连杆A3.dwg
连杆A3.dwg

草坪播种机的设计

收藏

资源目录
跳过导航链接。
压缩包内文档预览:
预览图
编号:22854776    类型:共享资源    大小:1.69MB    格式:RAR    上传时间:2019-11-02 上传人:qq77****057 IP属地:江苏
30
积分
关 键 词:
草坪 播种机 设计
资源描述:
草坪播种机的设计,草坪,播种机,设计
内容简介:
毕业设计说明书中文摘要草坪播种机的设计摘要 本设计是根据国内外播种机的发展趋势,通用性和适应性不断提高以及本着结构简单操作灵活的原则,而设计的一种由地轮驱动的离心式草坪播种机。该机结构上优点,使之能适应各种草地的播种。小到1-2分大的草地,大到十几亩的草地都能适应。还可以根据草地的不同情况,调节合适的播种量。该播种机无引擎驱动,无噪音污染,播种效率高,轻便简洁,操作方便,美观实用,适用于一般草坪的播种。本文着重对播种机增速器、撒种部分以及叶轮等结构进行设计选择。关键词 草坪播种 播种机 播种 叶轮毕业设计说明书外文摘要The Design Of The Lawn SeederAbstract The design is based on the development trend of the machine, and constantly improve the universality and adaptability with simple structure, flexible operation, and design principle of a kind of ground wheel drive centrifugal lawn seeder. This machine structure, the advantages of the seeding can adapt to the grass. Small to 1-2 points in the big big to ten acres of grass, grass can adapt. According to the different grass can adjust suitable sowing rates.This machine is driven suif, engine, high efficiency, the pollution of portable concise, easy operation, beautiful and practical. Applicable to general lawn sowing. This paper machine, plate and seed growth structure design selection of impeller.Keywords Grass seeds Seeder Sow Impeller学士学位论文(设计)原创性声明本人郑重声明:所提交的学位论文,是本人在导师指导下,独立进行研究工作所取得的成果。除文中已注明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品成果。对本文研究做出过重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。学位论文作者签名(亲笔): 年 月 日- 学士学位论文(设计)版权使用授权书专业: 论文(设计)题目:本学位论文作者完全了解学校有关保留、使用学位论文的规定,本科生在校攻读期间学位论文(设计)工作的知识产权单位属山西农业大学,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅;本人授权山西农业大学可以将学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。毕业后发表与本研究有关的文章,作者单位署名应为“山西农业大学”,可以在备注中注明本人现工作单位。本研究成果的知识产权归属山西农业大学,未经指导教师和山西农业大学同意。本人不私自从事与课题有关的任何开发和盈利性活动。学位论文作者签名(亲笔): 年 月 日导师签名(亲笔): 年 月 日毕业设计评价表指导教师意见 签 字: 年 月 日评阅人意见 签 字: 年 月 日答辩委员会意见 主任委员签字: 年 月 日院学术委员会意见 院长签字: 年 月 日目 录1 引 言12 技术任务书(JR)22.1 设计的依据22.2 产品的用途及使用范围22.3 主要技术指标和重要技术参数22.4 主要工作原理32.5 已经考虑过的若干方案的比较32.6 关键问题及其解决办法42.7 机构的功能及特点53 设计计算说明书 (SS)53.1 草坪播种机结构的方案设计53.1.1 传动比的确定53.1.2 动力参数计算63.2 圆锥齿轮的设计计算63.2.1 选择材料,热处理方式及精度等级63.2.2 按齿面接触疲劳强度设计73.2.3计算齿轮的主要尺寸83.2.4验算轮齿弯曲疲劳强度93.3 轴的设计计算103.3.1轴的设计103.3.2 轴的设计133.4 叶轮的设计163.4.1 结构尺寸设计163.4.2 驱动叶轮所需功率L173.5 地轮的构造183.6 零件的设计计算183.6.1 丝杆的设计183.6.2 键连接的选择及计算194 使用说明书(SM)194.1 使用前注意事项194.2 播种时应注意的事项195 标准化审核报告(BS)205.1 产品图样的审查205.2产品技术文件的审查205.3 标注件的使用情况205.4 审查结论216 结 论216.1 机构的创新点216.2 制造价格及应用范围21参 考 文 献22致 谢23山西农业大学工程技术学院毕业设计说明书1 引 言时间转瞬即逝,转眼之间四年的大学生涯就要结束了,回首四年的学习生活,我感到自己的收获无比丰富。四年来,我不仅认真学习了各门基础课,而且更加系统地掌握了多门专业技术课,在每次的课程设计中,我都认真对待,努力钻研。这样,通过四年的锻炼不断地提高了我的设计、绘图、识图能力。可以说,大学里的理论基础,不但使我学会了分析问题、解决问题的能力,而且更强化了我的知识结构。尤其幸运的是,我不只一次地深入工厂实习,把学到的知识应用于实习现场的具体工作中,提高了自己的动手能力,为我今后步入工作岗位打下了更好的实践基础。 本次设计的目的是培养自己初步掌握独立从事专业技术工作的能力,提高自己从事工艺和工艺装备设计的水平,使我初步掌握从事本专业科学研究工作的能力。通过毕业设计不但培养了我运用各种工具书的方法和技巧,同时也培养了我独立思考问题、解决问题的能力。通过翻阅查找各种工具书,扩大了视眼,丰富了自己的知识范围。 本次设计我是有充分准备的。我不仅准备了四年的时间来掌握各门专业课学习,而且我多次深入工厂实习,更主要的是设计期间不断地从网上、图书馆收集大量的资料,寻找各种解决问题的方法。所以说本设计我是有充分准备的,它是与生产实际相结合。它也将成为我走上工作岗位的一次重要演习,为我今后的工作打下坚实的基础。 草坪播种机设计是一个典型的机械系统设计。 提高农业的机械化和自动化程度,是实现农业现代化的重要一环。用现代化设备装备我国农业工厂,已成为一项迫切的重要任务。 实现草坪播种作业机械化的好处:节约劳动力,提高生产率和草坪质量,节约原材料和降低成本,降低劳动强度和改善环境卫生,保证操作的安全,减少草籽的浪费等。草坪播种作业机械化、自动化目前正向着高速化、通用性、可靠性、费用低、流水线自动化控制、采用新的机械工具等六个方向发展。 2 技术任务书(JR)2.1 设计的依据目前在我国已有专用草坪播种机械, 但是价格很高。通常对于播种面积不算太大, 又不是专业经营草坪种植业的单位或个人, 就没有必要专门买一台草坪播种机, 这样就给草坪播种带来很大的困难。为了解决这一问题, 经过多次对市场调查和研究, 决定设计一种简易草坪播种机。2.2 产品的用途及使用范围草坪是高度培育的特殊草地, 随着草坪面积的扩大, 品质的提高, 草坪业逐渐由单一的人工作业向半机械化、机械化、自动化过渡, 草坪作业的机械化已成为十分重要的课题。专用的草坪播种机还处于起步阶段, 草坪草种子细小,用手撒的方法不仅不易将种子撒匀, 且工作效率低, 不能满足建坪建设的要求。 通过市场调研,决定设计一种由地轮驱动的离心式草坪播种机,该机由种子箱、机架、传动装置、叶轮等部分组成, 一人即可操作, 播种者双手推动播种机,种子箱下的旋转叶轮便会把种子吹出去, 下种口的大小可调, 播种量的多少调节下种速度。此播种机体积小、质量轻、结构简单、灵活耐用, 不受地形、环境和气候的影响, 不仅适用于大面积建坪, 更适用于在复杂的场地下建坪使用。2.3 主要技术指标和重要技术参数计划设计播种机的主要设计参数:1) 外形尺寸:519mm380mm800mm2) 功率:417W3) 轮子转速:64r/min4) 力矩:=62224Nmm5) 净质量:40kg6) 变速要求:单级7) 叶轮半径:0.1m2.4 主要工作原理本次设计的手推式播种机主要利用轮子运动传动变速箱中的锥齿轮实现飞轮的高速运动的功能。播种机工作时由人推动机器行走,驱动地轮带动安装在齿轮箱内的一对锥齿轮转动,固定在被动锥齿轮轴上的叶轮在锥齿轮的驱动下高速旋转。种子箱内的种子靠重力通过种子箱底部的落种口经过丝杆和圆锥下料筒下落到转动的叶轮边缘,在叶轮风力的作用下撒布于地表。