4个电阻应变片,并通过导线组成全桥测试电路。根据上述测试方法,就可以得到,单颗粒物料破碎时,转子轴上的弯曲应变曲线。并根据实测分析,曲线上的应力最大值就是锤头对销轴的最大反冲击力所引起的线应变。另外,根据电测原理和转子轴上的受力特点,可以得到转子轴上测试处的弯矩,当然需涉及到一些相关的物理量:,。 Wn 转子轴测试处的抗弯截面膜量 转子轴测试处的直径 实验模型中两圆盘间的距离 转子轴上二轴承间的距离 转子轴材料的弹性膜量根据电学和物理学的公式,在单颗粒物料破碎时,逐次改变电机转速和分别加入砂岩、钢球、麻石、石灰岩等不同物料进行了破碎实验,得出了一系列的数据。 数据处理和结论 从实验得出的一系列的数据,可以发现,最大破碎力与平均破碎力并不是呈线性变化,为了了解其变化规律,利用计算机对这两个值的比值进行数据处理:包括均值、方差计算和正态性检验等,其结果十分明显,是一个正态分布曲线图。根据图中的数理统计结果,可得如下结论:根据所获得数据可以发现,最大破碎力与平均破碎力的比值并不呈线性变化。由数理统计原理可知,比值落在区间-3s,+3s的概率为99.7%,置信度为1-=95%。因为-3s=2.045,+3s=3.128根据概率论的观点,得到实验公式=(2.0453.128),为平均破碎力。5.2.2锤头合理调配的研究与应用锤式破碎机在使用中的运行不稳,振动大的原因是,除了个别的是由于主机制造质量、平衡校正质量、安装质量、基础质量不佳所致外,绝大多数是由于板锤磨损后,原有的平衡状况被破坏,未用科学的方法合理调配所致。就合理调配问题,必须引起重视。1配锤模型的建立一般锤式破碎机的锤头分布可以归纳为:沿主轴轴线方向的组数用等表示,每组锤头在回转圆周上的母线分布及数量,可用阿拉伯数字来表示,此外还要有一个组间角。因此要表示一台锤式破碎机的锤头分布状况,可用组数、每组个数、组间角来表述。而要表示某一位置的锤头,则可用组号加圆周分布的母线序号表示,以1212型高效细碎机为例,该机锤头共六组,每组三只,组间角六十度。为了便于理论分析,需作以下假设:每只锤头为一理想的质点。各质点离主轴回转中心的距离为一定值。锤头按理想状况均匀分布。2配锤表的编制锤头分布表 表5.1 GXP1212型高效细碎机的锤头分布表皮带轮ABCDEF飞轮1B1D1F12A2C2E23B3D3F34A4C4E45B5D5F56A6C6E6 锤头的磨损规律及配置表编制根据GXP1212型高效细碎机在某厂的运行一段时间后的锤头状况,如下表: 由表5.2可见,如果原来的个体差异忽略不记,则磨损量从大到小的排序为:。一般地,物料由破碎机的进料溜子导入,总是中部的料多余边部,所以,锤头磨损量存在于中间组向边上组递减的规律。这一规律在设计配锤方案时,必须予以考虑。为了寻求一种适合大多数情况的锤头排列方案,不妨先假设1套按等差规律制作的锤头,并找出这套锤头的最佳排列方案。将该机锤头按单只重进行排序,设以最重的为1号,依次至最轻的为18号。在制作这个方案时,除了要运用磨损规律外,同时考虑到为减小偏心振动,每组锤头的各锤重量最好要差不多。在组序的排列先后上,按磨损规律及沿回转轴的中截面两侧均匀分布的原则。一般,可以按或的规律排列。表5.2 运行一段时间后锤头剩余质量皮带轮ABCDEF飞轮121.721.522.465.6221.522.223.166.8323.021.822.467.2422.621.524.768.8521.220.622.063.8622.221.023.166.366.365.964.763.970.966.8W432165组序确定后再排列每组的3只锤头。在组的3只锤头首先按由重到轻的顺序排定的情况下,其余各组可按“轻重相济”的原则排列。所谓“轻重相济”,可以理解为“重中轻,重轻中,中轻重”的配锤法则。比如说,在排列组时,组的锤为重锤,组为中锤,则在组的C2锤应是轻锤。按此类推,排列如下表,并用轴向偏心矩和径向偏心矩来表征配锤方案的优劣。正确排列后可运用方案的评价方法进行计算与评定。由于是按等差规律制作的锤头,所以上表的锤头号数就可以作为该锤头重的代表值来进行计算和评价,其评价效果和结论与事实是等效的。取每组的等差和、按组间距为1,按轴中截面取矩计算:=(5142)2.5+(24-33)1.5+(15-6)0.5=13.5。为求的值,引入分布圆的概念。分布圆引入分布圆是为了明了地找到偏重的母线或配重的母线,并在量值上得到确定。表5.3 按“轻重相济”的原则排列的配锤方案皮带轮ABCDEF飞轮17113212186123638214244164103059315276175113351241563342将表5.3中最后一列数依次填入,按母线数量均匀分布在圆上,即得分布圆及其简化图。 按照力学原理,分布圆的简化其实很简单,只要在对称位置同减一数其平衡性质不变。分布圆的简化规律为:同一直径线上的2数同减其最小数,分布圆性质不变;同一个等边三角形内的三个数同减去其最小数,分布圆性质不变;相邻三数的,两边数分别加上中间数,在使中间数为0,分布圆性质不变;(相邻两数的,可设边上的数字为0来处理)。分布圆简化到只剩相间2个数或1个数(或全部为0)为止,即得最简分布圆。如图5-2,5-3,5-4。分布圆的简化规律均来自于对称平衡规律。一般的说,各质点相对于回转中心对称布置,质量相等,则系统就平衡,否则,不平衡。规律中的“性质不变”指的是平衡性不变,这包括两重意思,一是原来是平衡的,简化后仍是平衡的,反之,不平衡。二是指其量值上的不变。规律中的“减”确切地说是同时减去一个数,当然这个数可以是正数,也可以是负数。由最简分布圆可以看出,=0,可见上面的表是一个完全平衡的配锤方案。 但事实上,一套锤头的各只锤头不可能是会呈等差分布规律的,所以在现实情况下,按上述方案配置的锤头就不一定是平衡的,上述方案配置的锤头就不一定是最佳的,在实际应用中还要对配锤方案进行调整。3GXP1212型高效细碎机锤头的配置由GXP1212型高效细碎机运行一段时间后锤头剩余质量表,可以计算出磨损后锤头的轴向偏心矩M2=(66.3-66.8)2.5+(65.9-70.9)1.5+(64.7-63.9)0.5=-8.35分布圆及其简化图如下图所示,根据分布圆就可以作出方案的评价。从上图的最简分布圆可以看出,根据分布圆的简化规律,在在最左侧的母线上如果配重4kg,即可基本实现平衡要求,我们把这个数记作的值。,的值均很大,这说明该破碎机锤头的配置状况会产生很大的不平衡力,也必然会产生破碎机的大幅度振动。显然,的值越大,不平衡力矩越大,这当然是我们不希望出现的。