资源目录
压缩包内文档预览:
编号:22852129
类型:共享资源
大小:9.61MB
格式:RAR
上传时间:2019-11-02
上传人:qq77****057
认证信息
个人认证
李**(实名认证)
江苏
IP属地:江苏
30
积分
- 关 键 词:
-
装机
设计
- 资源描述:
-
包装机设计,装机,设计
- 内容简介:
-
毕业设计(论文)实习报告题目名称:包装机设计院系名称:机电学院班 级:机自074学 号:200700314420学生姓名:王春润指导教师:张雪松2011年3月 毕业设计(论文)开题报告题目名称:包装机设计院系名称:机电学院班 级:机自074学 号:200700314420学生姓名:王春润指导教师:张雪松2011年3月中原工学院毕业设计(论文)实习报告1 毕业设计(论文)实习报告 题目名称: 河南新飞电器有限公司实习报告院系名称: 机电学院班 级: 机自 074学 号: 200700314420学生姓名: 王春润 指导教师: 张雪松 2011 年 3 月中原工学院毕业设计(论文)实习报告2目录前 言.3报告内容.4实习目的.4新飞冰箱组装车间.5模具生产车间.6新飞十六厂.7真空成型车间.8小 结.9参考文献.10中原工学院毕业设计(论文)实习报告3前前 言言毕业设计实习是毕业设计的的一个重要组成部分,也是大学生在校期间的重要学习环节,更是使我们所学的知识理论联系实际,学以致用,在实践中指导我们更好学习的一个必不可少的过程。这次的河南新飞电器有限公司的实习虽然只有仅仅的一天,但我们的行程却安排的非常的紧张有序,我们参观了河南新飞电器有限公司的许多分厂,比如新飞冰箱组装车间、新飞注塑厂、模具生产车间、真空成型车间等,在这各个车间中我们看到了许多先进的生产设备,以及了解了许多先进的生产工艺,在整个参观过程中使我们获益匪浅。另外此次的毕业设计实习另一个主要的任务是为我们即将进行的毕业课程设计进行调研,在工厂实习期间,根据毕业设计老师及工厂讲解人员的指导下对自己所选的课题进行实地的调研、考察,观察与我们课题相关的生产设备及向老师询问相关的问题。以向我们的研究课题进行设计进行指导,提供设计的参考及指导。中原工学院毕业设计(论文)实习报告4报告内容1 实习目的(1)通过实习使我们进行工厂的现场考察,使我们了解工厂的实际情况,增加我们的实践经验。(2)了解企业的文化,学习企业的先进管理制度,为我们大学生走出校园打下基础。(3)了解现有企业的加工模式、所使用的设备以及各设备的摆放格局。(4)调研毕业设计内容,考察工厂与之相关生产设备及与之相关的生产技术情况。2 实习内容新飞电器有限公新飞电器有限公公司简介公司简介(图 1-1) 图 1-1 新飞标志河南新飞电器有限公司是箱、冷柜、空调为主导产品的现代化白色家电制造企业,中国最大的绿色冰箱生产基地,中国冰箱、冷柜行业前两强。因出色的无氟与节能技术而被公认为中国家电绿色品牌。自 1984 年建立以来,经过二十多年的发展,新飞已发展成为拥有 1 个中国驰名商标和 2 个中国名牌产品的中部六省首家进出口免验企业,产品远销全球 50 多个国家和地区。近年来新飞的经营业绩突飞猛进,产销量、利润等主要经济指标绿色环保胡锦涛河南新飞电器有限公司是以冰箱、冷柜、空调为主导产品的现代化白色家电制造企业,中国最大的绿色冰箱生产基地,中国冰箱、冷柜行业前两强。因出色的无氟与节能技术而被公认为中国家电绿色品牌。自 1984 年建立以来,经过二十多年的发展,新飞已经发展成为拥有 1 个中国驰名商标和 2 个中国名牌产品的中部六省首家进出口免验企业,产品远销全球 50 多个国家和地区。近年来新飞的经营业绩突飞猛进,产销量、利润等主要经济指标连年呈两位数递增,成为同行业效益最好,发展最快、最稳健的企业之一。新飞注重科技队伍建设和企业技术创新。新飞国家级技术中心已发展壮大为三个研究所、一个国家级实验室和一个产品创新与设计中心、企业博士后科研工作站、西安交大新飞节能技术研究所和工业设计所等校企产学研全面合作的完整技术创新体系,各类专业人才 1800 多名,专职技术开发人中原工学院毕业设计(论文)实习报告5员 400 多名,中高级职称 200 多名,硕士 60 多名,博士 9 名,形成了一支实力卓越的创新团队。新飞的主要产品是冰箱、冰柜,其中的一些产品如图示 2-1 与图示 2-2 图 2-1 新鲜 3 系列 BCD-229EFM 图 2-2 新鲜 3 系列 BCD-269EM 新飞冰箱组装车间新飞冰箱组装车间 电冰箱由制冷系统、电控系统和箱体及附件等三部分组成。1.制冷系统:(1)压缩机组:包括压缩机和电动机; 图 2-3 (2)冷凝设备:冷凝器、蒸发水皿加热管、门防冻防露管;(3)冷却设备:蒸发器、间冷式中还有冷却风机和电动机。(4)干燥过滤器;(5)节流元件:毛细管;(6)管道:排气管,回气管等;(7)制冷剂:R134a,R600a 和 R12 等。2.电控系统:(1)温度控制设备:温度控制器、温控用电热器等。(2)电机起动和保护器件:起动继电器、过热过载保护继电器、或带有起动和运行用电容中原工学院毕业设计(论文)实习报告6器等。3)化霜设备:化霜时间控制器、化霜电热器、化霜防误动作加热器等。(4)制冷性能补偿部件:温度补偿电热器、温度补偿指示灯、节电开关、双蒸发器连管加热器等。3.箱体及附件:(1)箱体由外壳、内胆、隔热层和箱顶饰板及柜组成。其中外壳常采用 0.61mm 薄钢板磷化处理后喷漆或喷塑,或彩色钢板;内胆由ABS 或改性聚苯乙烯塑料模压成形;隔热层通常为充填的聚氨脂泡沫塑料。(2)箱体由门板、门内胆、磁性门封和手柄及绞链(门折页)组成。其中,门板与箱体外壳一样;门内胆与箱体 内胆一样;磁性门封由塑料门封条和磁性胶条组成,为了节能还另设橡胶气囊二次门封。(3)附件由搁架、箱内接水盆、果蔬盒、制冰盒、箱外接水盒(或蒸发盒)等组成。电冰箱生产流程如下:(1)电冰箱外壳生产。电冰箱外壳由钢板通过全自动生产线一次完成。(2)电冰箱内部件生产。其生产原材料为 Abs 塑料板,属于自动化成型生产。(3)拼装线。该工序将由模具生产好的冰箱冷冻室和冷藏室等拼装起来。(4)灌满发泡剂。发泡剂成分为环戊烷。(5)检漏。如果检验不合格,将被退回检查原因或重新生产。模具生产车模具生产车间间在工程师的带领下,我们参观了模具生产车间,了解到: 1、正装模具的结构特点正装模具的结构特点是凹模安装在下模座上。故无论是工件的落料、冲孔,还是其它一些工序,工件或废料能非常方便的落入冲床工作台上的废料孔中。因此在设计正装模具时,就不必考虑工件或废料的流向。因而使设计出的模具结构非常简单,非常实用。正装模具结构的优点:(1)因模具结构简单,可缩短模具制造周期,有利于新产品的研制与开发。(2)使用及维修都较方便。(3)安装与调整凸、凹模间隙较方便(相对倒装模具而言)。(4)模具制造成本低,有利于提高企业的经济效益。