电池壳的冲压模具设计装配图.dwg
电池壳的冲压模具设计装配图.dwg

电池壳的冲压模具设计[含CAD高清图纸和说明书]

收藏

压缩包内文档预览:
预览图
编号:22779183    类型:共享资源    大小:7.33MB    格式:ZIP    上传时间:2019-10-31 上传人:QQ24****1780 IP属地:浙江
45
积分
关 键 词:
含CAD高清图纸和说明书 电池 冲压 模具设计 CAD 图纸 说明书
资源描述:
电池壳的冲压模具设计[含CAD高清图纸和说明书],含CAD高清图纸和说明书,电池,冲压,模具设计,CAD,图纸,说明书
内容简介:
毕业设计说明书题 目: 电池壳的冲压模具设计 28目 录引言. 5摘要 . 6Abstract .6第一章 零件的工艺性分析. 6第二章 工艺方案的选择与确定. 7第三章 搭边与排样. 8第四章 计算冲压力与压力中心. 9第五章 初选设备.12第六章 凸、凹模刃口尺寸的确定. 13第七章 模具的总体结构设计. 18第八章 工作零件的设计与计算 21第九章 其他工艺结构零件的设计与选用. 24第十章 校核设备 25第十一章 模具的装配与试模. 26参考文献. 27附录. 27湘潭大学兴湘学院 毕业论文(设计)任务书论文(设计)题目: 电池壳的冲压模具设计 学 号: 2006183915 姓名: 谢丰林 专业: 机械设计制造及其自动化 指导教师: 周里群 老师 一、主要内容及基本要求 对工件进行工艺分析。根据制件材料,形状,尺寸等要求确定合适的成型工艺选定相应的成型设备和成型工艺参数,完成成型模具的设计,基本要求如下: 1.绘制成型模具装配图 1张 2.绘制成型模具全套零件图 1套 3.编写设计说明书 1份 二、重点研究的问题 根据制件材料,形状,尺寸等要求如何确定合适的成型工艺选定相应的成型设备和成型工艺参数。了解各种不同材料的冲压工艺及成型过程,了解模具凸、凹的计算过程,了解冲压设备的各种工艺及成型过程。 三、进度安排序号各阶段完成的内容 完成时间1 收集资料、查找相关的参考文献1 周2确定成型工艺、选择成型设备和成型工艺参数1 周3设计模具的主体结构、模具零件的设计与计算2 周4绘制成型模具装配图1 周5 绘制全套模具零件图3 周6编写设计说明书、翻译英文资料1 周7 毕业答辩1 周8四、应收集的资料及主要参考文献1. 肖景容、姜奎华主编. 冲压工艺学. 北京:机械工业出版社. 2000 2. 马正元、韩啓主编. 冲压工艺与模具设计. 北京:机械工业出版社.2003 3. 张正修主. 冲模结构设计方法、要点及实例.北京:机械工业出版社.20074. 薛啓翔主编. 冲压工艺与模具设计实例分析.北京:机械工业出版社.2008 5. 李名望主编.冲压模具设计与制造技术指南. 北京:化学工业出版社.2008 6. 徐政坤主编. 冲压模具设计与制造. 北京:化学工业出版社, 2003 引言本次设计,是我的一次较全面的设计能力训练,通过这次训练,我对模具基础知识及工程力学、互换性与测量技术、机械制图、金属工艺学、工程材料等专业课的综合运用有了一个较为系统全面的认识,同时也加深了对所学知识的理解和运用,将原来看来比较抽象的内容实现为具体化.这次课程设计初步掊养了我理论联系实际的设计思想,锻练了我综合运用模具设计和相关课程的理论,结合和生产实际分析和解决工程实际问题的能力,巩固、加深和扩展了有关机械设计方面的知识。通过制订设计方案,合理选择传动机构和零件类型,正确计算零件的工作能力、确定尺寸和选择材料,以及较全面地考虑制造工艺、使用和维护等要求,之后进行结构设计,达到了解和掌握模具零件、机械传动装置和简单模具的设计过程和方法,对如计算、绘图、熟练和运用设计资料(包括手册、图册、标准和规范等)以及使用经验数据、进行经验估算和处理数据等方面的能力进行了一次全面的训练。因为本课程的主要目标是培养我们具有基本冲裁模设计能力的技术基础课,因此通过设计的实践,使我了解到模具设计的基本要求、基本内容和一般程序,掌握了机械零件常用的设计准则。针对课程设计中出现的问题查阅资料,大大扩展了我们的知识面,培养了我们在模具工业方面的兴趣及实际动手能力,对将来我在模具方面的发展起了一个重要的作用。本次课程设计是我对所学知识运用的一次尝试,是我在机械知识学习方面的一次有意义的实践。本次设计,我完全自己动手做,独立完成自己的设计任务,通过这次设计,弄懂了一些以前书本中难以理解的内容,加深了对以前所学知识的巩固。在设计中,通过非常感谢李应明老师的指导,使自己在设计思想、设计方法和设计技能等方面都得到了良好的训练。等专业课的综合运用有了一 已知条件(1)如下图(1-1)所属为冲裁零件限位板零件名称:限位板零件材料:Q235A生产要求:大批量生产图1-1A表示Wc碳的含量在 0.14%0.22%的低硬钢计算及说明备注第一章 零件的工艺分析(1)冲孔如图(1-1)所示零件尺寸,宽带b=42mm,厚度t=3mm,满足设计要求d2t,且冲裁件外形由直线和圆弧组成,没有尖角,且圆角半径r0.5t有利用模具寿命。零件冲孔d=29mm,查表1-1,已知材料Q235A屈服点大小235Mpa,选dt为最小孔,满足要求。表 1-1自由凸模冲孔的最小尺寸(mm)材料圆孔方形孔矩形孔长圆孔钢700Mpa钢=400-700Mpa钢t满足设计要求。(2)冲裁精度2.6.7 冲裁断面的表面粗糙度表2.6.8 冲裁件允许毛刺的高度通过查上表2.6.7的冲裁断面的表面粗糙度表Ra=12.5 ;查表2.6.8 冲裁件允许毛刺的高度:新建试模时0.05mm,生产时0.15mm。d为孔直径t为材料厚度计算及说明备注第2章 工艺方案的选择与确定(1) 根据冲裁件的形状,分为冲孔和落料两道工序,且为大批量生产,故选择复合模。(2) 提出可能方案冲裁该零件,所需工序有:(a) 落料(b) 冲直径29mm的孔 根据以上工序,可以有如下方案 方案一:先落料 再冲直径29mm的孔; 方案二:在同一模具上同时完成冲直径29mm的孔和落料 比较以上两种方案,第二种方案易实现自动化生产,且生产率高操作安全,适合大批量生产,所以选方案二。