因此,不但更换锤头时要注意用科学的方法进行配置,锤头运行了一个时期以后,其原有的平衡状况也会随着锤头的磨损的不均匀而破坏,这时更要作好锤头的重新配置工作。4.结论1由上图的最简分布圆可知,在正三角形最右侧的母线上配重0.85kg,即可基本实现平衡的要求。显然,M径、M轴的值减小了,按该方案重新配锤后,破碎机运行情况得到明显的改善,设备振动已基本消除,产量已有较大提高。锤式破碎机的配锤对于确保破碎机的正常运行起着非常重要的作用,必须引起广大企业的重视。2本文所提供的配锤图表是基于每组3只锤头的和偶组数模型,对于其他结构类型的锤式破碎机,须根据本文所提供的方法作出变通处理。3本文提供的配锤思路是一种基于静态平衡的理想状况,实际情况将更复杂,有待于进一步探讨。5.2.3 锤头材质的选择及改性这是解决关于提高锤头耐磨性,延长其使用寿命问题的最主要、最根本的方式。下面主要介绍以下这种:改性高锰钢板锤和锤头的研制。锤式破碎机的关键部件是板锤和锤头,其安全性、可靠性、耐磨性和使用寿命等性能,直接影响破碎机的安全生产、正常运行及生产成本。有一个例子,曾有一个工厂所用的破碎机是16001600锤式破碎机,试用过很多厂家提供的高锰钢板锤和锤头,但有的使用时出现掉块和断裂,有的工作表面出现严重的犁沟和流变,只能使用1到3个月。为此,该厂与一家有限公司合作,共同开发研制了一种改性高锰钢板锤和锤头。并经过几年的使用证明,这种板锤和锤头能够有效避免上述问题,使用寿命和抗磨损能力较以往所用的普通高锰钢产品提高了一倍以上。 高锰钢板锤和锤头的缺点高锰钢板锤和锤头的铸态组织是奥氏体和碳化物,经过水韧处理后为单一的奥氏体组织,具有较高的韧性,在强烈的冲击工况条件下,其表面能够产生加工硬化层,从而使其具有较好的耐磨性。但因石灰石硬度较低,在中低冲击应力下,高锰钢板锤和锤头表面不能形成足够的加工硬化层,因此其工作表面硬度不够高,磨损较快。另外,高锰钢在三百度以下时,其内部组织的晶界周围会产生炭化物的重新析出,使比较完整致密的机体被碳化物割裂开。这样,硬度低于碳化物的机体先被磨损,从而使碳化物凸现出来;而凸现出来的碳化物被划伤、击碎或脱落,又失去了对机体的保护作用,使机体进一步磨损。如此循环往复,致使高锰钢板锤和锤头被很快磨损,使用寿命短。 改性高锰钢板锤和锤头材质元素的选择高锰钢的耐磨性主要取决于其工作表面的加工硬化能力。据此,我们在设计改性高锰钢板锤和锤头的化学成分时,加入了铬()、钼()、钛()、钒()和稀土元素,以降低奥氏体的稳定性,使其机体上形成大量微小的第二相质点,阻止位错运动,从而,强化了基体;并且在奥氏体上弥散析出球状炭化物,净化晶界,改善夹杂物的形态和分布,实现综合强化。从而使改性高锰钢板锤和锤头具有高韧性、高强度和良好的抗磨损性能。碳含量碳是影响钢的各种性能的主导元素。在一定范围内,碳含量增加,钢的硬度、破坏强度、屈服强度和耐磨性能都增加。但当大于1.4%时,钢的韧性就会降低,并出现粗大的沿晶界分布的炭化物,给消除炭化物的固溶处理带来困难。因此应控制碳含量在1.112%。锰含量锰是一个最为强烈的晶界炭化物形成元素,由其形成稳定的奥氏体(含量低时不能满足奥氏体的形成条件);它又是个过热敏感元素,随着锰含量的增加,钢的强度、耐磨性也增加。但当锰含量大于1.4%时,钢的各种性能就不再提高,且生成锰的碳化物,易产生粗大的柱转状晶,给热处理带来困难,并会加大铸造收缩,降低钢的导热性能,从而易导致各种铸造缺陷。所以,宜控制锰含量在11.5%12.5%。硅含量硅有显著的固溶强化作用,增加刚的致密性、提高耐磨性。当硅含量0.3%时,钢中氧化锰含量增加,将促进热裂,不能保证脱氧;硅含量过高时,会降低碳在其中的溶解度,促进炭化物沿晶界析出,使韧性降低。故硅含量通常控制在硅含量0.30.7%。其他元素铬(Cr)能显著提高钢的淬透性,固溶强化基体,促进铁素体的形成,降低奥氏体的稳定性,提高加工硬化能力,铬含量一般应控制在铬含量为1.82.2%;钼能够溶入奥氏体,可大幅度提高钢的淬透性、回火稳定性以及细化晶粒,还有控制回火脆性、改善冲击韧性的作用,钼宜控制在0.25%0.4%;钛、钒和稀土元素主要用作变质剂,可净化晶界,细化晶粒,在奥氏体基体上弥散析出球状炭化物,以实现综合强化,其含量甚微;锰铁中含有较高的磷,是对钢有害的元素,它与铁锰形成低熔点的磷酸盐,含量过高时,会形成磷共晶,使铸件开裂,对冲击韧性和耐磨性均不利,其含量应控制在小于0.07%。制造工艺熔炼在500kg碱性炉衬中频感应炉中,采用不氧化法熔炼。先根据炉料、铁合金的化学成分和吸收率进行钢的配料计算,然后热炉装料以防止带入气体,锰钢随料加入,溶化期间用大功率送电,当钢溶化90%时,测量钢液温度,避免钢液温度过高,当钢液温度达到1500度时,取样做炉前化学成分分析,然后根据分析结果,加入铁合金调整所需要的各种金属元素。在钢液温度达到1550度时出钢。采取插入法在钢包中冲铝终脱氧,加铝后用强制置入法迅速向钢液中加入调制剂,待钢液表面将要结膜时迅速浇注。铸造铸造是影响铸件质量的一个重要环节,要严格执行铸造工艺,浇注工艺和清理工艺。我们采取定向凝固工艺浇注,浇注温度控制在14601480度。因浇注温度低,要注意浇冒口系统通畅,使钢液能平稳而畅通的快速充型和有效补缩,防止产生冷裂,改善铸造一次结晶组织,消除柱状晶,创造形成等轴晶的热力学条件,减少晶见缺陷和偏析,提高钢的致密性,保证铸件具有良好的机械性能。热处理铸态的板锤和锤头比较脆,因此不能铸态使用,必须经过固熔处理(水韧处理)。板锤和锤头的入炉温度在400度以下,然后,随着温度的升高,分阶段进行梯形保温,等到炉温达到1050度时保温20到24小时,完成炭化物的分解,碳、锰等元素溶入奥氏体,并使其均匀化。等到炉温达到1100度时打开炉门,把工件迅速放入水池淬火。淬火采用大容积水池,流动水处理,既在水池上方让热水溢处。水池内的水的温度严格控制在20到40度之间。淬火完成后,取出工件空气中自然冷却。使用效果改性高锰钢板锤和锤头在经过变质处理后,细化了晶粒,使其耐磨性提高,且有较好的韧性,有效的防止了在强烈冲击状况下的断裂和掉块问题,其表面加工硬化能力也得到提高。普通高锰钢和改性高锰钢板锤的使用性能对比如下表4-3。表4-3 性能对比表项目 使用前工作表面硬度使用后工作表面硬度破碎石灰石(10T)连续使用寿命(月)相对耐磨度普通高锰钢HB 229HB 300450810131改性高锰钢HB 229HB 500 20256122第6章 部分零部件上的公差和配合6.1配合的选择 6.1.1 配合的类别的选择 在该机器中,有几处配合需要进行选择,根据选择的原则,工作时,零件之间有相对运动,必须用间隙配合。如滚动轴承的外圈与轴承座的配合就是有相对运动,属于间隙配合。