(5)由于在整个拉伸过程中始终存在着压边力,所以适用于非旋转体件的拉抻中原工学院毕业设计(论文)实习报告7正装模具结构的缺点:(1)由于工件或废料在凹模孔内的积聚,增加了凹模孔内的小组涨力。因此凹必须增加壁厚,以提高强度。(2)由于工件或废料在凹模孔内的积聚,所以在一般情况下,凹模刃口就必须要加工落料斜度。在有些情况下,还要加工凹模刃口的反面孔(出料孔)。因而即延长了模具的制作周期,又啬了模具的加工费用。正装模具结构的选用原则:综上所述可知,我们在设计冲模时,应遵循的设计原则是:应优先选用正装模具结构。只有在正装模具结构下能满足工件技术要求时,才可以考虑采用其它形式的模具结构。2、 倒装模具的结构特点倒装模具的结构特点是凸模安装在下模座上,故我们就必须采用弹压卸料装置将工件或废料从凸模上卸下。而它的凹模是安装在模座上,因而就存在着如何将凹孔内的工件或废件从孔中排出的问题。图2-2 这套倒装模是利用冲床上的打料装置,通过打料杆 9 将工件或废料打下,在打料杆 9 将工件或废料打下的一瞬 图 2-2 工作车间 间, 利用压缩空气将工件或废料吹走,以免落到工件或坯料上,使模具损坏。另外需注意的一点就是,当冲床滑块处于死点时,卸料圈 5 的上顶面,应比凸模高出约 0.200.30mm。即必须将坯料压紧后,再进行冲裁。以免坯料或工件在冲裁时移动,达不到精度要求。 新飞十六厂新飞十六厂新飞塑料厂拥员工 500 多余人,是新飞集团电冰箱、冰柜塑料件定点供货单位,主要以生产各种塑料模具为主。新飞塑料模具厂是河南大型制品专业骨干企业,已有二十年的生产历史,该厂的塑料模具生产线采用国内外先进的电脑注塑设备,注塑机可谓是机电液一体化的代表。由计算机数字控制塑料成型的各种参数,执行部件则是液压系统。新飞塑料厂拥有生产线 8 个,模具加工中心如:电火花、线切割、车、铣、刨、磨、等加工机床 20 余台,可设计、制造各种小型精密模具,也可根据客户的要求设计生产各种塑料制品。中原工学院毕业设计(论文)实习报告8真空成型车间真空成型车间随后,我们进入真空成型车间,这里是加工内胆的。师傅给我们介绍了真空成型机,根据介绍,真空成型机主要有以下几个工位:上料工位、预加热装置、主加热装置、真空成型工位、切边设备(cutting machine)、下料工位来完成整个内胆加工成型的功能。通过认识,现在逐一介绍其主要功能。上料工位:上料工位以前只有一辆上料小车,在换料时,势必要停机进行调整,每次换料大约需要 10 分钟,平均每天换 5-6 次料,相当于每天停机 1 小时进行换料操作,影响了生产速度;在新吸附机设计中,增加一辆上料小车,即由原来的一辆上料小车上料改进为左、右两辆小车上料,在一侧进行生产时,就将另一辆小车装好料,当进行换料操作时,只需按一下切换按钮,就可实现换料,大大提高了换料速度。预加热装置与主加热装置:加热工位以前对板材加热是采用分区控制的,上、下加热器各 88 块辐射器将板材分 4 个区进行加热控制,利用调节每个区的辐射器电压百分比调节每个区的加热温度,对温度的控制不是很精确,对于形状复杂的内胆,容易造成内胆成型不均匀导致废品;在新机器设计中,对每一块辐射器的加热温度分别进行控制,可根据效果随时调节每一块辐射器的温度,以达到最佳的加热效果;同时,在板材输送到成型工位时,在进入成型工位前,增加红外线高温计进行板材温度测量,将测量结果反馈到控制系统,进行下一张板材的温度控制修正。真空成型工位:成型工位是吸附机的主要组成部分,也是控制产品质量、提高生产节拍、降低设备故障率的重点部位,吸附机的生产节拍,主要取决于成型工位的成型速度。在新飞的发泡车间,我们了解到新飞的发泡剂主要是环戊烷。发泡剂填充在冰箱的储藏装置与外壳之间的空位,具有保温和防震作用。中原工学院毕业设计(论文)实习报告9小小 结结这次河南新飞的参观实习只有短短一天,但收益颇多,新飞领导耐心的讲诉着新飞的点点滴滴,让我们了解新飞腾飞背后的故事,那些成就是与勤勤恳恳、兢兢业业的新飞人是分不开的,整洁舒适的工作环境,一流的技术团队,服务至上的工作理念,绿色环保的生产指标,井然有序的运营通道,是我深深眷恋这个地方,让我难免悸动,激动,心动。让我忍不住想做一个新飞人,在这里成就一番事业。在这一天中我们参观了河南新飞电器有限公司的模具制造车间、新飞冰箱组装车间、新飞十六厂以及真空成型车间,在不同的车间我们可以看到不同的设备,其中有许多是从国外引进的先进生产设备,比如真空成型设备、冰箱箱体发泡成型设备,以及从国外引进的多条冰箱生产线。在这里使我们看到了许多大型的设备,以及了解的部分的企业文化和生产管理模式。在这次的实习中,我们不但肩负着一般实习所需要获得的有关企业身产管理的了解,以及观察一些生产设备,及相应的一些生产流程,及生产工艺,另外我们这次的实习还有关于对我们即将进行的毕业设计课题的调研,我的毕业设计课题是填料箱多头钻床设计,其中填料箱是压缩机的零部件,而压缩机是关于冰箱、冰柜等制冷设备的核心技术,但在这次参观中,由于新飞部分车间在整改,我们没能参观到压缩机,以及生产填料箱盖的专用机床,不过我从网上对其进行了调研,搜索了一些相应的专业知识,以填补实习的不足之处。总的来说这次的河南新飞电器有限公司的实习收获是非常丰厚的,不但使我们了解了企业的丰厚文化,以及生产管理模式,更重要的是增加了我们的眼界,使我们学机械的学生了解自己的专业,以及为我们将来在工厂的生产积累经验。这次实习更让我懂得了工作的理念,诚恳、踏实、敢于从点点滴滴的小事去见证自己的成长与成熟,相信自己,相信未来,相信辉煌的时刻终会来临。中原工学院毕业设计(论文)实习报告10参考文献参考文献1联合编写组.机械设计手册(上中下)S.北京:机械工业出版社,1988.12.2联合编写组.机械设计手册(1-6 卷) S.北京:机械工业出版社,2004.8.3联合编写组.机械零件设计手册S.北京:机械工业出版社, 1987.9.4成大先.机械设计手册S.北京:化学工业出版社,2004.1.5濮良贵,纪明刚主编.机械设计(第八版)M.北京:高等教育出版社,2006.5.6刘鸿文主编.材料力学(第四版)M.北京:高等教育出版社,2004.1.7牛永生,吴隆,李力,姜春英主编.机械制造技术M.西安:陕西科技出版社,2002.1.8郭非.新型八轴五联动数控磨削J.东北大学学报(自然科学版) ,19997,18(6) ,662-6669沈秀莲.国外工具磨床发展现状J.工具技术,1994(12):30-3610贾殿涛.机床的数控化改造与模块化设计J.组合机床与自动化加工技术,2003(10)11刘海江.磨削新技术的发展及我国现状和存在问题J.航空制造技术,2005(07).12杨晓,鄂有鹏,俞知明.瓦尔特与中国航空制造业一同腾飞J.航空制造技术,2003(10):60-6113栾景美.超高速电主轴结构综述J.精密制造与自动化,20002(3):3-814瑞士伊贝格 IBAG 电主轴在中国的应用J.世界制造技术与装备市场,2004(1):3915张勇.高速切削加工中刀柄的应用J.模具制造,2006(11)16郭德虎.