(3)冲模的生产过程简图如图1-2图1-2计算及说明备注第三章 搭边与排样(1)确定合理的排样形式根据材料的经济应用原则,材料利用率/0F/ ,利用率越过越经济,同时还要考虑冲裁件的精度要求,精度要求高的要留搭边。 搭边a和a1的数值查表1-4表 1-4搭边a和a1数值(低碳钢) 注:对于其他材料,应将表中数值乘以下系数:中等硬度钢0.9,硬钢0.8硬黄铜11.1 , 硬铝11.2故有: a=2.5 (mm) a1=2.2 (mm)(2)确定条料宽度和步距每次只冲一个零件的步距A的计算式为:A=D1+2a1=(51+21)+2*2.2=74.2(mm)条料宽度: B=(D+2a)=(18+55)+2*2.5=78(mm)(3)计算利用率选择的排样方式如图1-3所示:材料利用率; 工件的实际面积; F0所用材料面积,包括工件面积与废料面积; A 送料进距 (相邻两个制件对应点的距离);B条料宽度。D1平行于送料方向的宽带D垂直于平行于送料方向的宽带计算及说明备注图1-3工件的实际面积:F=5255+3.14*9*9-2*(4*30)-3.14*4*4/2+0.5*3.14*21*21-3.14*(2929)/4=3361.40F0=A*B=74.278=5787.6材料利用率:/0F/=58.08第四章 计算冲压力与压力中心(1)冲裁力的计算普通平刃冲裁模 ,其冲裁力 P一般可按下式计算: FPtL 材料抗剪强度: =(1.2t/d+0.6)*b 150(MPa)冲孔边缘: L1=293.14=91.06(mm)落料边缘: L2=213.14+2*(30+2*3.14+9*3.14+55)=3.5.02(mm)冲孔力: F1=L1t=91.06 150 3=40977 N落料力 : F2= L2t=305.02 150 3=137259 N冲裁力 : F0=F1+F2= 178236 N考虑到模具刃口的磨损和凸凹模间隙的波动,材料的机械性能的变化,材料厚度偏差的,实际所需的冲裁力还要增加30,即: F=1.3F0=231706.8 N 材料抗剪强度 ,见附表 (MPa); L冲裁周边总长(mm); t材料厚度(mm)b抗拉强度为235(MPa)d-材料最大宽度计算及说明备注当上模完成 一次冲裁后,冲入凹模内的制件或废料因弹性扩张而梗塞在凹模内,模面上的材料因弹性 收缩而紧箍在 凸模上 。为了使冲裁工作继续进行,必须将箍在凸模上的材料料刮下 ,将梗塞在凹模内的制件或废料向下推出或向上顶出。从凸模上刮下材料所需的力,称为卸料力 ;从凹模内向下推出制件或废料所需的力,称为推料力;从凹模内向上顶出制件需的力,称为 顶件力 (图1-5)。影响卸料力、推料力和 顶件力 的因素很多,要精确地计算是困难的。在实际生产中常采用经验 公式计算: 卸料力F F= 推料力F1n 1 F 顶件力 F F 图 1-4 工艺力示意图由下表1-5查的K=0.045 K1=0.05 K2=0.04材料厚度/(mm)KK1K2钢0.10.1 0.50.5 2.52.5 0.0630.0550.0450.0250.140.080.060.050.030.0650.0750.0450.0550.04 0.050.030.040.020.03解得:FQ=0.045178436.7=8029.65 N FQ1=0.05178436.7=8921.84 N FQ2=0.04178436.7=7137.47 N(2)冲裁中心冲模的压力中心,可按下述原则来确定:(a)对称形状的单个冲裁件,冲模的压力中心就是冲裁件的几何中心。(b)工件形状相同且分布位置对称时,冲模的压力中心与零件的对称中心相重合。(c)形状复杂的零件、多凸模的压力中心可用解析计算法求出冲模压力中心。解析法的计算依据是:各分力对某坐标轴的力矩之代数和等于诸力的合力对该坐标轴力矩。求出合力作用点的座标位置 O0(x0, y),即为所求模具的压力中心如图1-5图1-5其中:X0=(X1+X2+X3+X4+X5)/5=66.2Y0=(Y1+Y2+Y3+Y4+Y5)/5 =51.4P冲裁力(N); K卸料力系数,其值为0.020.06(薄料取大值, 厚料取小值); K推料力系数,其值为0.030.07(薄料取大值, 厚料取小值); K2 顶件力系数,其值为0.040.08(薄料取大值, 厚料取小值); n梗塞在凹模内的制件或废料数量(nh/t); h直刃口部分的高(mm);t材料厚度(mm)。计算及说明备注第五章 初选设备(1)计算压力机的表承压力冲裁时,压力机的公称压力必须大于或等于冲裁各工艺力的总和。 采用弹压卸料装置和上出件的模具时: FP总 FFF2=178436.7+8029.65+7137.47=246873.92 N247 KN 根据标称压力等参数查表1-7,可初选压力机为:JH23-25压力机型号J23-3.15J23-6.3J23-10J23-16FJH23-25JH23-40标称压力/KN31.563100160250400滑块行程/mm253545707580滑块行程2001701451208055最大封闭高度120150180205260330封闭高度调节量253535455565立柱间距/mm120150180220270340喉深/mm90110130160200250工作台前后尺寸/mm160200240300370460工作台左右尺寸/mm250310370450560700垫板厚度/mm303035405065垫板孔径/mm100140170210260320模柄孔直径/mm253030404050模柄孔深度/mm405555606070最大倾斜角454535353030电动机功率/kw0.550.75.5表1-7第六章 凸、凹模刃口尺寸的确定已知冲裁件材料为Q235A钢厚度t=3mm,冲裁件精度IT12,查公差表1-8公差表1-8查的各尺寸如下图1-6所示:FP总冲裁各工艺力的总和dd冲孔凹模基本尺寸(mm);dp冲孔凸模基本尺寸(mm); dmin冲孔件孔的最小极限尺寸(mm);制件公差 (mm);x系数计算及说明备注冲裁模刃口尺寸计算的基本原则:落料件尺寸由凹模尺寸决定,冲孔时孔的尺寸由凸模尺寸决定。