如果零件之间无相对运动,用过盈或者过渡配合,在内圈与主轴的配合中,就属于这种情况,所以,该处选择过渡配合。还有一种情况,若零件之间无相对运动,但有键等紧固件连接时,采用间隙配合,这样的情况,在该机器中就比较多了。 6.1.2配合的种类的选择在确定了配合的类别之后,就需要进一步的确定这类配合中采用哪一种具体的配合,这往往是比较困难的事情。为此,需要了解到各种配合的特点,并对零件的功能要求、结构特点、工作条件等各个方面进行全方位的分析。我们可以选用标准手册中的一些优先配合。而且手册中对选用也有了比较具体的说明。6.2一般公差的选取线性尺寸的一般公差是指在车间普通工艺条件下,机床设备一般加工能力可以保证的公差。在正常维护和操作情况下,它代表经济加工精度,所以一般可以不检验。它主要应用于精度比较低的非配合尺寸和功能上允许或大于一般公差的尺寸。国标中有规定,采用一般公差的线性尺寸不单独注出极限偏差,而在图样上、技术文件上做总的说明。在我的两张零件图上,带轮和主轴的零件图。根据国标中规定的四个公差等级,选用中等级,这个公差等级相当于IT14。所以精度并不是很高,这种尺寸的极限偏差可以从表中查取,主要是根据尺寸分段,另外,倒角和圆角的半径、高度的大小都可以从表中查取。6.3形位公差6.3.1形位公差项目的选择选择形位公差项目要根据要素的几何特征,结构特点以及零件的功能,并要尽量考虑检测方便和经济效益。在形位公差的众多项目中,有单项控制的,有综合控制的。这也很好理解,前者有圆度、平面度、直线度等。后者有圆柱度等,标注形位公差有一个原则,就是:应该充分发挥综合控制的公差项目的职能,原因很明显,一是减少图样上的形位公差项目,二是相应的减小形位误差的检测工作。就拿该主轴零件图为例,对于与滚动轴承内径配合的轴颈,为了保证滚动轴承的装配精度和旋转精度,应规定轴颈的圆柱度公差和轴肩的端面跳动公差。对于轴类零件来说,规定其径向圆跳动或全跳动公差,这样,既能控制零件的圆度或圆柱度误差,又能控制同轴度误差,这是为了检测方便。同理,端面对轴线的垂直度公差可以用端面全跳动公差代替,端面圆跳动在忽略平面度误差时,也可代替端面对轴线的垂直度要求。6.3.2公差原则的选择在选择公差原则时,应该根据被测要素的功能要求,充分发挥给出公差的职能和采用这种原则的可行性和经济性。比如独立原则,尽管它是处理尺寸公差和形状位置公差最基本的公差原则,应用也最广泛。但这有一个前提,就是对零件有特殊功能要求时才可采用。但实际设计中,为了保证零件的配合性质,即保证配合的极限间隙和极限过盈,满足设计要求,对重要的配合通常要采用包容要求。例如轴承内孔与轴的配合等,都是为了保证最小的间隙。对于仅仅需要保证零件的可装配性,而为了便于零件的加工制造时,可以采用最大实体要求。通常用于间隙配合,适用的要素仅仅限于轴线或中心平面。例如轴承端盖上孔的位置度公差。6.3.3形位公差值的选择或确定在对形位公差值进行选择时,应考虑的几个问题和原则:形状公差、位置公差、尺寸公差的关系确定形位公差值时,应考虑它们与尺寸公差的协调,其一般原则是:形状公差值大于位置公差值,而位置公差值大于尺寸公差值。对于有配合要求的形位公差与尺寸公差的关系有配合要求并要严格保证其配合性质的要素,应该采用包容要求。一般来说,形状公差通常为尺寸公差的25%到65%。圆度、圆柱度公差一般按同级选取。形状公差与表面粗糙度的关系通常,对于中等尺寸段和中等精度的零件,表面粗糙度的值可以占形状公差的20%到25%。需要考虑零件的结构特点对于刚性较差的零件(比如说细长轴)和具有某种结构特点的要素,因为其工艺性不好,加工精度会受到影响,此时,对主轴来说,就得选取较大的形位公差值。基准的选择选择基准时,主要考虑,要根据设计和使用要求,并兼顾基准统一和结构特征。一般考虑以下几点:应根据设计时要素的功能要求以及要素间的几何关系来选择基准。比如说,对旋转轴,通常都以装滚动轴承的轴颈表面作为基准。从加工、测量的角度考虑,应该选择在夹具、量具中定位的相应基准做基准。从装配关系考虑,应该选择零件相互配合、相互接触的表面做各自的基准,以保证零件的正确装配。结合设计的主轴零件图,具体分析如下: 两个直径为75的轴颈与调心滚子轴承的内圈相配合,两个轴头分别与皮带轮、飞轮相配合。为了满足给出的标准配合性质要求,所以采用了包容要求。又由于与滚动轴承相配合的轴颈,按规定应对形状精度提出进一步的要求,所以,提出圆柱度公差0.02的要求。同时,该两轴颈上安装滚动轴承后,将分别与减速器箱体的两孔配合。为了限制轴两轴颈的同轴度误差,以免影响配合性质。所以由给出了两轴颈的径向圆跳动公差0.025毫米。在主轴中间最长的工作的一段,为了保证其工作的准确性,对该段轴颈相对与两个直径为75的轴颈公共基准轴线给出了径向圆跳动公差0.025毫米。对该主轴有好几处轴肩起定位作用,参照安装滚动轴承处的轴肩的精度要求,给出两轴肩相对于基准轴线的端面圆跳动公差0.015毫米。键槽对称度公差是为了保证铣槽时键槽的中心面尽可能的与通过轴线的平面垂直。该轴两出键槽都按八级给出。公差值为0.02毫米。结论 对锤式破碎机的设计以及相关的研究,是我对大学所学的知识进行整合和总结,运用的一个尝试,这不仅提高了我的独立思考,动手实践,研究尝新的能力,还培养了团结协作,大胆尝试等良好的习惯.一台机器的完整设计是要涉及到各个方面的知识的,在大学最后这段有限的时间,迅速积累.充分准备是很难的.我们只有不懈的努力,尽力的改正不足,使其尽可能完善,在许许多多的零件中,即使是最小的,哪怕是一个小小的螺钉,焊缝之类的,如果因为强度不够,材料选取不当,寿命比较短,结构工艺性方面有缺陷,配合不能满足要求.未考虑拆卸,修整问题最终都会使机器工作性能下降,出现故障甚至报废.所以,在这方面我做的工作还是很不够的.另外,一台机器真正推广使用,还要对其成本,也即经济性,可行性进行分析.还有外观,对环境的污染,对工作环境的要求,维修的技术难度,方便程度等等,所以,我的设计只能是理论上的一个尝试.在具体的工作中,我除了需要借助最新的信息工具-网络外,还需要查阅图书,亲身实践,但最主要的,还是老师的指导.不仅仅是具体内容上,还有思路上的,认识问题角度等各个方面,我都收益匪浅.4年的大学生活最终以毕业设计的结束而告终.所以,我一定要加倍努力,画一个圆满的句号,力求在毕业设计的成果上更上一层楼.致谢随着经济的经济的发展,许多行业和部门都对破碎机的需求和要求也日益提高.作为一种重要的农业机械,它在国民经济中的基础行业中有着举足轻重的的地位.所以,对其设计和相关的研究是十分必要和重要的.在大学学习的专业知识涉及面很宽.