在被动锥齿轮轴伸入种子箱底部的端头,安装有搅种装置,可将种子顺利落入撒种盘。撒种量可通过改变落种口开度来调节。2.5 已经考虑过的若干方案的比较我所设计的手推式草坪播种机首先要通过一个传力构件将人力传递出去。为了让操作者在正常行走速度下操作,传递出去的力应通过增速机构继续传递。因执行播种动作的叶轮的相对运动方向与人行进的方向垂直,经前面增速机构传递过来的运动都需要再经过一级转换机构传递到执行构件。通过分析得到手推式草坪剪草机的组成框图,如图21所示。图21手推式草坪剪草机的组成框图能实现草坪播种的方法较多,但各有利弊,具体分析如下:(1)用手撒 草坪草种子细小,用手撒的方法不仅不易将种子撒匀, 且工作效率低, 不能满足建坪建设的要求。(2)用铁筛撒 用铁筛虽然避免了用手撒的弊端,但浪费时间,且人力消耗量大,不能满足一般草坪的建设要求。(3)用播种机 用播种机,可避免以上两种方法存在的问题,使所设计的机器小巧,且可灵活操作。因此,我们选择设计手动式播种机。手动的形式又有手摇动和用手推动两种。机械容易实现的是简单的转动和往复直线运动,如果用手摇动手柄实现执行构件的往复移动,由于播种机还要靠人力推着向前行进,操作者要完成的动作过多,操作不方便。要使操作者只通过简单的操作即可完成播种动作,可以用手推播种机向前行驶,靠播种机轮子的转动将转动运动转变成叶轮的往复旋转而输出到执行构件。显然设计成手动式草坪剪草机是合理而可行的。2.6 关键问题及其解决办法增速机构的设计:用组合法实现增速为了让操作者在正常行走速度下操作,传递出去的力应通过增速机构继续传递。由于转换机构的运动输入构件作定轴转动,这样在播种机动力输入构件轮子和转换机构的运动输入构件之间,可以采用链传动,带传动和齿轮传动。为了使所设计的剪草机结构紧凑,可以采用齿轮传动。而齿轮传动有直齿圆柱齿轮传动,斜齿圆柱齿轮传动,直齿锥齿轮传动和蜗轮蜗杆传动等。但是蜗轮蜗杆传动的效率低,一般是蜗杆主动,且轴线空间交错,应用到播种机械中,会使支撑结构复杂。直齿圆柱齿轮传动和斜齿圆柱齿轮传动的轴线相互平行,不能起到两轴垂直的作用,因此,可选择直齿锥齿轮传动作为增速机构。机构组成方案如图22所示。 图2-2 机构简图2.7 机构的功能及特点(1) 该机采用地轮齿轮传动结构,结构紧凑,体积小,质量轻,噪音小、无污染,使用方便、灵活,适合一般草坪的播种;(2) 无需引擎驱动,使用安全、可靠,便于维护;(3) 播种幅宽为1m,外形尺寸(长宽高:586369200mm),质量40kg(材料由45钢制作);(4) 采用耐用的铸铝底盘和结构件,具有永不生绣、永不卷曲变形的特点;(5) 地轮半径为0.25m,且一个轮子装上寿命长的球轴承,使播种机转弯时易于推动;(6) 金属手柄易于折叠,以减少包装尺寸,手柄长度可伸缩,对于不同身高的操作者同样适用;(7) 撒种部分独特的设计可防止种子堵塞出口通道;(8) 外观造型美观,更适合家庭用户的审美要求;(9) 播种的效果较理想,且成本低,是一般草坪播种的首选产品。 3 设计计算说明书 (SS)3.1 草坪播种机结构的方案设计3.1.1 传动比的确定根据运动学基本原理,在忽略种子与撒种盘之间摩擦的情况下,传动比为: (1)式中 Rd-地轮半径 D-撒种幅宽 r-撒种盘半径 v-行走速度 H-撒种盘离地高度 g-重力加速度在确定行走速度v时,既要保证播种机在种子箱装满种子后,播种机能够正常作业,又要保证机组有较高的作业生产率,以速度v=6km/h来设计;考虑到我国一般草坪地块面积小,幅宽窄的特点,撒种幅宽D设计为1m,设计参数Rd=0.25m,r=0.1m,H=0.55m。则按式(1)计算出地轮驱动离心式播种机所需的传动比i=3。 3.1.2 动力参数计算草籽较轻,容易甩出,不需要过大的载荷,故假设人的推力为F=250N,所以两个地轮上所受力的大小为:F1=F2=125N地轮提供转矩带动撒种盘进行机械运动,假定撒种盘所受的力全部来自地轮。则:P轮=Fv=417W地轮转速:n=64r/min 初选8级精度直齿锥齿轮 滚动轴承(球轴承) 齿轮传动轴承(滚子轴承) 传动机构总效率:0.950.9920.98=0.903轴上的所传递的功率大小为:=4170.99=413(W)轴上的所传递的功率大小为:=4130.950.98=396(W)轴上的转速大小为:=147.69(r/min)轴上的转速大小为:=443.09(r/min)3.2 圆锥齿轮的设计计算圆锥齿轮的设计直齿锥齿轮加工多为刨齿,不宜采用硬齿面,计算步骤如下:3.2.1 选择材料,热处理方式及精度等级(1)齿轮材料。热处理方式由参考文献1表6-7和表6-8并考虑HBS1=HBS2+(3050)HBS的要求,小齿轮选用40Cr,调质处理,齿面硬度241286HBS,大齿轮选用42SiMn钢,调质处理,齿面硬度217255HBS。(2)精度等级。估计圆周速度不大于3m/s,根据参考文献1表6-5,初选8级精度。3.2.2 按齿面接触疲劳强度设计1)确定公式中的各参数值(1)选齿数。小齿轮齿数z1=24,z2=uz1=72(2)确定极限应力,由参考文献1图6-32,按齿面硬度中间值260HBS,查得小齿轮。由参考文献1图6-32,按齿面硬度中间值230HBS查得大齿轮。(3)确定寿命系数ZN。由题意可知:ZN1=ZN2=1。(4)许用应力由参考文献1表6-9查得,SHmin=1。由参考文献1式(6-20)得 (5)载荷系数K。考虑锥齿轮是悬臂布置,由参考文献1表6-10取K=1.2。(6)计算小齿轮传递的转矩T1 (7)齿宽系数。取。(8)节点区域系数。(9)确定材料系数。由参考文献1表6-11查得。2)计算和(1)小轮大端分度直径 (2)小齿轮齿宽中点的分度圆直径 (3)圆周速度: 故8级精度合适。3.2.3计算齿轮的主要尺寸1)模数 圆整取。2)实际大端分度圆直径 3)锥距 4)齿宽 5)分度圆锥角和 , 6)当量齿数 3.2.4验算轮齿弯曲疲劳强度(1)确定极限应力。由参考文献1图6-34,按齿面硬度中间值260HBS,查得小齿轮,由参考文献1图6-34,按齿面硬度中间值230HBS,查得大齿轮。(2)确定寿命系数YN1和YN2,由题意可知:YN1 =YN2=1。(3)确定最小安全系数。查参考文献1表6-9得。(4)确定许用应力。 (5)复合齿形系数和。查参考文献1表6-12得 ,(6)计算弯曲应力: 所以齿轮弯曲强度足够。3.3 轴的设计计算3.3.1轴的设计(1)选择轴的材料该轴无特殊要求,选择45钢调质处理,=640MPa(2)初步估算轴径按扭转强度估算输入端的最小轴径。按45钢,取C=116根据公式,此轴头上有一键槽,将轴径增大5%,即dmin=(16.341.05)mm=17.15mm,取dmin=18mm(3)轴的结构设计1)轴上零件的轴向定位 大齿轮在轴上为对称定位,左右两端靠套筒定位,装拆,传力较为简单;两端轴承常用同一尺寸,以便于加工、安装和维修;为便于拆装轴承,轴承处轴肩不宜太高。 2)轴上零件的周向定位 齿轮与轴的轴向固定采用普通平键联接。根据轴的直径查得齿轮处的键截面尺寸为,配合为,滚动轴承内圈与轴的配合采用基孔制。 确定各段轴径和长度通过确定定位轴肩高度,从左轮子连接处向右取。 考虑轴的结构工艺性考虑到轴的结构工艺性,在轴的左端和右段均制成倒角 (4)轴的强度演算 经结构设计之后,各轴段作用力大小和作用点位置、轴承跨距、各段轴径等参数均已知。1) 齿轮上作用力的大小转矩:=62224Nmm齿轮端面分度圆直径: 圆周力:径向力:轴向力:受力简图5-1所示: 图3-1垂直面上受力简图2)求垂直面上轴承的支反力及主要截面的弯矩 截面C处的弯矩为:(Nmm)(Nmm) 图3-2垂直面上截面的弯矩3) 求水平面上轴承的支反力及主要截面的弯矩:截面C处的弯矩为:(Nmm) 图3-3水平面上截面的支反力4) 截面C处垂直面和水平面的合成弯矩为:(Nmm) (Nmm)图3-4水平面上截面的弯矩及合成弯矩5)按弯扭合成应力校核轴的强度进行校核时,通常只校核轴上承受最大弯矩和扭矩的截面强度,取该截面上的计算应力:通过查表可知:材料为45钢,调质处理的许用应力为,由于,故安全。3.3.2 轴的设计(1)选择轴的材料该轴无特殊要求,选择45钢调质处理,=640MPa(2)初步估算轴径按扭转强度估算输入端的最小轴径。按45钢,取C=116根据公式,此轴头上有一键槽,将轴径增大5%,即dmin=(11.171.05)mm=11.72mm,取dmin=12mm(3)轴的结构设计1)轴上零件的轴向定位 小齿轮在轴上为对称定位,上下两端靠套筒定位,装拆,传力较为简单;两端轴承常用同一尺寸,以便于加工、安装和维修;为便于拆装轴承,轴承处轴肩不宜太高。 2)轴上零件的周向定位 齿轮与轴的轴向固定采用普通平键联接。根据轴的直径查得齿轮处的键截面尺寸为,配合为,滚动轴承内圈与轴的配合采用基孔制。 确定各段轴径和长度通过确定定位轴肩高度,从上向下取。 考虑轴的结构工艺性考虑到轴的结构工艺性,在轴的左端和右段均制成倒角 (4)轴的强度演算 经结构设计之后,各轴段作用力大小和作用点位置、轴承跨距、各段轴径等参数均已知。2) 齿轮上作用力的大小转矩:=19310.18 Nmm 齿轮端面分度圆直径: 圆周力:径向力:轴向力: 图3-5轴垂直面上受力简图2)求垂直面上轴承的支反力及主要截面的弯矩 截面C处的弯矩为:(Nmm)(Nmm)图3-6轴垂直面上截面的弯矩3)求水平面上轴承的支反力及主要截面的弯矩:截面C处的弯矩为:(Nmm)图3-7轴水平面上截面的支反力4)截面C处垂直面和水平面的合成弯矩为:(Nmm) (Nmm)图3-8轴水平面上截面的弯矩及合成弯矩5)按弯扭合成应力校核轴的强度进行校核时,通常只校核轴上承受最大弯矩和扭矩的截面强度,取该截面上的计算应力:通过查表可知:材料为45钢,调质处理的许用应力为,由于,故安全。