故设计落料模时,以凹模为基准,间隙取在凸模上;设计冲孔模时,以凸模为基准,间隙取在凹模上。冲裁件内圆孔由冲孔制成,外形为非圆形落料而成,(a)冲孔凸模制造偏差取负偏差,凹模取正偏差。其计算公式如下: dp ( dminx)pdd=(dp+Zmin)+p通过查下冲裁件处始双面间隙表1-9,表1-9 冲裁件处始双面间隙材料厚度mm软铝含碳(0.080.2)%的钢ZminZmaxZminZmaxZminZmax10.040.060.050.070.060.081.20.050.0840.0720.0960.0840.1081.50.0750.1050.090.120.1050.1351.80.090.1260.1080.1440.1260.16760.1540.1980.1750.20.1750.20.1680.2240.1960.2520.2240.2810.20.2450.3150.280.350.3150.38540.280.360.320.40.360.444.50.3150.4050.360.450.4050.49p凸模下偏差,d凹模上偏差计算及说明备注 得到:Zmax=0.27mm Zmin=0.21mm Zmax-Zmin=0.06 mm冲孔部分冲裁凸模,凹模的制作公差,可查表1-10表110基本尺寸、mm凸模偏差p/mm凹模偏差d/mm基本尺寸、mm凸模偏差p/mm凹模偏差d/mm180.020.02180 2600.030.04518 300.020.25260 3600.0350.0530 800.020.03360 5000.040.0680 1200.0250.0355000.050.07120 1800.30.04 查的: p=0.02 mm d=0.025 mm 有: p+d=0.045 mmZmax-Zminx系数,是为了使冲裁件的实际尺寸尽量接近冲裁件公差带的中间尺寸,与工件制造精度有关,按下列关系取值,也可查表1-11:当制件公差为 IT10以上,取x 当制件公差为 IT11IT13,取x0.75当制件公差为 IT14以下时,取x0.5。 表 1-11 系数x材料厚度t()非 圆 形 圆 形 10.750.50.750.5工件公差 4 40.30 0.170.350.210.410.250.440.310.590.360.420.500.60 40.3040.30 计算及说明备注 查的x0.75 ,=0.24故得:dp ( dminx)+p=(29+0.750.21)+0.02=29.16+0.02dd=(dp+Zmin)-p=*(29.16+0.27)-0.025=29.43-0.025(b)落料落料时以落料凹模设计为基准的刃口尺寸计算如下表表1-11 以落料凹模设计为基准的刃口尺寸计算工序性质 凹模刃口尺寸磨损情况 基准件凹模的尺寸图2.3.3 (b)配制凸模的尺寸 落料 磨损后增大的尺寸 Aj(Amaxx)0.25 按凹模实际尺寸配制,保证双面合理间隙2cmin 2cmax磨损后减小的尺寸 Bj(Bminx)0.25 磨损后不变的尺寸 Cj=(Cmin0.5)0.125 注:Aj、Bj、Cj为基准件凹模刃口尺寸;Amax、Bmin、Cmin为落料件的极限尺寸。计算凹模各尺寸:查上表1-11的,尺寸42,52,55对应的x=0.75,尺寸18对应x=1磨损后增大的尺寸的:Aj(Amaxx)0.2542mm的 :A1= (42-0.750.25)+0.25/4=41.81+0.0652mm的: A2= (52-0.750.30)+0.30/4=51.81+0.0618mm的: A3= (18-10.18)+0.18/4=17.82+0.05圆弧R9,R21的尺寸为了保证分别与18mm,42mm相切,不用计算直接取其A3,A1值的一半。磨损后不变的尺寸:Cj=(Cmin0.5)0.12544mm的 C1=(55+0.750.3)0.125 0.3=54.780.04凸模的尺寸按上述凹模相关尺寸配制,保证双面间隙ZminZmax=0.210.27mm(前面以由表1-11查的)(C)模具间隙模具间隙即模具凸模与凹模之间的间隙,其对冲裁件的质量,冲裁力,模具寿命都有较大的影响。因此选择合理的间隙,非常重要,确定合理间隙的方法如下:计算及说明备注 1. 理论确定法 如图1-7,中的三角形ABC可确定合理的间隙,图1-7 C = (t-h0)t tg=t(1- h0/t)tg 查下表1- 12 的 :h0/t=0.2 ,=4表1-12 h0/t与的值材料h0/t退火硬化退火硬化软钢 紫铜 软黄铜0.50.3565中硬钢 硬黄铜0.30.254硬钢 硬青铜0.20.144解得: C =3(1-0.2)tg4 =30.80.07 =0.168 mm Z=2c=0.336 mm2. 经验法 材料为硬材料: t3mm Z=(8%10%)tt=13mm Z=(11% 17%)tt=35mm Z=(17% 25%)t 已知材料厚度为:t=3mm 解得: Z= 0.33 0.51 mm式中, h 凸 模切入深度;最大剪应力方向与垂线方向的夹角计算及说明备注第7章 模具的总体结构设计(1) 模具的类型选择根据冲裁件的结构特点,需冲孔和落料两道工序方能完成零件成型,而且要进大批量的生产,综合上述,课选择正装式复合模进行生产,其结构图如图1-7.。图1-7在压力机的一次工作行程中,在模具同一部位同时完成数道冲压工序的模具,称为复合模。计算及说明备注模具各部分名称和代号等参数如下表1-12表1-12(2) 模架的选择模架由上下模座,模柄及导向装置(导柱,导套)组成。(a)模架的形式模架的形式选择后侧导柱模架,可纵横送料,送料方便。其模架的形式结构如下图1-8计算及说明备注图1-8(b)导柱和导套导柱和导套的结构与尺寸都可以直接从标准中选取,选滑动导向的导柱导套,安装尺寸示意图如图1-9. 图1-9计算及说明备注(c)模柄的选择所作设计为大型,模具都通过模柄固定在压力机滑块上的,可使用螺钉固定。