这就需要在老师的帮助下,对相关的知识进行整合与总结,以便有进一步的提高.同时,也深刻认识到,只凭大学所学的知识,还不能满足设计的需要,也必须依靠老师的指导,吸收新知识,掌握新技能,拓宽新视野,对许多方面的知识加以猎取和归纳.所以,论文的起点和内容才会有一个好的升华.在具体的设计和学习的过程中,也离不开一些同学的帮助,尤其是一些计算机基本操作,CAD中的一些技巧等,提高了我的计算机操作能力,为了本论文能更完善和更成功.各个老师都经常悉心指导,以及热切的关注,我对此深深地表示感谢,并加倍努力,提高论文的质量,不辜负老师的期望.参考文献1 郑鸣皋,破碎机综述. 机械工业出版社,2001:1-32 kanda Y, sano Y,Yashima Y.A consideration of grinding limit based on . frachure mechanics. Power technology ,1986(3): 5-73 sikong L,Hashimoto H,Ashima S,Breakage behavior of fine particles of brittle minerals and coal.power technology,1990(1):11-154 许荣杰 锤式破碎机配锤图表的编制和应用, 杭州机械工业出版社,1999:12-135.机械设计手册编辑组 非标准机械设备设计手册,航空工业出版社,1990:2-106.Kaliszer H.et al ,Effect of dressing upon the grinding performance An nals of the CIRP Vol .25/2/1976,p.27-357.王玉荣,公差与技术测量,西北工业大学出版社 1993:3-68.北方交通大学材料系编,金属材料学,1983,中国铁道出版社9.朱宝库,机械设计,哈尔滨工业大学出版社,1989:20-25 10.钱可强,机械制图,第四版,高等教育出版社,1997:41-4411.陈宏杰,公差与测量技术基础,第一版,科学技术文献出版社 1991:44-4812.赵容,互换性与测量技术基础,辽宁科学技术出版社,1995:38-4013.邓文英,金属工艺学,人民教育出版社,1981:20-2514.许镇宇,机械零件,高等教育出版社,1983:30-3415.陈兰芬,机械工程材料与热加工工艺,机械工业出版社,1985:35-3616.王中发,实用机械设计,北京理工大学出版社,1998:41-44附录1 外文文献的中文译文外文文献的中文译文轴承的摩擦与润滑现在看来,有很多这种情况,许多学生在被问到关于摩擦的问题时,往往都没引起足够的重视,甚至是忽视它。实际上,摩擦从某种程度上说,存在于任何两个相接触并有相对运动趋势的部件之间。而摩擦这个词,本身就意味着,两个或两个以上部件的阻止相对运动趋势。在一个机器中,运动部件的摩擦是有害的,因为它降低了机械对能量的充分利用。由它引起的热能是一种浪费的能量。因为不能用它做任何事情。还有,它还需要更大的动力来克服这种不断增大的摩擦。热能是有破坏性的。因为它产生了膨胀。而膨胀可以使得轴承或滑动表面之间的配合更紧密。如果因为膨胀导致了一个足够大的积压力,那么,这个轴承就可能会卡死或密封死。另外,随着温度的升高,如果不是耐高温材料制造的轴承,就可能会损坏甚至融化。在运动部件之间会发生很多摩擦,如1.启动摩擦2.滑动摩擦3.转动摩擦。启动摩擦是两个固体之间产生的倾向于组织其相对运动趋势的摩擦。当两个固体处于静止状态时,这两个零件表面的不平度倾向于相互嵌入,形成楔入作用,为了使这些部件“动”起来。这些静止部件的凹谷和尖峰必须整理光滑,而且能相互抵消。这两个表面之间越不光滑,由运动造成的启动摩擦(最大静摩擦力)就会越大。因为,通常来说,在两个相互配合的部件之间,其表面不平度没有固定的图形。一旦运动部件运动起来,便有了规律可循,滑动就可以实现这一点。两个运动部件之间的摩擦就叫做滑动摩擦。启动摩擦通常都稍大于滑动摩擦。转动摩擦一般发生在转动部件和设备上,这些设备“抵触”极大的外作用力,当然这种外力会导致部件的变形和性能的改变。在这种情况下,转动件的材料趋向于堆积并且强迫运动部件缓慢运动,这种改变就是通常所说的形变。可以使分子运动。当然,最终的结果是,这种额外的能量产生了热能,这是必需的。因为它可以保证运动部件的运动和克服摩擦力。由运动部件的表面不平度的楔入作用引起的摩擦可以被部分的克服,那就需要靠两表面之间的润滑。但是,即使是非常光滑的两个表面之间也可能需要一种物质,这种物质就是通常所说的润滑剂,它可以提供一个比较好的、比较薄的油膜。这个油膜使两个表面分离,并且组织运动部件的两个表面的相互潜入,以免产生热量使两表面膨胀,又引起更近的接触。减小摩擦的另一种方式是用不同的材料制造轴承和转动零件。可以拿黄铜轴承、铝合金和含油轴承合金做例子进行解释。也就是说用软的或硬的金属组成表面。含油轴承合金是软的。这样,当轴承在油中浸泡过以后,因为毛细管的作用,将由带到轴承的各个表面。这种类型的轴承把它的润滑剂带到应力最大的部位。对运动部件润滑以减小摩擦,应力和热量,最常用的是油、脂、还有合成剂。每一种润滑剂都有其各自不同的功能和用途。两个运动部件之间的运动情况决定了润滑剂的类型的选择。润滑剂的分布也决定了系统的选择。在低速度运动的部件,一个油沟足以将所需要的数量的润滑剂送到相互运动的表面。第二种通用的润滑方法是飞溅润滑系统,在每个周期内这个系统内一些零件经过润滑剂存储的位置,带起足够的润滑油,然后将其散布到所有的运动零件上。这种系统用于草坪修剪机中发动机的曲轴箱,对曲轴、连杆和活塞等零件进行润滑。在工业装置中,常用的有一种润滑系统是压力系统。这种系统中,一个机器上的一个泵,可以将润滑剂带到所有的轴承表面。并且以一种连续的固定的速度和数量。关于润滑,还有许多其他的系统,针对各种类型的润滑剂,对不同类型的运动零件是有效的。由于设备或装置的速度、压力和工作要求的提高,现代工业比以前任何时候都更注重选用适当的润滑剂。尽管润滑的主要目的之一是为了减小摩擦力,任何可以控制两个滑动表面之间摩擦和磨损的物质,不管是液体还是固体或气体,都可以归类于润滑剂。润滑的种类无润滑滑动。经过精心处理的、去除了所有外来物质的金属在相互滑动时会粘附或熔接到一起。当达不到这么高的纯净度时,吸附在表面的气体、水蒸气、氧化物和污染物就会降低摩擦力并减小粘附的趋势,但通常会产生严重的磨损,这种现象被称为“无润滑”摩擦或者叫做干摩擦。流体膜润滑。在滑动面之间引入一层流体膜,把滑动表面完全隔离开,就产生了流体膜润滑。这种流体可能是有意引入的。