丹麦索伦可国际公司 VIKING US-250 型数控万能工具磨床技术特性分析J.工具技术,1999(1):41-4317 孙亮.现代数控工具磨床 S20turboJ.制造技术与机床,2003(03)18 耿建新.世界著名工具磨床制造企业 MICHAELDECKELJ.制造技术与机床,2003(02)19开辟现代刀具磨削的新纪元德克 S22P 超精密五轴工具磨削中心J.制造与机床,200520Beat Oderbolz.工具磨削发展趋势J.制造技术与机床,2005(4):138-139.21工具和刀具磨床的新发展J.产品与技术,2002(06) 22Lee E S, Kim N H. A study on the machining characteristics in the external p lunge grinding 中原工学院毕业设计(论文)实习报告11using the current signal of the sp indle motor J . International Journal of Machine Tools and Manufacture, 2001, 41: 937951.开题报告1 课题来源及研究的目的和意义 经过长期的市场调研,发现包装机很有发展前途,本课题选择一种包装机设计,该设计不仅可以结合大学所学的很多知识,还有利于以后快速融入工作行业,故作为自己毕业设计课题非常合适。2 本课题所涉及的内容国内(外)研究现状综述薄膜包装机是提供一种简单且适用性强的包装机。由于受到国际潮流的影响,国内啤酒饮料生产企业开始在生产过程中使用塑料薄膜包装物,逐步取代传统的纸箱包装和塑料周转箱。采用薄膜包装的优点是:包装成本低廉;可有效防止低爆瓶伤人事故;能解决塑料周转箱在流通中及堆放过程中对瓶体表面的污染问题;适用范围非常广。目前市场上存在多种类型的包装机,主要分为:普通薄膜包装机;粒子包装机;真空包装机。每一类又有各自优点,也都有待改善。本课题主要研究普通薄膜机,对普通薄膜包装机又进一步改善,可以大幅度减少薄膜浪费。薄膜包装机又分自动和半自动机组,自动机组多为常见。热收缩包装是较为先进的包装方法之一。它是采用收缩薄膜包在产品或包装件在外面,然后加热,使包装材料收缩而裹紧产品或装件,充分显示物品的展销性,以增加美观和价值感;如此技术发展较为成熟的杭州永昌机械有限公司,YS-ZB-3246薄膜包装机,电源:1P 230V 最大功率:2.1KW 整机尺寸:W680mmL1120mm150mm 台面高度:920mm 支脚重量:15kg 机器重量:71kg 包装速度:48件/分钟。立式枕型包装机是用成型器将从薄膜辊拉出的带状薄膜成型为筒状之后,对纵向的接缝进行纵向密封,在其中填充被包装物,在进行横向密封,由此形成为枕状袋(如图示1)。这种包装机通常一台机械能够制作多种尺寸的袋,但当袋的尺寸不同时,薄膜辊宽度也不同。因此,就薄膜辊的装填位置而言,需要装填在薄膜辊中心位置及成形器中心位置一致的位置(进行对中)。关于对中调整,目前,在将薄膜昆纵向插入进行安装的纵向插入机构的情况下,将薄膜穿通在轴上,与挡板接触固定,使薄膜辊与转向杆之间的连接机构整体在左右方向上移动,由此进行对中。联机机构为薄膜更换时等用于将薄膜连接的机构3 本课题有待解决的关键问题经过将近一个月的毕业调研和查阅资料,我对本课题的主要意图还是有了一定的了解,大致了解了要完成的设计任务,综合起来,我认为最需解决的主要问题有:(1)首先,存在包装机整体结构复杂的问题。例如,标准袋尺寸宽度为125mm250mm(以辊宽度计:270520mm),向左右方向移动最低需要125mm。在此,使联接机构整体以125mm以上行程动作时联机机构被悬臂支撑,因此需要高强度且复杂的机构。(2)另外,存在薄膜相对于联机机构的对中调整的反应速度迟缓、薄膜浪费较多的问题。即,关于薄膜对中,需要根据薄膜的伸展、卷绕状态等薄膜的状态微调对中。在此,在利用联机机构进行对中的情况下,联接机构的联接板和横向密封部之间的薄膜不响应,对中后,位于联接部的薄膜进给到包装机的最下游侧的横向密封部后才能开始调整。即,微调时联接板和横向密封部之间的薄膜为浪费部分。4.对课题要求及预期目标的可行性分析(包括解决关键问题技术和所需条件两方面)本设计的课题在于提供结构简单且能够大幅度地降低薄膜浪费的包装机。该包装机具备转向杆、薄膜输送部、对中调整部。转向杆在连续输送作为包装材料的带状薄膜途中,将输送方向大体改变90度。薄膜输送部配置在薄膜输送方向的转向杆的下游侧。薄膜输送部输送薄膜,对中调整部使薄膜输送部沿薄膜的宽度方向移动进行薄膜的对中调整。对中调整不结构简单能大幅度减少薄膜浪费。通过输送部及转向杆的可动台,使薄膜输送部及转向杆同时沿薄膜的宽度方向移动进行薄膜的对中调整,进而达到对薄膜对中的细致的微调。另外,还具备使薄膜筒状变形的成型器,薄膜疏松部位于转向杆与成型器之间,因此利用薄膜输送部沿薄膜宽度方向上移动,由此可以在成型器近前进行薄膜的对中调整,可以进一步减少薄膜浪费。另外也可抑制转向杆与成型器之间的薄膜的蜿蜒便移。此外,通过薄膜输送部的沿宽度方向的移动来矫正薄膜的蜿蜒偏移,因此可以大幅度的提高制袋作业的效率。 转向杆周面有气体吹出口,可以降低薄膜与转向杆之间的摩擦。总之,完成这一设计需要多查阅相关资料和自己不断的思考创新。我相信通过自己的努力一定能很好的完成设计。 主要参考文献:1 联合编写组.机械设计手册(上中下)S.北京:机械工业出版社,1988.12.2 联合编写组.机械设计手册(1-6卷) S.北京:机械工业出版社,2004.8.3 樊瑞.液压技术M.北京:机械工业出版社,1997.9.4 联合编写组.机械零件设计手册S.北京:机械工业出版社, 1987.9.5 成大先.机械设计手册(单行本):常用设计资料S.北京:化学工业出版社,2004.1.6 成大先.机械设计手册(单行本):机械传动S.北京:化学工业出版社,2004.1.7 路甬祥.液压气动技术手册S.北京:机械工业出版社,2004.58 James WMurdock. P.E. Fluid Mechanics and its applicationsM.Printed in the U.S.A 19899 Richard R .Kibbe .Marchine Tool PracticesM. Printed in the U.S.A, 199210 汪启明等.基于单片机控制的液压泵站设计研究J.制造业自动化2003.06.11 张利平.液压控制系统及设计S.北京:化学工业出版社,2006.6. 4 完成本课题的工作计划及进度安排工作计划:1、外文翻译,并且按学院规定的统一规范化要求用译文纸撰写或打印;2、毕业设计调研,并且按学院规定的统一规范化要求撰写调研报告、开题报告;3、包装机主机部分设计;4、绘制部分零件图;5、按学院规定的统一规范化要求撰写设计说明书。