3.4 叶轮的设计选择材料:因为草籽质量轻,材料无特殊要求,选用45号刚调质处理,叶片厚度1mm,制造上多采用整体铸造结构和分体铆接或焊接等工艺方法来实现,这也是由其结构特点所决定的。3.4.1 结构尺寸设计 图6-1叶轮形式如图所示,离心风机的主要结构参数如下。叶轮外径, 常用D表示;叶轮宽度, 常用b表示;叶轮出口角,一般用表示。叶轮按叶片出口角的不同可分为三种:前向式叶片弯曲方向与旋转方向相同, 90(90 160);后向式叶片弯曲方向与旋转方向相反, 90(20 70);径向式叶片出口沿径向安装,= 90。 根据播种机行走速度和撒籽幅宽,初设叶轮直径D1=20cm,叶片数Z按经验公式估计:Z=D1为叶轮外径,单位厘米。所以叶片数取6片。叶片倾角 3.4.2 驱动叶轮所需功率L 当叶片数目有限时,由于流体流动方向的变化,叶片理论压头公式为: (1)式中:Hth为叶轮压头;u为圆周速度;v为径向速度。飞轮对气体作功: (2)式中:k为多变系数;R为气体常数;G为输送的流体总量;n为多变指数;TT0为入口全温;为容积效率。设叶轮入口处风速为v1m=16m/s,=0.75,则入口全温:由(2)式:3.167(KW)4.22(KW)如果叶轮的效率=0.54,则轴功率:Ls=Lt/0.54=7.81(KW)由,得293K时气体重度,故驱动叶轮所需轴功率L为:0.3338(KW),故符合设计功率。3.5 地轮的构造 地轮由两个个直径为50cm 的小车轮及其连杆组成。两个地轮是由长轴的两端按轴的垂直方向各焊有一对长13cm的平行小铁板来固定, 小铁板下端有固定行走轮轴的陷口, 使地轮固定。长轴被套在大三角铁后面的两个宽铁环内, 长轴上设有凸出物使得长轴在宽铁环内只能转动, 不能左右串动。在长轴的中间, 对准双杆手柄的一个级杆处, 在长轴上焊有一个长75cm 的单铁杆柄, 其方向与长轴两端的两平行小铁板恰好反方向,使人推上播种机能够顺利行走。3.6 零件的设计计算在该播种机上所用的一些附件都是一些标准件,它们一共有丝杆、键和垫圈。3.6.1 丝杆的设计此丝杆受力不大,无特殊要求,选用45号钢。热处理:调质HB220-270,高频淬火HRC45-48。因为丝杆直径已经标准化,所以在设计丝杆时,直径不能任意确定。我国所规定的丝杆直径系列为:30,45,65,(85)90,(115)120,150,200。一般情况下,确定的丝杆直径应符合此系列。故,选用丝杆直径为30mm。螺旋角:物料为草籽,选用=30丝杆螺槽深度:h=0.2D=6mm丝杆与套筒间隙的确定:=(0.003-0.005)D,取=0.005D=0.15mm3.6.2 键连接的选择及计算中间轴和齿轮用键联接的选择和强度校核 齿轮与轴的键联接 选用圆头普通平键(型)按轴径d=20mm及轮廓长l=78mm,查表14-1,选键1870GB1096-79.强度校核 键材料用45钢,查表得许用应力,键的工作长度,按公式得挤压应力:虽然略大于,但齿轮与轴是采用过盈配合,靠联接擦力传递部分转矩,故联接的强度是足够的。4 使用说明书(SM)4.1 使用前注意事项播种机在路上行走时, 可将离合器拉起,,使被动轴与主动轴分开,只有两个地轮着地,这样便于远距离和播过种的区域的行走。如果需要播种,在被播地段上,将离合器拉下,两轴自然结合,然后开始播种。如果播种籽量不适宜,可调节下种口大小,在小范围内调整播种量。播种后出苗特征为:苗幅宽为4cm 左右,两苗幅间宽为56cm 左右,这样出苗后24 个月便可长满苗幅间空处。4.2 播种时应注意的事项(1)草坪床应疏松,表层不能有过大的石块或大的硬土块及其他草根类杂物。(2)草坪床应该尽量平整,坡度不能过大。5 标准化审核报告(BS)5.1 产品图样的审查手推式草坪播种机的传动装置和叶轮风扇的设计已经基本完成,现以具备全套图纸和一线基本数据,根据有关规定,对其进行标注化审查,结果如下: (1) 产品的图样完整、统一、表达准确清楚、图样清楚。符合GB4440-84、GB-83机械制图的规定。(2) 产品图样公差与配合的选择与标准符合GB/T1800、3-1998的规定。(3) 产品图样的编号符合JB/T5054.5-2000中华人民共和国机械行业标准产品图样及设计的完整性。(4) 图纸的标题栏与明细栏符合GB/T10609. 1-1989GB/T10690. 2-1989的规定。(5) 产品图样粗糙度的标注符合GB131-83表面特征代号及注法的规定。(6) 产品图样焊缝的代号符合GB324-80焊缝代号的规定。5.2 产品技术文件的审查(1) 产品的技术文件名称、术语符合ZB/TJ01和0351-90产品图样及设计文件术语及有关标准的规定。(2) 量和单位符合GB3100GB3102-93的规定。(3)技术文件所用的编码符合JB/T8823-1998机械工业企业计算机辅助管理信息分类编码导则的规定。(4)技术文件的完整性符合JB/T5054.5-2000产品图样及技术文件完整性的规定及农机部门的有关具体要求。5.3 标注件的使用情况本设计所用的紧固件均采用标准的螺栓,材料及材料代号也符合国家标准和部颁标准的相关规定。5.4 审查结论经过对播种机装置和传动设计的标准化审查,认为该设计基本贯彻了国家最新颁发的各种标准,图纸和设计文件完整齐全,符合标准化得要求。6 结 论6.1 机构的创新点(1) 从机构运动的功能出发,按变异组合法和类比法完成机构的构件和设计;(2) 在作品样机加工前,使用三维造型软件进行三维造型、虚拟装配和运动仿真,从理论上验证设计的可行性,然后进行样机制作;(3) 无引擎驱动,节省能源,无污染(噪音、废气),采用绿色环保设计;(4) 外观造型新颖,推杆可折叠伸缩,适合家庭用户使用;(5) 采用齿轮机构(实现增速),提高整机的工作效率,解决了手动播种机工作效率不高的问题;(6) 产品成本(制造和使用成本)低,符合广大用户购买能力的要求。6.2 制造价格及应用范围根据目前市场实际::制造原材料费用80120 元,手工费: 6080 元,因此总造价在200元以内。目前使用于我国大部分地区的一般建坪。参 考 文 献1 吴伟,任红英. 机械设计教程 M . 北京:北京理工大学出版社,2007.2 张祖立. 机械设计 M . 北京:中国农业出版社,2004.3 吴宗泽,罗圣国. 机械设计课程设计手册(第3版)M.北京:高等教育出版社,2006.4 张也影. 流体力学(第2版)M . 北京:高等教育出版社,2005.5 张良成. 材料力学 M . 北京:中国农业出版社,20036 杨敏丽. 牧草生产机械化:西部农业机械化发展J中国农机化, 2000,(04)7 杨爱军. 呼和浩特市地区农业机械化现状及发展对策J农村机械化, 2004,(04)8 赵岭,吕钊钦. 可靠性技术在农业机械中的应用J山东农机, 2004,(07)9 郭毅, 张祖立, 张旭东. 大蒜播种机械的研究现状J. 农机化研究, 2009, (06)10 高林. 育苗生产线气吸式播种系统智能控制的研究D北京林业大学, 2008 . 11 刘文忠. 气吸式排种装置排种性能试验研究D内蒙古农业大学, 2008 .12 李济宾. 播种机组行走的方法J. 河南农业, 1993, (04) 13 籍增顺. 关于发展小杂粮的思考J. 山西农业(村委主任), 2009, (04)14 夏俊芬. 旱作多功能精密穴播轮的研究D华中农业大学, 200015 史智兴. 精播机排种性能检测系统及关键技术研究D中国农业大学, 200216 濮良贵,纪名刚机械设计(第七版)S北京:高等教育出版社2001致 谢在设计过程中,得到了崔清亮老师的亲切关怀和耐心的指导。崔老师多次询问研究进程,并为我指点迷津,帮助我开拓研究思路,精心点拨、热忱鼓励。崔老师一丝不苟的作风,严谨求实的态度,踏踏实实的精神,不仅授我以文,而且教我做人,虽历时半年,却给以终生受益无穷之道。在次,我向崔老师表示忠心的感谢!我还非常感谢工程技术学院的老师们,在四年学习期间,他们不仅教给了我很多知识,使我从对机械一无所知成为具有初步机械学知识并且可以简单应用的人,从只为自己的事情操心变成现在经常看报纸,听广播,并关注国家大事,而且还教给了我做人的道理。对此我非常感谢!最后,由草坪播种机的复杂性和长期性,不是用一篇文章就能解决问题的,另外,由于我的经验匮乏、水平有限,本文错误和疏漏之处不少,请老师和同学们指正,谢谢!- 23 -山 西 农 业 大 学本科生毕业论文(设计)选题审批表毕业论文(设计)题目草坪播种机的设计指 导 教 师崔清亮职 称教 授学生具备条件修完教学计划要求课程内容及学时选题完成形式开题报告内 容 简 要:本设计是根据国内外播种机的发展趋势,通用性和适应性不断提高以及本着结构简单操作灵活的原则,而设计的一种由地轮驱动的离心式草坪播种机。该机结构上优点,使之能适应各种草地的播种。小到1-2分大的草地,大到十几亩的草地都能适应。还可以根据草地的不同情况,调节合适的播种量。该播种机无引擎驱动,无噪音污染,播种效率高,轻便简洁,操作方便,美观实用,适用于一般草坪的播种。本文着重对播种机增速器、撒种部分以及叶轮等结构进行设计选择。 