例如汽车主轴承中的润滑油;也可能是无意中引入的,例如在光滑的橡胶轮胎和潮湿的路面之间的水。尽管流体通常是油、水和其他很多种类的液体,它可以是气体。最常用的气体是空气。为了把零件隔离开,润滑膜中的压力必须和作用在滑动面上的负荷保持平衡。如果润滑膜中的压力是由外源提供的,这种系统称为流体静压润滑。如果滑动表面之间的压力是由于滑动面本身的形状和运动所共同产生的,这种系统就称为流体动压力润滑。边界润滑。处于无润滑滑动和流体膜润滑之间的润滑被称为边界润滑。它可以被定为这样一种润滑状态,在这种状态中,表面之间的摩擦力取决于表面的性质和润滑剂中的其他性质。边界润滑包括大部分润滑现象,通常在机器的启动和停止时出现。固体润滑。当普通润滑剂没有足够的承受能力或者不能在温度极限下工作时,石墨和二硫化钼这一类固体润滑剂得到广泛应用。但润滑剂不仅仅以脂肪、粉末和油脂这样一些为人们所熟悉的形态出现,在一些精密的机器中,金属也通常作为滑动面。润滑剂的作用尽管润滑剂主要是用来控制摩擦和磨损的,它们能够而且通常也确实起到许多其他的作用,这些作用随其用途不同而不同,但通常相互之间是有关系的。控制摩擦力。 滑动面之间润滑剂的数量和性质对所产生的摩擦力有很大的影响。例如,不考虑热和磨损这些相关因素,只考虑两个油膜润滑表面见的摩擦力,它能比两个同样表面,但没有润滑时小200倍。在流体润滑状况时,摩擦力与流体黏度成正比。一些诸如石油衍生物这类润滑剂,可以有很多黏度,因此能够满足范围宽广的功能要求。在边界润滑状态,润滑剂黏度对摩擦力的影响不象其化学性质的影响那么显著。磨损控制。磨蚀、腐蚀与固体和固体之间的接触就会造成磨损。适当的润滑剂将能帮助克服上述提到的一些磨损现象。润滑剂通过润滑膜来增加滑动面之间的距离,从而减轻磨料污染物和表面不平度造成的损伤,因此,减轻了磨损和由固体与固体之间接触造成的磨损。控制温度。润滑剂通过减小摩擦和将产生的热量带走来降低温度。其效果取决于润滑剂的用量和外部冷却措施。冷却剂的种类也会在较小的程度上影响表面的温度。控制腐蚀。润滑剂在控制表面腐蚀方面有双重作用。当机器闲置不工作时,润滑剂起到防腐剂的作用。当机器工作时,润滑剂通过给被润滑零件涂上一层可能含有添加剂,能使腐蚀性材料中和的保护膜来控制腐蚀。润滑剂控制腐蚀的能力与润滑剂保留在金属表面的润滑膜的厚度和润滑剂的化学成分有直接的关系。 其他作用 除了减小摩擦外,润滑剂还经常有其他的用途。其中的一些用途如下所述。传递动力。润滑剂被广泛用来作为液压传动中的工作液体。绝缘。在象变压器和配电装置这些特殊用途中,具有很高介电常数的润滑剂起电绝缘材料的作用。为了获得最高绝缘性能,润滑剂中不能含有任何杂质和水分。减振。在象减振器这样的能量传递装置中和在承受很高的间隙载荷的齿轮这样的机器零件的周围,润滑剂被作为减振液使用。密封。润滑脂通常还有一个特殊作用,就是形成密封层以防止润滑剂外泻和污染物进入。润滑的目的就是为了,减小摩擦力,降低能量损耗,减少机器的热量产生。热量就是因为表面的相互间的相对运动造成的。润滑剂可以是任何一种物质,这样的物质被填充到发生相对运动的两个表面之间,实现这一目的。大部分的润滑剂是液体,比如说,油,脂,合成剂等。但它们有时也可能是固体,用在干轴承上,有的用在旋转基体的轴承上,或者也可能是气体,如空气等,它是用在空气轴承上。在润滑剂和润滑表面之间这种化学的和物质的相互渗入作用,就是为了提供给机器一个良好的工作状态。对润滑剂边界的理解,往往是比较硬的,而且是流动的、非常薄的一层帖附在被润滑的表面。这些表面通常是要发生相对滑动。有些人推断,按这种理解,液体的这种化学合成是十分重要的,它们提出了这样的词“边界润滑”,边界润滑是和流体润滑相对的另一种润滑。关于润滑的五种不同的润滑形式主要有:(1)无润滑润滑剂。(2)流体膜润滑。(3)干润滑。(4)边界润滑。(5)固体润滑。无润滑润滑剂是指轴承的工作表面被一种相对比较厚的液体润滑剂分隔开,于是阻止了金属表面的直接接触,这样得到的这种稳定性就可以用一种理论来解释:润滑液在外压力下工作的理论,尽管这只是一种可能。但确实需要在任何时候都得提供的足够充分。这种挤压力是运动表面本身施加给润滑剂而产生的,当然这仍然是一种可能。这种由运动表面产生的挤压力产生了必要的压力来分隔工作表面来抵抗加在轴承上的载荷。所以,这种润滑也可以被叫做液体润滑。还有一种润滑方式,那是一种特别的润滑剂,它有时是空气或水,当加在轴承上的外载荷足够高时,它就会以一种比较厚的状态分隔开相互相对运动的工作表面。所以,不象上面的那种润滑方式,并不需要两种工作表面一定发生相对运动。第三种润滑方式是一种现象,这种现象是,一种润滑剂是用在发生相对转动的工作表面之间。比如说齿轮或者是滚动轴承。从数学上的解释就需要接触压力和流体机械的理论。当轴承不得不在较高的温度下工作的时候,固体润滑剂例如合成物等,必须被使用,因为通常使用的润滑油在这种情况下都不能工作。目前,在这方面的研究正在实施,为了寻找到合成轴承的材料,并且有低损耗和小的热量产生的性能。在有的轴承上,摇杆旋转或在轴承上转动,相对运动就是滑动。在一个自锁的轴承装置中,这种相对运动就是转动。其他的装置也可能是旋转或滑动。齿轮的齿啮合是转动与相对滑动的合成。活塞是相对于刚体的滑动,所有的这些应用都需要润滑剂来减小摩擦,降低能耗,减少热量的产生。在有些轴承的应用领域是不太成熟的。有些有连接杆的轴承,比如说汽车发动机上的,必须在几千度高的高温下和各种不同性质的载荷下工作。这种轴承用在汽轮发动设备上可以说是稳定性接近100%。还有另一种极端的情况,在有些轴承有几千种应用,应对各种不同的载荷。其他的辅助设施就相对不重要了。需要的是一个简单的、容易安装的轴承。需要很少的甚至是不需要润滑剂。在这种情况下,有的轴承并不是最好的选择,因为成本和相近的公差。最近在轴承材料上的研究已有了一定的突破。随着对润滑的研究的知识的积累,设计出有良好工作状况和较高的稳定性的轴承已不是很遥远了。