进度安排:第12周 毕业实习、课题调研;第3 5周 方案论证,确定方案,完成实习报告、开题报告、外文翻译;第69周 主机部分设计(第九周中期检查);第1012周 主要零件设计,按学院规定的统一规范化要求撰写设计说明 书;第1314周 毕业设计审查 准备答辩;答辩资格评审;第15周 毕业答辩 (星期一公开答辩); 第16周 修改毕业设计。 5 指导教师审阅意见指导教师(签字): 年 月 日6 指导小组意见 指导小组组长(签字): 年 月 日说明:1 本报告前4项内容由承担毕业论文(设计)课题任务的学生独立撰写;2 本报告必须在第八学期开学四周内交给指导教师审阅并提出修改意见;3 学生须在小组内进行报告,并进行讨论;4 本报告作为指导教师、毕业论文(设计)指导小组审查学生能否承担该毕业设计(论文)课题和是否按时完成进度的检查依据,并接受学校的抽查。4毕业设计(论文)译文 题目名称:Fluid mechanics (流体力学)院系名称: 机电学院班 级: 机自074学 号: 200700314420学生姓名: 王春润 指导教师: 张雪松 2011 年 3 月Fluid mechanicsS Fluid mechanics is the study of the behaviour of liquids and gases, and particularly the forces that they produce. Many scientific disciplines have an interest in fluid mechanics. For example,meteorologists try to predict the motion of the fluid atmosphere swirling around the planet so that they can forecast the weather. Physicists study the flow of extremely high temperature gases through magnetic fields in a search for an acceptable method of harnessing the energy of nuclear fusion reactions. Engineers are interested in fluid mechanics because of the forces that are produced by fluids and which can be used for practical purposes. Some of the well-known examples are jet propulsion, aerofoil design, wind turbines and hydraulic brakes, but there are also applications which receive less attention such as the design of mechanical heart valves. The purpose of this chapter is to teach you the fundamentals of engineering fluid mechanics in a very general manner so that you can understand the way that forces are produced and transmitted by fluids that are, first, essentially at rest and, second, in motion. This will allow you to apply the physical principles behind some of the most commonapplications of fluid mechanics in engineering. Most of these principles should be familiar conservation of energy, Newtons laws of motion and so the chapter concentrates on their application to liquids.Objectives By the end of this chapter, the reader should be able to: _ recognize some fluid properties and types of flow; _ understand the transmission of pressure in liquids and its application to hydraulics; _ use manometry to calculate pressures; _ calculate hydrostatic forces on plane and curved submerged surfaces; _ understand Archimedes principle and buoyancy; _ employ the concept of continuity of flow; _ define viscosity; _ calculate pressure drops in pipe flow; _ use Bernoullis equation to measure flow rate and velocity; _ apply the momentum principle to liquids in jets and pipes.Fluid mechanics From this list of differences it is plain to see that it is much easier to study liquids, and so that is what we shall do most of the time since the basic principles of fluid mechanics apply equally well to liquids and gases. There is only one instance where liquids are more complicated to study than gases and that is to do with the fact that liquid are much more dense. Pressure in liquids The drawback to this approach of concentrating on liquids is that liquids are very dense