系主任签字: 年 月 日 院长签字: 年 月 日2选题的依据及意义(包括课题的理论价值和实践价值;国内外的研究概况等):目前在我国已有专用草坪播种机械, 但是价格很高。通常对于播种面积不算太大, 又不是专业经营草坪种植业的单位或个人, 就没有必要专门买一台草坪播种机, 这样就给草坪播种带来很大的困难。为了解决这一问题, 经过多次对市场调查和研究, 决定设计一种简易草坪播种机。草坪是高度培育的特殊草地, 随着草坪面积的扩大, 品质的提高, 草坪业逐渐由单一的人工作业向半机械化、机械化、自动化过渡, 草坪作业的机械化已成为十分重要的课题。专用的草坪播种机还处于起步阶段, 草坪草种子细小,用手撒的方法不仅不易将种子撒匀, 且工作效率低, 不能满足建坪建设的要求。 通过市场调研,决定设计一种由地轮驱动的离心式草坪播种机,该机由种子箱、机架、传动装置、叶轮等部分组成, 一人即可操作, 播种者双手推动播种机,种子箱下的旋转叶轮便会把种子吹出去, 下种口的大小可调, 播种量的多少调节下种速度。此播种机体积小、质量轻、结构简单、灵活耐用, 不受地形、环境和气候的影响, 不仅适用于大面积建坪, 更适用于在复杂的场地下建坪使用。本课题研究内容 本设计研究的草坪播种机是一种由地轮驱动的离心式草坪播种机,该机由种子箱、机架、传动装置、叶轮等部分组成, 一人即可操作, 播种者双手推动播种机,种子箱下的旋转叶轮便会把种子吹出去, 下种口的大小可调, 播种量的多少调节下种速度。此播种机体积小、质量轻、结构简单、灵活耐用, 不受地形、环境和气候的影响, 不仅适用于大面积建坪, 更适用于在复杂的场地下建坪使用。本课题研究方案能实现草坪播种的方法较多,但各有利弊,具体分析如下:(1)用手撒 草坪草种子细小,用手撒的方法不仅不易将种子撒匀, 且工作效率低, 不能满足建坪建设的要求。(2)用铁筛撒 用铁筛虽然避免了用手撒的弊端,但浪费时间,且人力消耗量大,不能满足一般草坪的建设要求。(3)用播种机 用播种机,可避免以上两种方法存在的问题,使所设计的机器小巧,且可灵活操作。因此,我们选择设计手动式播种机。研究的创新之处(1) 无引擎驱动,节省能源,无污染(噪音、废气),采用绿色环保设计;(2) 外观造型新颖,推杆可折叠伸缩,适合家庭用户使用;(3) 采用齿轮机构(实现增速),提高整机的工作效率,解决了手动播种机工作效率不高的问题;(4) 产品成本(制造和使用成本)低,符合广大用户购买能力的要求。 研究过程(含完成期限)第一周与指导老师确定设计题目并制定详细的设计要求;第二周调查、收集、研究现有资料,根据课题计划任务书的要求,明确整个设计的任务和方向;第三周提出多种设计方案,通过分析对比,确定出最优方案;第四和第五周以确定的初步方案绘制出原理图或机构运动简图,确定机构组成和各种参数计算;第六和第七周详细绘制总装配图、部件装配图和零件图;第八周交由指导老师批改;第九周修改并完善设计指导教师意见 指导教师签名:年 月 日教研室意见 教研室主任签名:年 月 日院系意见 主管领导签名: 年 月 日Design of machine and machine elementsMachine designMachine design is the art of planning or devising new or improved machines to accomplish specific purposes. In general, a machine will consist of a combination of several different mechanical elements properly designed and arranged to work together, as a whole. During the initial planning of a machine, fundamental decisions must be made concerning loading, type of kinematic elements to be used, and correct utilization of the properties of engineering materials. Economic considerations are usually of prime importance when the design of new machinery is undertaken. In general, the lowest over-all costs are designed. Consideration should be given not only to the cost of design, manufacture the necessary safety features and be of pleasing external appearance. The objective is to produce a machine which is not only sufficiently rugged to function properly for a reasonable life, but is at the same time cheap enough to be economically feasible. The engineer in charge of the design of a machine should not only have adequate technical training, but must be a man of sound judgment and wide experience, qualities which are usually acquired only after considerable time has been spent in actual professional work.Design of machine elements The principles of design are, of course, universal. The same theory or equations may be applied to a very small part, as in an instrument, or, to a larger but similar part used in a piece of heavy equipment. In no ease, however, should mathematical calculations be looked upon as absolute and final. They are all subject to the accuracy of the various assumptions, which must necessarily be made in engineering work. Sometimes only a portion of the total number of parts in a machine are designed on the basis of analytic calculations. The form and size of the remaining parts are designed on the basis of analytic calculations. On the other hand, if the machine is very expensive, or if weight is a factor, as in airplanes, design computations may then be made for almost all the parts. The purpose of the design calculations is, of course, to attempt to predict the stress or deformation in the part in order that it may sagely carry the loads, which will be imposed on it, and that it may last for the expected life of the machine. All calculations are, of course, dependent on the physical properties of the construction materials as determined by laboratory tests. A rational method of design attempts to take the results of relatively simple and fundamental tests such as tension, compression, torsion, and fatigue and apply them to all the complicated and involved situations encountered in present-day machinery. In