附录2 外文文献外文文献Friction , Lubrication of BearingIn many of the problem thus far , the student has been asked to disregard or neglect friction . Actually , friction is present to some degree whenever two parts are in contact and move on each other. The term friction refers to the resistance of two or more parts to movement.Friction is harmful or valuable depending upon where it occurs. friction is necessary for fastening devices such as screws and rivets which depend upon friction to hold the fastener and the parts together. Belt drivers, brakes, and tires are additional applications where friction is necessary.The friction of moving parts in a machine is harmful because it reduces the mechanical advantage of the device. The heat produced by friction is lost energy because no work takes place. Also , greater power is required to overcome the increased friction. Heat is destructive in that it causes expansion. Expansion may cause a bearing or sliding surface to fit tighter. If a great enough pressure builds up because made from low temperature materials may melt.There are three types of friction which must be overcome in moving parts: (1)starting, (2)sliding, and(3)rolling. Starting friction is the friction between two solids that tend to resist movement. When two parts are at a state of rest, the surface irregularities of both parts tend to interlock and form a wedging action. To produce motion in these parts, the wedge-shaped peaks and valleys of the stationary surfaces must be made to slide out and over each other. The rougher the two surfaces, the greater is starting friction resulting from their movement .Since there is usually no fixed pattern between the peaks and valleys of two mating parts, the irregularities do not interlock once the parts are in motion but slide over each other. The friction of the two surfaces is known as sliding friction. As shown in figure ,starting friction is always greater than sliding friction .Rolling friction occurs when roller devces are subjected to tremendous stress which cause the parts to change shape or deform. Under these conditions, the material in front of a roller tends to pile up and forces the object to roll slightly uphill. This changing of shape , known as deformation, causes a movement of molecules. As a result ,heat is produced from the added energy required to keep the parts turning and overcome friction.The friction caused by the wedging action of surface irregularities can be overcome partly by the precision machining of the surfaces. However, even these smooth surfaces may require the use of a substance between them to reduce the friction still more. This substance is usually a lubricant which provides a fine, thin oil film. The film keeps the surfaces apart and prevents the cohesive forces of the surfaces from coming in close contact and producing heat .Another way to reduce friction is to use different materials for the bearing surfaces and rotating parts. This explains why bronze bearings, soft alloys, and copper and tin iolite bearings are used with both soft and hardened steel shaft. The iolite bearing is porous. Thus, when