第八章 工作零件的设计与计算(1)凸模(a)凸凹模和凸模的结构形式由于冲裁件的落料件为非圆形的,可选择直通式凸凹模,直通式凸模的工作部分和固定部分的形状与尺寸做成一样,这类凸模一般采用线切割方法进行加工。 1-10 整体式凸模 而冲孔凸模则选择用台阶式凸模,如下图1-11 图1-11 标准圆形凸模计算及说明备注(b)长度计算凸模长度应根据模具结构的需要来确定。采用固定卸料板和导料板结构时,图1-12所示,凸模的长度应该为:Lh1h2h3(1520)mm 图1-12(c)材料和其他要求冲裁件的形状复杂,可选择Cr12,热处理为淬火;工作部份的粗糙度为:Ra0.80.4 um固定部分粗糙度为:Ra1.60.8 um(2)凹模(一)凹模洞口的类型1. 凹模洞口的类型常用凹模洞口类型如图1-14所示,其中a)、b)、c)型为直筒式刃口凹模。其特点是制造方便,刃口强度高,刃磨后工作部分尺寸不变。广泛用于冲裁公差要求较小,形状复杂的精密制件。但因废料或制件在洞壁内的聚集而增大了推件力和凹模的涨裂力,给凸、凹模的强度都带来了不利的影响。一般复合模和上出件的冲裁模用 a)、c)型,下出件的用b)或a)型。d)、e)型是锥筒式刃口,在凹模内不聚集材料,侧壁磨损小。但刃口强度差,刃磨后刃口径向尺寸略有增大 (如30时,刃磨0.1mm,其尺寸增大0.0017mm)。 图 1-14 凹模洞口的类型h1、h2、h3、t分别为凸模固定板、卸料板、导料板、材料的厚度。1520mm为附加长度,包括凸模的修磨量,凸模进入凹模的深度及凸模固定板与卸料板间的安全距离。凹模锥角、后角和洞口高度 h,均随制件材料厚度的增加而增大,一般取1530、2、h410mm。计算及说明备注设计的为复合模和上出件的冲裁模用 a)型,洞口的主要参数可查下表1-13,得到:a=30 、h10mm。表1-13 洞口的主要参数板料厚度t/mmah/mm0.5015240.51152512.5152 62.530382. 凹模的外形尺寸 凹模的外形一般有矩形与圆形两种。凹模的外形尺寸应保证有足够的强度、刚度和修磨量。凹模的外形尺寸一般是根据被冲压材料的厚度和冲裁件的最大外形尺寸来确定如图1-15所示。 图1-15凹模外形尺寸凹模厚度 HKb(15mm) 凹模壁厚 c(1.5)H (30mm)式中b为冲裁件的最大外形尺寸;K是考虑板料厚度的影响系数。查表1-15根据凹模壁厚即可算出其相应凹模外形尺寸的长和宽,然后可在冷冲模国家标准手册中选取标准值。 表 1-15 系数K值 b材料厚度t 5050 100100 200 2000.512350.10.320.420.20.30.420.30.22t=3mmb=73mm为冲裁件的最大外形尺寸;K是考虑板料厚度的影响系数查的: K = 0.5凹模厚度: HKb= 0.573=36.5mm ( 15mm) 凹模壁厚 :c(1.52)H =(54.75 73)mm (3040mm)第九章 其他工艺结构零件的设计与选用1.定位零件模具上的定位零件的作用是将毛坯和半成品在模具上能够正确的定位,根据毛坯的形状,尺寸,模具的结构形式可选以下定位零件:导料板:用于条形料的送料,条料靠在一侧的导料板,沿着设计的方向送料。定位销:为上下模座定位,保证冲裁精度。2.卸料和压料零件(1)卸料板如图1-16,为固定卸料板,适用于设计冲裁件卸料,作用为当凸凹模完成一次回程时,阻挡余料,使其脱落,卸料班为45钢,热处理为淬火硬度HRC4050。图1-16(3) 顶件杆如图1-17,为顶件杆,取直径510mm,其与凹模内壁的间隙不宜过大,一般取0.10.2mm,但不小于0.05mm,顶件板的材料为45钢。计算及说明备注3.紧固零件(1)沉头螺钉:表1-12中17,用于固定导料板。(2)螺钉:表1-12中的,8,11,20用于固定模具固定板,从而固定凸凹模和凹模,保证冲裁精度。 第十章 校核设备(1)压力机和闭模高度的校核冲裁时,压力机的公称压力必须大于或等于冲裁各工艺力的总和。 采用弹压卸料装置和上出件的模具时: FP总 FFF2=178436.7+8029.65+7137.47=246873.92 N247 KN 根据标称压力等参数查表1-7,可初选压力机为:JH23-25,其闭模高度最大为260mm又由落料凸凹模标准查得,高度为101mm,符合要求,如下图图 1-16-2 闭模高度计算及说明备注第十一章 模具的装配与试模(1) 模具安装顺序1. 清洗压力机滑块底面,工作台和垫片平面及上下模座的顶面和底面。2. 降冲模置于压力机工作台或垫片上,移至近似工作位置。3. 观察工件或废料能否落下。4. 用手搬动飞轮或压力机的寸装置,是压力机滑块逐渐降至下极点。在滑块下降过程中移动冲模,以便模柄进入滑块中的模柄孔内。5. 调节压力机至近似的闭合高度。6. 安装固定下模的压板,垫块和螺栓,但不拧紧。7. 紧固上模,确保上模顶部与滑块底面贴近无缝隙。8. 紧固下模,逐次交替拧紧。9. 调整闭模高度,使凸模进入凹模。10. 回升滑块,在个滑动部分加润滑剂,确保导套上部出气槽畅通。11. 以纸试冲,观察毛刺以判断间隙是否均匀。滑块寸动或手搬使飞轮移动。12. 刃口加油,用规定材料试冲若干件,检查冲件质量。13. 安装,调试送料和出料装置。14. 再次试冲。15. 安装安全装置。(2)常见的试冲缺陷和调整方法试冲的缺陷生产原因调整方法送料不畅或料被卡死1.两导料板件的尺寸过小或有斜度2.凸模与卸料板之间间隙过大,是搭边翻扭3.用侧刃定距的的冲裁模导料板的工作面和侧刃不平行形成毛刺1.根据情况修整或重装卸料板2.减小凸模和卸料板的间隙3.重装导料板卸料不正常,退不下料1.装配不正确,卸料机构不能移动2.凹模和下模座的漏料孔没对正3.顶出杆过短或卸料板行程不够1.修整卸料板2.修整漏料孔,修整凹模3.顶出器的顶出部分加长或加深卸料螺钉沉孔的深度凸,凹模刃口相碰1.上模架,下模架,固定板,凹模,垫片等零件不平行2.凸,凹模错位3.导杆和导套配合间隙过大使导向不准1.修整有关零件,重装上模或下模2.重新安装凸,凹模是对正3.更换导柱或导套凸模折断1.冲裁时产生侧向力未抵消2.卸料板倾斜1.在模具上设置靠块来抵消侧向力2.