compared with gases and so we do not have to go very far down into a liquid before the pressure builds up enormously due to the weight of all the mass of liquid above us. This variation of pressure with depth is almost insignificant in gases. If you were to climb to the top of any mountain in the UK then you would not notice any difference in air pressure even though your altitude may have increased by about 1000 metres. In a liquid, however, the difference in pressure is very noticeable in just a few metres of height (or depth) difference. Anyone who has ever tried to swim down to the bottom of a swimming pool will have noticed the pressure building up on the ears after just a couple of metres. This phenomenon is, of course, caused by gravity which makes the water at the top of the swimming pool press down on the water below, which in turn presses down even harder on the ears. In order to quantify this increase of pressure with depth we need to look at the force balance on a submerged surface, so let us make that surface an ear drum hown in Figure 3.1.7Figure 3.1.5 Liquids are notaffected by temperatureFigure 3.1.6 Gases are verytemperature dependentFigure 3.1.7 Water creating apressure on an ear drum We are dealing with gravitational forces, which always act vertically,and so we only need to consider the effect of any liquid, in this case water, which is vertically above the ear drum. Water which is to either side of the vertical column drawn in the diagram will not have any effect on the pressure on the ear drum, it will only pressurize the cheek or the neck, etc.The volume of water which is pressing down on the ear drum is the volume of a cylinder of height h, equal to the depth of the ear, and end area A, equal to the area of the ear drum, Volume = hA Therefore the mass of water involved is Volume density = _hA where _ is the density in kg/m3 and the weight of this water is Mass gravity = _ghA We are interested in the pressure p rather than this force, so that we can apply the result to any shaped surface. This pressure will be uniform across the whole of the area of the ear drum and we can therefore rewrite the force due to the water as pressure area. Hence: pA = _ghACancelling the areas we end up with: p = _gh (3.1.1) Since the area of the eardrum cancelled out, this result is not specific to the situation we looked at; this equation applies to any point in any liquid. We can therefore apply this formula to calculate the pressure at a given depth in any liquid in an engineering situation. There are two further important features that need to be stressed: _ Two points at the same depth in the same liquid must be at the same pressure even if one of them is not directly underneath the full depth (Figure 3.1.8).Figure 3.1.8 Pressure at aconstant overall depth isconstantFluid mechanics_ The same pressure due to depth can be achieved with a variety of different shaped columns of a liquid since only the