addition, it has been amply proved that such details as surface condition, fillets, notches, manufacturing tolerances, and heat treatment have a market effect on the strength and useful life of a machine part. The design and drafting departments must specify completely all such particulars, must specify completely all such particulars, and thus exercise the necessary close control over the finished product. As mentioned above, machine design is a vast field of engineering technology. As such, it begins with the conception of an idea and follows through the various phases of design analysis, manufacturing, marketing and consumerism. The following is a list of the major areas of consideration in the general field of machine design: Initial design conception; Strength analysis; Materials selection; Appearance; Manufacturing; Safety; Environment effects; Reliability and life; Strength is a measure of the ability to resist, without fails, forces which cause stresses and strains. The forces may be; Gradually applied; Suddenly applied; Applied under impact; Applied with continuous direction reversals; Applied at low or elevated temperatures. If a critical part of a machine fails, the whole machine must be shut down until a repair is made. Thus, when designing a new machine, it is extremely important that critical parts be made strong enough to prevent failure. The designer should determine as precisely as possible the nature, magnitude, direction and point of application of all forces. Machine design is mot, however, an exact science and it is, therefore, rarely possible to determine exactly all the applied forces. In addition, different samples of a specified material will exhibit somewhat different abilities to resist loads, temperatures and other environment conditions. In spite of this, design calculations based on appropriate assumptions are invaluable in the proper design of machine. Moreover, it is absolutely essential that a design engineer knows how and why parts fail so that reliable machines which require minimum maintenance can be designed. Sometimes, a failure can be serious, such as when a tire blows out on an automobile traveling at high speeds. On the other hand, a failure may be no more than a nuisance. An example is the loosening of the radiator hose in the automobile cooling system. The consequence of this latter failure is usually the loss of some radiator coolant, a condition which is readily detected and corrected. The type of load a part absorbs is just as significant as the magnitude. Generally speaking, dynamic loads with direction reversals cause greater difficulties than static loads and, therefore, fatigue strength must be considered. Another concern is whether the material is ductile or brittle. For example, brittle materials are considered to be unacceptable where fatigue is involved. In general, the design engineer must consider all possible modes of failure, which include the following: Stress; Deformation; Wear; Corrosion; Vibration; Environmental damage; Loosening of fastening devices. The part sizes and shapes selected must also take into account many dimensional factors which produce external load effects such as geometric discontinuities, residual stresses due to forming of desired contours, and the application of interference fit joint. Selected from” design of machine elements”, 6th edition, m. f. sports, prentice-hall, inc., 1985 and “machine design”, Anthony Esposito, charles e., Merrill publishing company, 1975.Mechanical properties of materials The material properties can be classified into three major headings: (1) physical, (2) chemical, (3) mechanicalPhysical properties Density or specific gravity, moisture content, etc., can be classified under this category. Chemical propertiesMany chemical properties come under this category. These include acidity or alkalinity, react6ivity and corrosion. The most important of these is corrosion which can be explained in laymans terms as the resistance of the material to decay