修整卸料板或在凸模加导向装置凹模被胀裂凹模口有倒锥现象修磨凹模口冲裁件的形状和尺寸不正确凹模与凸模的刃口形状及尺寸不正确修整凸模和凹模的尺寸落料位置和冲孔位置不正确,成偏位现象1.挡料钉位置不正2.导料板和凹模送料中心不平行1.修整导料钉2.修整导料板冲压件不平1落料凹模有上口大,下口小的倒锥,冲裁件从中通过会被压弯2.冲孔结构不当,落料是没有压料装置1.修磨凹模口,去倒锥现象2.加压料装置冲压件毛刺较大1.刃口不锋利或淬火硬度低2.凸,凹模配合间隙过大或间隙不均匀1.修磨工作刃口2.重新调整凸,凹模间隙,使其均匀参考文献1. 夏巨谌、李志刚主编. 中国模具设计大典.南昌:江西科学技术出版社 , 2003 2. 郑家贤主编. 冲压工艺与模具设计实用技术.北京:机械工业出版社 ,2005 3. 周良德、朱泗芳等编. 现代工程图学 .长沙:湖南科学技术出版社 , 2000 4. 徐政坤主编. 冲压模具及设备.北京:机械工业出版社, 2005 5. 第四机械工业部标准化研究所.冷压冲模设计.第四机械工业部标准化研究所, 1979 6. 肖景容、姜奎华主编. 冲压工艺学.北京:机械工业出版社 , 19997. 李奇 朱江峰主编 .模具设计与制造 , 人民邮电出版社,2008计算及说明备注 小型柴油机高速化和大功率化的发展DBroomeRicardo & Co.Engineers(1927) Ltd.(England) 笔者所在公司长期关注小型高速柴油机发展,特别是其燃烧系统的发展。仅管这类机型在北美大陆并不普及,但在欧洲和日本的产量以及使用量却相当大,约有数百万台。典型的机型是自然吸气四缸柴油机,每缸排量为25-35 in3 (400-600cm3),工作转速为4000-5000 rpm,活塞限速在2400ft/min(12m/s)。在warren的美国军方坦克研发中心(USATAC),Mich提议开发一种符合军方要求的大功率轻型动力装置,并且要求能达到前所未有的转速以实现性能的提升,而不是仅仅增加涡轮增压器。在这个情况下,进气系统和燃烧系统的研究就被搬上了前台。这项计划制定了工作的执行方案,包括设计,制造和在特定单缸机上的初步实验。项目这个项目的技术要求最后由USATAC制定,其在大概的内容如下所述:1 设计,采办,制造和测试一台缸径为3.5英寸(88.9mm)的单缸机。要求以最高转速工作,至少5000 rpm。以分离的空气供给系统的对涡轮增压状况进行模拟。2 改进这台单缸试验机,以实现其预定的性能指标,使得相对应的军用四缸机能够产生 1 bhp/in3 (45.5kW/cm3)的功率以实现单位质量功率3.5 lb/bhp (2.13kg/kW)。3 设计将不受传统观念影响,以最小化机械负荷和热负荷为目标。4 最初的燃料要求以CITE-R fuel (MIL-F-46005A (MR)为标准。一开始,专门针对航空汽油进行研究,但后来这项要求有所放宽。5 如果可能的话使用MIL-L-2104B规格的润滑油。6 项目的最后阶段包括一台军用四缸机的设计,其中包含了对单缸机的测试。7 对于多缸机的启动,怠速和小负荷工况的工作性能必须不能被忽视。初步设计方案一个对缸径尺寸和功率输出指标的试验可以很快地显示出引擎最高转速的极限。从最小转速5000 rpm开始,曲线清楚地显示出转速在6000 及以上时,这些活塞的运动速度与赛车引擎的相当。通过增加转速来减小平均有效压力的意义是重大的,fmep(这些估计都是根据笔者公司的一些过去的数据的分析,其中大部分被概括在图1)的增加对指示平均有效压力的减小几乎没有反馈。几年来,自然吸气柴油机被要求严格工作在冒烟界限以内,因此其指示平均有效压力只能提高到145lb/in2 (1000kPa);因此,涡轮增压的测量方面有了一些要求。高速和高引擎磨擦带来的恶果就是燃料的消耗。表格1中清楚地显示了bsfc对曲线的迅速恶化,效果并不比汽油机来的好,所以会损失压缩做功循环的主要利益。根据这种情况,就计划将转速限定在6000 rpm。主要的表现问题在引擎的设计中所要求的可以被概括为以下几项:引擎的进排气 根据以往在高速小型柴油机上的经验表明,进排气性能是活塞高速化时限制指示平均有效压力的重要因素。因此,需要提供足够大的充气系数使得活塞速度能达到3500 ft/min (17.8m/s),比现有的柴油机水平高出50%。这就必然要求设计脱离传统的气缸设计,包括更倾向于多气门的设计(表2);涡轮增压带来微小的变化,比如更高的进气温度,最小的压力损失和减小体积功率的变化。除此之外,涡轮增压匹配要求需要被事先确定。对于车用引擎,由于对后备扭矩的需要,通常倾向于在额定的转速前提下,最小化有效的推进力。因此大尺寸的排气门并不被强求。另外,绝对短的废气排放系统要求排气速度尽可能低,排气门面积与进气门相当。同时需要考虑的是气门开启时间的设置。在进气口,高速度通常联系着较大的气门关闭延时角,在柴油机里,一般为提前下止点45度,这将会连续地影响起动性能,同时也牺牲一定的低速性能,更大程度上影响到引擎的自然扭矩储备。对于排气,因为涡轮增压的需要,排气门在做功冲程结束前就要开启,在高转速下提前60度开启并没有什么优势。较大的气门重叠角可以减少废气量和降低排气系统各组成部分的温度,同时可以最小化高转速时充气系数的降低程度。充气系数与气体的流动有关。而由于活塞和气门间余隙容积产生的机械问题将会对燃烧系统有负面的影响。燃烧问题当引擎达到预定转速时,点火延时期的持续时间将是一个基本的问题。点火延时持续时间将是在引擎正常工作时影响转速,压缩条件和燃油喷射提前角的重要因素,而特殊的燃烧室结构将会是另一个影响因素。CITE-R燃油的最小十六烷值为37,但其已测定的数据只适用在低速状态下,并不能直接应用在6000 rpm 的高转速引擎的预测中。然而,可以从这些有用的数据中,得到小型高速引擎在使用轻油(十六烷值为55)时,以最小可起动压缩比时的表现,估测如表1所示(更高的压缩比会导致额外的热损失和最大气缸压力的增长)。这些数据指出在6000 rpm时使用CITE燃油是可行的。但是在低负荷的情况下,要求入口温度保持在室温下,这对于采用涡轮增压的机型是不可能的。 