the bearing is dipped in oil, capillary action carries the oil through the spaces of the bearing. This type of bearing carries its own lubricant to the points where the pressures are the greatest.Moving parts are lubricated to reduce friction, wear, and heat. The most commonly used lubricants are oils, greases, and graphite compounds. Each lubricant serves a different purpose. The conditions under which two moving surfaces are to work determine the type of lubricant to be used and the system selected for distributing the lubricant.On slow moving parts with a minimum of pressure, an oil groove is usually sufficient to distribute the required quantity of lubricant to the surfaces moving on each other .A second common method of lubrication is the splash system in which parts moving in a reservoir of lubricant pick up sufficient oil which is then distributed to all moving parts during each cycle. This system is used in the crankcase of lawn-mower engines to lubricate the crankshaft, connecting rod ,and parts of the piston.A lubrication system commonly used in industrial plants is the pressure system. In this system, a pump on a machine carries the lubricant to all of the bearing surfaces at a constant rate and quantity.There are numerous other systems of lubrication and a considerable number of lubricants available for any given set of operating conditions. Modern industry pays greater attention to the use of the proper lubricants than at previous time because of the increased speeds, pressures, and operating demands placed on equipment and devices.Although one of the main purposes of lubrication is reduce friction, any substance-liquid , solid , or gaseous-capable of controlling friction and wear between sliding surfaces can be classed as a lubricant.Varieties of lubricationUnlubricated sliding. Metals that have been carefully treated to remove all foreign materials seize and weld to one another when slid together. In the absence of such a high degree of cleanliness, adsorbed gases, water vapor ,oxides, and contaminants reduce frictio9n and the tendency to seize but usually result in severe wear; this is called “unlubricated ”or dry sliding.Fluid-film lubrication. Interposing a fluid film that completely separates the sliding surfaces results in fluid-film lubrication. The fluid may be introduced intentionally as the oil in the main bearing of an automobile, or unintentionally, as in the case of water between a smooth tuber tire and a wet pavement. Although the fluid is usually a liquid such as oil, water, and a wide range of other materials, it may also be a gas. The gas most commonly employed is air.Boundary lubrication. A condition that lies between unlubricated sliding and fluid-film lubrication is referred to as boundary lubrication, also defined as that