while in continuous use in a particular atmosphere. Mechanical properties Mechanical properties include in the strength properties like tensile, compression, shear, torsion, impact, fatigue and creep. The tensile strength of a material is obtained by dividing the maximum load, which the specimen bears by the area of cross-section of the specimen. This is a curve plotted between the stress along the This is a curve plotted between the stress along the Y-axis(ordinate) and the strain along the X-axis (abscissa) in a tensile test. A material tends to change or changes its dimensions when it is loaded, depending upon the magnitude of the load. When the load is removed it can be seen that the deformation disappears. For many materials this occurs op to a certain value of the stress called the elastic limit Ap. This is depicted by the straight line relationship and a small deviation thereafter, in the stress-strain curve (fig.3.1). Within the elastic range, the limiting value of the stress up to which the stress and strain are proportional, is called the limit of proportionality Ap. In this region, the metal obeys hookess law, which states that the stress is proportional to strain in the elastic range of loading, (the material completely regains its original dimensions after the load is removed). In the actual plotting of the curve, the proportionality limit is obtained at a slightly lower value of the load than the elastic limit. This may be attributed to the time-lagin the regaining of the original dimensions of the material. This effect is very frequently noticed in some non-ferrous metals. Which iron and nickel exhibit clear ranges of elasticity, copper, zinc, tin, are found to be imperfectly elastic even at relatively low values low values of stresses. Actually the elastic limit is distinguishable from the proportionality limit more clearly depending upon the sensitivity of the measuring instrument. When the load is increased beyond the elastic limit, plastic deformation starts. Simultaneously the specimen gets work-hardened. A point is reached when the deformation starts to occur more rapidly than the increasing load. This point is called they yield point Q. the metal which was resisting the load till then, starts to deform somewhat rapidly, i. e., yield. The yield stress is called yield limit Ay. The elongation of the specimen continues from Q to S and then to T. The stress-strain relation in this plastic flow period is indicated by the portion QRST of the curve. At the specimen breaks, and this load is called the breaking load. The value of the maximum load S divided by the original cross-sectional area of the specimen is referred to as the ultimate tensile strength of the metal or simply the tensile strength Au. Logically speaking, once the elastic limit is exceeded, the metal should start to yield, and finally break, without any increase in the value of stress. But the curve records an increased stress even after the elastic limit is exceeded. Two reasons can be given for this behavior: The strain hardening of the material; The diminishing cross-sectional area of the specimen, suffered on account of the plastic deformation. The more plastic deformation the metal undergoes, the harder it becomes, due to work-hardening. The more the metal gets elongated the more its diameter (and hence, cross-sectional area) is decreased. This continues until the point S is reached. After S, the rate at which the reduction in area takes place, exceeds the rate at which the stress increases. Strain becomes so high that the reduction in area begins to produce a localized effect at some point. This is called necking. Reduction in cross-sectional area takes place very rapidly; so rapidly that the load value actually drops. This is indicated by ST. failure occurs at this point T. Then percentage elongation A and reduction in reduction in area W indicate the ductility or plasticity of the material: A=(L-L0)/L0*100% W=(A0-A)/A0*100% Where L0 and L are the original and