表 1 达到要求转速时发动机的速度特性* 发动机转速 5000 6000 7000 平均活塞速度, ft/min (m/s) 过 2915 3500 4085 (1480) (1775) (2070)要求的bmep 转速, lb/in2 (kPa) 158 132 113 (1090) (910) (780)预测多缸机的 fmep, lb/in2 (kPa)* 72 83 95 (495) (575) (655)所有发动机的Imep, lb/in2 (kPa) 230 215 208 (1585) (1485) (1435)多缸机的Bsfc , 采用0.33 lb/inp.h(0.20 kg/kW.h), 0.48 0.54 0.61 Lb/inp.h (lb/bhp.h (kg/kW.h) (0.29) (0.33) (0.37)* 2-1/23-1/2 in (88.988.9 mm) 缸径的发动机在 1 bhp/in3 (45.5 kW/cm3) 功率输出。* 见图2燃油喷射时间由燃油喷射系统依靠后置式装置控制,但是在现实中,开发新的喷射系统以替代传统的脉冲式喷油泵系统是不可能的。在一个固定的节流孔喷口,需要考虑的是如何在6000 rpm 下,以全负荷运转时能有60mm3 的喷射量,这就要求能提供合适的特性曲线,调整压缩比在11:1。直喷式的燃烧系统在高转速下延长喷射时间,其结果是很严重,这就不得不采用固定的节流孔喷口。另外一个附加的问题就是大负荷下DI系统工作的困难性,特别是在更高的冒烟界线空燃比情况下,要求更大的功率以达到预定的指标。在Ricardo的早期研究中已经表明,基于慧星漩涡式的燃烧室系统(见表3),工作在4500 rpm 的小型高速民用引擎通过改进可以达到特殊应用的目的。仅管有独立的起动装置和完全多油路系统,但是主要可预见的问题是在高热负荷的情况下,并没有合适的DI系统;尽管如此,随着可应用于多缸机的内置式辅助装置的应用,以及CITE燃油的限制,这些问题都不会很严重。 表 2 发动机进排气系统 - 气门面积和限制速度* 合适的气缸盖布置的形式 气门面积比例 相对于缸径的百分比 结果 进气 排气 Total rpm,max 传统的两气门自然进气 18 12 30 3900 平顶燃烧室四气门涡轮增压 17 17 34 4000 斜屋顶三气门涡轮增压 21 21 42 5000 斜屋顶四气门涡轮增压 25 25 50 6000* 3-1/2 in (88.9 mm) 发动机行程. 受限制的平均进气气体速度: 自然进气,210 ft/s (64 m/s); 涡轮增压, 230 ft/s (70 m/s).在项目开始的时候,一些DI系统被拿来做选择,除此之外有一台4000 rpm的试验用单缸机以及相配套的已设计完成的DI系统版本。在那段时期,受制于噪声,烟气和独特的废气排放法规,分离式燃烧室受到更多的重视,而在DI系统上的试验工作并没有像现在一样被提上议程。引擎的磨擦问题与同样尺寸大小的常规民用多缸高速涡轮增压柴油机相比,很明显,通过提高转速和活塞速度可以显著提高fmep。在表1中可以清楚地看到,如果想到同时达到功率输出和燃油消耗率两项指标是一个很大的问题。图2所示是一台典型的民用引擎fmep/速度曲线图,其估测的fmep是从高速多缸机的试验中获得的。在这个测试中,一些柴油机机构基本的机械磨擦的增值已被假定,直到涡轮增压装置增加气缸压力和采用更大的轴承以获得可接受的可靠性。另外,进排气的泵气损失将会大幅增加高速机的fmep,除非能够设计一个合适的气门直径并长期保持不变。 表3 燃烧室特性 慧星式 直喷式 漩涡式燃烧室 燃烧室特殊转速 (受限于 A/F) 好 失败燃烧控制和机械负荷 好 差热负荷和热损失 差Poor 好独立起动性 差Poor 好采用加热塞的起动性能 好Good -轴针类型 针式 多孔式排放 (NOx) 好Good 差r多燃料性能 差 失败按照汽油标准,该机型的单位机械效率将会很低,但经验告诉我们,尽管在细节方面的设计可以获得额外的收益,但是较低的水平仍然会隐藏在设计的规格里。单缸试验机基于对外形的考虑,单缸试验机的最后设计被确定,其基本尺寸为:缸径冲程: 3-1/2 in 3-1/2 in (88.9mm88.9mm);正常满负荷转速范围,3000-6000 rpm;最高气缸爆发压力,2500 lb/in2(17.3Mpa)。气缸爆发压力也许比传统标准定得稍高,过去的经验显示,设计如此一台引擎是很危险的,所以在试验过程中会造成不可遇见的局限性。事实上,最初可正常工作的DI版本的设计为3000 lb/in2(20.7Mpa),但在随后的慧星版本中有一定的减小。慧星涡旋燃烧室引擎的布局如图3-5所示,整机的主要部件如图6所示,如下所述:曲轴箱曲轴箱及其后盖由球墨铸铁(BS 1452:1961,Grade 14)铸成,两者通过螺栓联接。曲轴箱延用Ricardo设计的E/6 可变压缩比汽油机的曲轴箱,这就导致了燃烧室如E/6型机那样,置于曲轴箱前端。有三个主要轴承,全部采用铅青铜合金衬套,中间一个轴承采用止推轴承。后轴承作为曲轴的延长轴的固定轴承,可以进行调节轴向位置,所以不能分担中间轴承承受的燃烧负荷。曲轴曲轴由一次锻造成形的渗氮钢,BS 970:1955 En 40c。平衡重为整体式,只用来平衡旋转惯性力,同时设有平衡一阶和二阶往复惯性力的平衡轴。所有主轴颈和曲柄销表面渗氮处理,三处主轴颈直径,从前到后,分别为3,3,and 2-3/8 in (76.2,76.2,and 60.4 mm),曲柄销直径为2-5/8 in (66.6mm)。连杆为获得较好的模具和避免多余的费用开支,连杆的方案从民用机型上进行选择,最后选定了福特 2700 系列柴油机的连杆。连杆大头可承受的最大气缸爆发压力为3000 lb/in2,连杆小头则通常不被考虑。因此在将该型连杆运用到慧星漩涡燃烧室版本的引擎上时,要求其最大气缸爆发压力为 2500 lb/in2。轴承采用2700系列引擎上的型号,由15%的锡铝合金做成衬套,而小头衬套采用预制的铝青铜合金。