vertical depth matters (Figure 3.1.9).Pressure head We can relate a liquids pressure to the height of a column of that liquid whether there really is a column there or not. We could be producing the ressure with a pump, for example, but it can still be useful to talk in terms of a height of liquid since this is a simple measurement which is easier to understand and visualize than the correct units of pressure (pascals or N/m2). This height can be calculated by rearranging Equation (3.1.1) to give h = p/_g and it is known as the pressure head or the static head (since it refers to liquids at rest). The idea of head comes from the early British engineers who built canals and reservoirs, and realized that the amount of pressure or even power they could get from the water depended on the vertical height difference between the reservoir surface and the place where they were working. The idea was taken up by the steam engineers of the Victorian era who talked about the head of steam they could produce in a boiler, and it is such a useful concept that it is still used today even though it sounds old fashioned. In order to get a better understanding of the meaning of a head, andto gain practice in converting from head to pressure, we shall now look at ways of using the height of a column of liquid to measure Pressure Manometry Manometry is the measurement of pressure using columns of liquid, although more modern electronic pressure measurement devices often also get called manometers. Liquid manometers are still widely used for pressure measurement and so this study is far from being of just historical interest. They are used in a great many configurations, so the four examples we shall look at here are just illustrations of how to go about calculating the conversions from a height of liquid in metres to a Piezometer tube (or simple manometer tube) (Figure 3.1.10) The pressurized liquid in the horizontal pipe rises up the vertical glass tube until the pressure from the pipe is balanced by the pressure due to the column of liquid, and the liquid comes to rest. At that point the pressure head is simply the height of the liquid in the tube, measured from the centreline of the pipe. The pressure in the pipe can be found from the formula p = _gh where _ is the density of the liquid filling the pipe and the manometer tube. This is a beautifully simple device that is inherently accurate; as mentioned earlier it is only the vertical height that matters so any inclination of the tube or any variation in diameter does not affect the reading so long as the measuring scale itself is vertical. In practice the piezometer tube is limited to measuring heads of about 1 metre because otherwise the glass tube would be too long and fragile. U-tube manometer (Figure 3.1.11) For higher pressures we can use a higher density liquid in the tube. Clearly the choice of liquids must be such that the liquid in the tube does not mix with