the final length of the specimen; A0 and A are the original and the final cross-section area. Selected from “testing of metallic materials”Quality assurance and control Product quality is of paramount importance in manufacturing. If quality is allowed deteriorate, then a manufacturer will soon find sales dropping off followed by a possible business failure. Customers expect quality in the products they buy, and if a manufacturer expects to establish and maintain a name in the business, quality control and assurance functions must be established and maintained before, throughout, and after the production process. Generally speaking, quality assurance encompasses all activities aimed at maintaining quality, including quality control. Quality assurance can be divided into three major areas. These include the following:Source and receiving inspection before manufacturing;In-process quality control during manufacturing;Quality assurance after manufacturing. Quality control after manufacture includes warranties and product service extended to the users of the product.Source and receiving inspection before manufacturing Quality assurance often begins ling before any actual manufacturing takes place. This may be done through source inspections conducted at the plants that supply materials, discrete parts, or subassemblies to manufacturer. The manufacturers source inspector travels to the supplier factory and inspects raw material or premanufactured parts and assemblies. Source inspections present an opportunity for the manufacturer to sort out and reject raw materials or parts before they are shipped to the manufacturers production facility. The responsibility of the source inspector is to check materials and parts against design specifications and to reject the item if specifications are not met. Source inspections may include many of the same inspections that will be used during production. Included in these are:Visual inspection;Metallurgical testing;Dimensional inspection;Destructive and nondestructive inspection;Performance inspection.Visual inspections Visual inspections examine a product or material for such specifications as color, texture, surface finish, or overall appearance of an assembly to determine if there are any obvious deletions of major parts or hardware.Metallurgical testing Metallurgical testing is often an important part of source inspection, especially if the primary raw material for manufacturing is stock metal such as bar stock or structural materials. Metals testing can involve all the major types of inspections including visual, chemical, spectrographic, and mechanical, which include hardness, tensile, shear, compression, and spectr5ographic analysis for alloy content. Metallurgical testing can be either destructive or nondestructive.Dimensional inspection Few areas of quality control are as important in manufactured products as dimensional requirements. Dimensions are as important in source inspection as they are in the manufacturing process. This is especially critical if the source supplies parts for an assembly. Dimensions are inspected at the source factory using standard measuring tools plus special fit, form, and function gages that may required. Meeting dimensional specifications is critical to interchangeability of manufactured parts and to the successful assembly of many parts into complex assemblies such as autos, ships, aircraft, and other multipart products.Destructive and nondestructive inspection In some cases it may be necessary for the source inspections to call for destructive or nondestructive tests on raw materials or p0arts and assemblies. This is particularly true when large amounts of stock raw materials are involved. For example it may be necessary to inspect castings for flaws by radiographic, magnetic particle, or dye penetrant techniques before they are shipped to the manufacturer for final machining. Specifications calling for burn-in time for electronics or endurance run tests for mechanical components