除了在加工时要求仔细抛光和检验连杆质量外,连杆小头应尽可能减小宽度,以减小活塞销座和活塞销衬套的热负荷和惯性负荷。加在连杆大头固定螺栓上的扭矩高于传统的标准,以防止在6000 rpm时,当活塞到达排气上止点时螺栓帽脱落。轴承的提供者The Glacier Metal Co.Ltd. 出了计算机计算的结果,表明所提供的轴承的工作范围是合适的,尽管当高速时连杆大头将承受相当大的惯性力。活塞和活塞销活塞由含硅13%的铝合金整体铸造而成,性能为BS 1490:1970 LM13WP,在斜屋顶燃烧室的有角度的一面上开有浅槽和双凹槽。活塞采用两道气环,第一道为桶形环,第二道为锥形的扭曲环;油环也作相应的设置。为提高耐磨性,在环的磨擦面上镀铜。不镀铬是因为镀铜的环性能已经足够了。虽然活塞高度太大(相对于柴油机的普遍标准)会使设计合适的活塞,活塞环和缸套变得困难,但是在这个机型里活塞仍按照实际需要被特意设计成较高的高度。尽管如此,这一些小问题根据被经验所克服。活塞的冷却和连杆小头的润滑是通过一个安装在曲轴箱内的固定喷嘴定时喷射实现的。这个方法可以取消连杆大头轴瓦处油槽的设计,从而使轴瓦完整。两个活塞的改进,盘式冷却系统的安排,可形变式核心的设计都如图所示。为获得可行的冷却方案,对活塞环带的盘式冷却系统进行设计,承受从活塞头部传过来的气体压力的支杆被设计得近可能细,在这个区域里允许有额外的扭曲。形变式核心有着卓越的性能。活塞销材料为淬火钢,直径为1-3/8 in (34.9mm):缸套和水套因为使用漩涡式燃烧室系统,在局部有较高的热传递速率,伴随有 2500 lb/in2的气缸最大爆发压力,使得在设计湿缸套的时候有相当的难度。根据传统的铁制气缸套厚度设计,则会使第一道环反向点的表面温度额外地上升。最后方案选择使用钢制气缸套,在内壁镀上一层厚度为0.0015 in (38m)的坚硬的铬合金。越向顶部,气缸套越薄,使得温度能得以控制,但是较小的厚度将会削弱缸套的刚度,不利于抵御有水一侧的冲击。缸套的顶端被折边以适当的过盈配合安装在气缸上部,下端装有水封安置在曲轴箱顶部;其径向定位由曲轴箱内的气缸螺栓提供,水封为通常的橡胶环。气缸盖总成气缸盖以及连接架,是发动机最复杂的部件,现在依旧有不少设计问题有待解决。如何设计合适的气门和气道成为其具有相当难度的核心问题。在传统的缸径为5-1/2 in的柴油机中为气门留有3-1/2 in的直径位置,这样可以为漩涡式燃烧室系统的活塞区域提供高达5.7 ihp/in2 (0.66 indicated kW/cm2)的冷却能力。仅管四气门的布置在其它地方得到了充分的验证,但是在这个慧星漩涡式燃烧室做四气门的布置并不十分恰当,因此最后选定了三气门的布置方案。斜屋顶的头部表面积是很重要的,一部分留给必要的气门面积,但更多是用来预留额外的散热空间。通常情况选择使用两个排气门,以减小它们各自的尺寸,同时使用一个进气门。但是最终一个相反的方案被选定,同图8所示。一对进气门布置在中央,因为考虑到如果采用一对排气门的话,较长的排气管会对燃烧室顶部强烈地加热,对排气门设计不利。不对称的燃烧室和气门布置以前也被研究过,但因其不能显示出实际的优势和与多缸机的要求不符合而被舍弃。在这个设计中,通过将加热塞置于燃烧室较低的位置,采用所谓的延展式外形的慧星燃烧室以最小化空间。为了冷却进气门、排气门以及两者之间的桥梁结构,钻孔是不可避免的,这就需要对燃烧室与水套之间的金属层厚度做精确的控制,并且要求水套的表面保持清洁。漩涡燃烧室的加热塞置于窄处,由Nimonic 80A合金精密铸造而成,是一个轻型的定位于铜衬垫的上边缘口,根据经验这样的强化在一些地方需要直接冷却,而不像民用发动机那样存在一个间隙用来迅速暖机。在燃烧室上部有一个由球墨铸铁制成的喷嘴。一个传感器的触点置于气缸顶部的后端。轻型合金机座直接安装在缸套的上边缘,没有用到衬垫,通过8个单头螺柱垂直夹紧在水套的上边缘。根据经验,燃气的冲击不构成问题,设计的单头螺柱满足1.4倍于满负荷燃气冲击的要求。进排气的顶置凸轮轴采用11个螺栓,通过三角架布置在顶部,以确保安全。凸轮轴通过摇臂驱动气门的开启和关闭,气门间隙的调节通过对气门挺柱顶端的垫片来实现。凸轮轴对于进气门关闭和排气打开的时刻的控制是可行的。进气门的材料采用钢BS 970:1955 En 59 “XB”,对于单独的排气门采用特殊的21-4/n奥氏体钢,但根据经验,排气门需要承受高温,在头部会发生穴蚀现象,因此在头部采用Nimonic 80合金,并镶有铬合金。为了实现多缸机在质量上的指标,整机广泛采用铝合金材料,包括气缸盖和机体部分。气缸盖初始设计采用BS 1490:1970 LM25WP Al-Mg-Si合金,但该铸件却被证实在进气口附近存在多孔渗水现象。因此在铸造方面做了相关改进,材料也被改成高温RR 350 Al-Cu-Ni-Co-Sb-Zr 合金。之后铸件就再也没有出现过大的松孔,但随之而来的是进排气门之间的桥梁结构出现破裂现象。冶金实验证明微孔收缩和薄膜都是在铸造中形成的,但是这些缺陷是非常严重的,通过一对固定的热电偶对称置于桥梁结构不同深度处,以选择合适的插入点的方法,因为物理上的原因在这里是不适用的。如表4所示的这些实验中,证实按照最初的设计程序计算得出来的数据,如图4所示,采用Lm25WP 的合金时,材料处于正常工作范围的边缘,采用RR 350时材料失效并不仅仅是热疲劳影响。在对设计做了一定的修改后,加强了桥梁结构的冷却和强度,同时减小了进排气门的直径,分别为1.050 in (26.7mm)和1.505 in (38.2mm),在室温下经过机械负荷测试时,得知缸盖甚至只是在装配后就会发生一定的扭曲变形。微型应变仪被应用在这些桥梁结构,气门座,气缸盖总成,装配,整机的扭矩和气缸体所承受的气缸爆发压力是很合适的。测定的结果,与一台相似的技术成熟的,采用铝制气缸盖的民用两气门柴油机相比较,比较结果见图9,证明在冷态时两种机型的桥梁结构都存在明显的预应力,但是在发动机工作会被热应力负荷所抵消。对RR 350材料的冷态结果分析表明,在温度上升后,有足够的安全系数保留,也没有明显的缺陷问题。 