condition of lubrication in which the friction between surfaces is determined by the properties of the surfaces and properties of the lubricant other than viscosity. Boundary lubrication encompasses a significant portion of lubrication phenomena and commonly occurs during the starting and stopping off machines.Solid lubrication. Solid such as graphite and molybdenum disulfide are widely used when normal lubricants do not possess sufficient resistance to load or temperature extremes. But lubricants need not take only such familiar forms as fats, powders, and gases; even some metals commonly serve as sliding surfaces in some sophisticated machines.Function of lubricantsAlthough a lubricant primarily controls friction and ordinarily does perform numerous other functions, which vary with the application and usually are interrelated .Friction control. The amount and character of the lubricant made available to sliding surfaces have a profound effect upon the friction that is encountered. For example, disregarding such related factors as heat and wear but considering friction alone between the same surfaces with on lubricant. Under fluid-film conditions, friction is encountered. In a great range of viscosities and thus can satisfy a broad spectrum of functional requirements. Under boundary lubrication conditions , the effect of viscosity on friction becomes less significant than the chemical nature of the lubricant.Wear control. wear occurs on lubricated surfaces by abrasion, corrosion ,and solid-to-solid contact wear by providing a film that increases the distance between the sliding surfaces ,thereby lessening the damage by abrasive contaminants and surface asperities.Temperature control. Lubricants assist in controlling corrosion of the surfaces themselves is twofold. When machinery is idle, the lubricant acts as a preservative. When machinery is in use, the lubricant controls corrosion by coating lubricated parts with a protective film that may contain additives to neutralize corrosive materials. The ability of a lubricant to control corrosion is directly relatly to the thickness of the lubricant film remaining on the metal surfaces and the chermical composition of the lubricant.Other functionsLubrication are frequently used for purposes other than the reduction of friction. Some of these applications are described below.Power transmission. Lubricants are widely employed as hydraulic fluids in fluid transmission devices.Insulation. In specialized applications such as transformers and switchgear , lubricants with high dielectric constants acts as electrical insulators. For maximum insulating properties, a lu
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:800X800锤式破碎机的设计
链接地址:https://www.renrendoc.com/p-22756463.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!