the liquid in the pipe. Mercury is the most commonly used. Fluid mechanics Density of 13.6, i.e. mercury is 13.6 times denser than water) and it does not mix with common liquids since it is a metal. To prevent it escaping from the manometer tube a U-bend is used.Note that in the diagram the height of the mercury column is labelled as x and not as h. This is because the head is always quoted as the height of a column of the working liquid (the one in the pipe), rather than the measuring liquid (the one in the manometer tube). We therefore need to convert from x to obtain the head of working liquid that would be obtained if we could build a simple manometer tube tall enough. To solve any conversion problem with manometers it is usually best to work from the lowest level where the two liquids meet, in this case along the level AA_. Pressure at A is due to the left-hand column so pA = _mgx Pressure at A_ is partly due to the right-hand column and partly due to the pressure in the pipe, so pA_ = _wlgH + pwl We can interpret the pressure in the pipe as a pressure head using pwl = _wlghwl. Now we know that the pressure in a liquid is constant at a constant depth, so the _mgx = _wlgH + _wlghwl To simplify this and find the pressure head: hwl = (_m/_wl)x H metres of the working liquid (3.1.2) Example 3.1.1 A U-tube manometer containing mercury of density 13 600 kg/m3 is used to measure the pressure head in a pipe containing a liquid of density 850 kg/m3. Calculate the head in the pipe if the reading on the manometer is 245 mm and the lower meniscus is 150 mm vertically below the centreline of the pipe. The set-up is identical to the manometer shown in Figure 3.1.11 and so we can use Equation (3.1.2) directly. Remember to convert any measurements in millimetres to metres. Head h = (13 600/850) (245/1000) 150/1000 = (16 0.245) 0.15 =3.920.15=3.77mDifferential inverted U-tube manometer In many cases it is not just the pressure that needs to be measured, it is the pressure difference between two points that is required. This can often be measured directly by connecting a single manometer to the two points and recording the differential head, as shown in Figure 3.1.12. Since it is the working liquid itself that fills the manometer tubes and there is no separate measuring liquid, the head difference is given directly by the difference in the heights in the tubes (h1 h2). In this case the difference is limited again to about 1 metre because of the need for a glass tube in order to see the liquid levels. Differential mercury U-tube manometer(Figure 3.1.13) To make it possible to record higher differential pressures, again we can use mercury for the measuring liquid, giving a device which is by far the most common form of manometer because of its ability to be used on various flow measuring devices. Again we tackle the problem of converting from the reading x into the head difference of the working liquid (h1 h2) by working