表4 气缸顶部中央的热流和温度* 估测 标准 局部热流, 518,000 475,000 Btu/ft2.h (MW/m2) (1.63) (1.5) 缸壁一侧的温度 504 525 F (C) (262) (279) 推断* 转速: 215 lb/in2 (14.85 bar) at 6000 rpm. 现在设计的气缸盖,已经证明其失效时间为早期设计的2倍,可以说以上所说的问题都已经克服,一个可行的气缸盖设计已经成形。正时驱动平衡齿轮一个后置盖将整个齿轮传动系统罩住,下方是两个主平衡轴传动齿轮和两个二级两倍速的平衡轴传动齿轮,在上方是一个一倍的减速齿轮。平衡轴位于曲柄行程的下方。平衡轴以钢棒材为毛坯,一端磨削后压入薄铁管,使其有光滑的外表面以减少动力损失和机油的搅动。从定时齿轮箱伸出的半速输出轴前端与喷油泵相联,后端与齿形带轮联接。两根顶置凸轮轴通过1:1的同步带轮与位于缸盖总成齿轮的副轴相联接;这根副轴有一定的挠性,以允许将来需要改进时,燃烧室的改变和气门位置的布局能够得以实现。深沟球轴承被应用于正时传动系统。燃油喷射系统在更早的时候,就开始采用传统的高压燃油喷射泵系统,之后又开始对适用在本机型,转速在3000 rpm 的喷射泵的研究。该工作单元是从一台适用于3000 rpm,两冲程三缸机的喷油泵上改进而成的,其单独的动力学原理需要在高速下得以验证。为获得足够高的喷射速度和喷油量,一种新的凸轮轴被开发出来,这样三个单独的工作单元可以相互联系起来。喷油泵通过一个手动的调速器控制,以使得在调节喷油时刻时不用停机。在喷油泵附近靠近水套的地方允许有一短的高压油管,而传统的S号的轴针式喷嘴正好合适。民用发动机上的轴针热屏蔽装置可以用来保持轴针尖较低的温度。冷却回路通过一个外置的电机驱动冷却液高速流动,同时在主循环上还安有一流量计。引擎的冷却回路是一个平行系统,冷却液同时从几个入水口进入。在气缸水套底部开有两个互不干涉的孔,冷却液通过这两个孔经过缸套和缸套边缘的压边处。然后冷却液经12个在缸盖和水套之间的缸盖热圈上的孔进入气缸盖。另一条水路是在气缸顶部的桥梁结构上钻有四个孔,冷却水流在进入主循环前先流经进气门周围的桥梁结构。缸盖通过一个单独的排水通道与排气门相联。润滑油路同样,一个单独的机油泵用来提供润滑油,以满足对润滑和活塞冷却的要求;流量计安置在一条独立的通路上。所有的润滑油经过机体内分离的钻孔和外部管道相联,经验表明在典型的发动机上,这样的布置可以最大程度上减少成本。低压供油给气门结构。机油箱是干式的,同时有一定的加压以防止机油浸到平衡轴上。发动机性能对引擎的燃烧系统和喷射系统的改进并不是同时进行的,而且对发动机的进气系统并没有做最优化设计。因此,这里所引证的数据只是表明指标要求能够达到,而不是为了对发动机性能做最优化设计。当然,更多的成果也是被期待的,特别是在超过转速范围时的平衡性和在超高速下燃烧系统的机械和热负荷数据。测试安装发动机与电子应变测量计相联,也可与驾驶单元相联接。冷却液出口和润滑油入口温度可以通过水冷散热交换器自动控制。压缩空气由独立的空气压缩机提供,中间联有一个ALCOCK滞流空气流量计,另有一个中冷器,用来控制进气温度和减少冲击效应。排气管通过一根短管与一个膨胀室相连,在出口处压力得到控制;在对发动机进排气系统的增压模拟中,一个气室或一排管道被用来进气。其测试安装结果如图10所示。通常的测试方法是,通过改变喷油量,控制引擎工作在一定的负荷范围以上,并保持一定的转速,而进气量和排气管背压保持与对照样机相同。这样并不是模拟增压发动机工作在相同的负荷范围内,而是通过这些数据大致地预测增压发动机的工作状况。根据表现出来的发动机的特征结果,在相同的进气量和背压的情况下,对中断结果和动力磨擦的情况的分析,允许对多缸机指标的推测。由于CITE燃料在英国供给困难,USATAC赞成使用本质上相同的航空用低烷值燃油(D.Eng R.D.2486),其十六烷值为37。一些实验也使用C.I.油料,是一种本质上与ASTM Grade 2-D柴油相似的燃油,其十六烷值为55。测试工作对这台机械部分改进的新型的发动机,大部分测试工作表明其完全达到了215 lb/in2 (1485 kPa) imep的指标要求。一些数据也表明,在达到满负荷工作运转时,转速会降到3000 rpm。在开始测试时,在6000 rpm的转速下其冒烟界线是可以接受的,但在排气管边缘的热电偶测得的排气温度过高,达到了1650F (900C)。这是由于非常长的喷射时间和延迟燃烧造成的。对燃油喷射系统的改进减低了喷嘴的喷射速度,但是只是在名义上有大量的减少,在喷嘴口处,只有20%的减少量在喷射时间内。对喷射系统的简单计算出现另人失望的结果是自然的。因此就需要像一开始一样,对高排气温度时固有的热力问题在高排气温度进行研究和寻找设计解决方案。在负荷范围内,在进气压缩比为1.9和6000 rpm时,两个燃料的性能如图11所示,而其典型的气缸爆发压力和轴针抬起高度如图12所示。从以上数据可得知,增压对于两种燃料达到性能指标都是非常有效的,其在冒烟边界的A/F值为0.055。这些值得注意的数据结果证明,最后燃油注入燃烧室的时刻为40 deg atdc,这可以归功于慧星燃烧系统出色的混合气能力,特别是在活塞凹陷处非常有效的气体流动。在使用轻油时,慧星燃烧室可以达到最适宜的起动性能,但在使用对点火要求更低要求的航空低辛烷值燃油时,它就不可能达到在相同的进气压力下相同的燃烧效果,不可避免地会有些损失。在小负荷时不能发火的问题同样也在使用航空低辛烷值燃油时体现出来,增加一定的进气温度可能成为必要的措施多缸机使用一根进气总管采用对冷却液特殊控制的二次冷却器成为必要的手段。从气缸爆发压力图表上可得知,气缸最大爆发压力在高速的情况下,可以测得其值在满负荷时为
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:电池壳的冲压模具设计[含CAD高清图纸和说明书]
链接地址:https://www.renrendoc.com/p-22779183.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!