from the lowest level where the two liquids meet. So we start by equating the pressures at A and A_ (i.e. at the same depth in the same liquid). Pressure at A is equal to the pressure at point 1 in the pipe plus the pressure due to the vertical height of the column of working liquid in the left-hand tube: p1 + _wlgH. Fluid mechanics Pressure at A_ is equal to the pressure at point 2 in the pipe plus the pressure due to the vertical height of the short column of working liquid sitting on the column of mercury in the right-hand tube: p2 + _wlg(H x) + _mgx Rewriting the pressure terms to get heads h1 and h2, and equating the pressures at A and A_ we get: _wlgh1 + _wlgH = _wlgh2 + _wlg(H x) + _mgx Cancel g because it appears in all terms and cancel the term _wlgH because it appears on both sides. _wlh1 = _wlh2 + _mx _wlx Finally we have h1 h2 = (_m/_wl 1) x (3.1.3) This equation is well worth learning because it is such a common type of manometer, but remember that it only applies to this one type. Example 3.1.2 A mercury U-tube manometer is to be used to measure the difference in pressure between two points on a horizontal pipe containing liquid with a relative density of 0.79. If the reading on the manometer scale for the difference in height of the two levels is 238 mm, calculate the head difference and the pressure difference between the two points. We can use Equation (3.1.3) directly to solve this problem and give the head difference, but remember to convert millimetres to metres (divide by 1000) and convert relative density to real density (multiply by1000 kg/m3). Head difference = (13 600/790) 1 238/1000 = (17.215 1) 0.238 = 16.215 0.238 = 3.86 m of the pipeline liquid. The pressure difference is found by using p = _gh and remembering that the density to use is the density of the liquid in the pipeline; once we have converted from x to h in the first part of the calculation then the mercury plays no further part. Pressure difference = 790 9.81 3.86 = 29 909 Pa 流体力学 流体力学是对流体和气体运动方式的研究,特别是对它们产生的能量。很多科学领域对流体力学很有兴趣。例如,气象学家尝试预测行星的气流运动来预测天气状况;物理学家研究极高温气体寻找核化反应能源的可用方式;工程师对流体机械学感兴趣因为流体产生了力,这种力可以应用于实践,像非常出名的喷气式推进器,机翼设计,风动涡轮,液压阀,但是也有一些不太被关注的应用,如机械性心瓣膜设计。这些小段是以一个通俗的方法教你工程流体技工学基础,使你理解流体产生和传递力的方式。而流体本质是静止的,其次才是运动的。这就要求你在一些最普通流体机械应用上遵循特定的物理学规则。大多数这些原则是一致的-考虑到能量、牛顿运动规律所以这些章节主要集中在它们在流体的应用上。客观价值 学了这一章以后,读者应该能够: -识别一些流体的属性和类别; -理解流体中压力的传递其在液压上的应用; -应用压力计测量压力; -计算淹没水中曲面和平面的流体静力学压力; -懂得阿基米德原理; -掌握流体连续性概念; -给粘度定义; -计算管道内流体分界点压力; -把动量学原理应用于管道和喷口液体;流体力学 分析不同的数据使我们更容易学习和观察流体,同样,这也是流体力学原理均衡的应用于流体和气体之后我们大部分时间应做的事。然而也有一种情况使得流体比气体研究起来更加复杂,这也符合流体比气体更粘这个事实。流体压力 这种研究流体方法的缺点在于流体比气体更粘,并且由于大量流体的重力在我们之上,在其产生巨大压力之前,我们没有必要深入到流体中。然而在气体中,伴随高度变化的压力变化是不太明显的。在英国,你爬到一些山顶也感觉不到空气压力的不同,即使你站的高度再增加1000米也是一样。然而,在液体中仅仅是几米高度的不同,压力也是显而易见的。如果有人尝试潜到游泳池底部,就会意识到仅仅数米耳朵就感受到了压力。当然,这种现象是由于重力使得游泳池顶部的水对底部的水施以压力,反过来对我们的眼睛产生更大的压力。为了量化由于深度不同而造成的压力不同,我们需要观察浸没表面的强制平衡,所以,让我们做一个表面电磁仪,显示图像如3.1.7一样。 图3.1.5流体不受温度影响
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。