are further examples of nondestructive tests. It is sometimes necessary to test material and parts to destruction, but because of the costs and time involved destructive testing is avoided whenever possible. Examples include pressure tests to determine if safety factors are adequate in the design. Destructive tests are probably more frequent in the testing of prototype designs than in routine inspection of raw material or parts. Once design specifications are known to be met in regard to the strength of materials, it is often not necessary to test further parts to destruction unless they are genuinely suspect.Performance inspection Performance inspections involve checking the function of assemblies, especially those of complex mechanical systems, prior to installation in other products. Examples include electronic equipment subcomponents, aircraft and auto engines, pumps, valves, and other mechanical systems requiring performance evaluation prior to their shipment and final installation. Selected form “modern materials and manufacturing process”Electro-hydraulic drum brakesApplication The YWW series electro-hydraulic brake is a normally closed brake, suitable for horizontal mounting. It is mainly used in portal cranes, bucket stacker/reclaimersslewing mechanism.The YKW series electro-hydraulic brake is a normally opened brake, suitable for horizontal mounting, employing a thruster as actuator. with the foot controlling switch the operator can release or close the brake. It is mainly used for deceleration braking of portal cranesslewing mechanism. In a non-operating state the machinery can be braked by a manual close device.The RKW series brake is a normally opened brake, which is operated by foot driven hydraulic pump, suitable for horizontal mounting. Mainly used in the slewing mechanism of middle and small portal cranes. When needed, the brake is activated by a manual closed device. Main design featuresInterlocking shoes balancing devices (patented technology) constantly equalizes the clearance of brake shoes on both sides and made adjustment unnecessary, thus avoiding one side of the brake lining sticking to the brake wheel. The brake is equipped with a shoed autoaligning device.Main hinge points are equipped with self-lubricating bearing, making high efficiency of transmission, long service life. Lubricating is unnecessary during operation.Adjustable bracket ensure the brake works well.The brake spring is arranged inside a square tube and a surveyors rod is placed on one side. It is easy to read braking torque value and avoid measuring and computing.Brake lining is of card whole-piece shaping structure, easy to replace. Brake linings of various materials such as half-metal (non-asbestos) hard and half-hard, soft (including asbestos) substance are available for customers to choose.All adopt the companys new types of thruster as corollary equipment which work accurately and have long life. Hydraulic Power TransmissionThe Two Types Of Power Transmission In hydraulic power transmission the apparatus (pump) used for conversion of the mechanical (or electrical,thermal) energy to hydraulic energy is arranged on the input of the kinematic chain ,and the apparatus (motor) used for conversion of the hydraulic energy to mechanical energy is arranged on the output (fig.2-1) The theoretical design of the energy converters depends on the component of the bernouilli equation to be used for hydraulic power transmission. In systerms where, mainly, hydrostatic pressure is utilized, displacement (hydrostatic) pumps and motors are used, while in those where the hydrodynamic pressure is utilized is utilized gor power transmission hydrodynamic energy converters (e.g. centrifugal pumps) are used. The specific characteristic of the energy converters is the weight required for transmission of unit power. It can be demonstrated that the use of hydrostatic energy converters for the low and medium powers, and of hydrodynamic energy converters of high power are more favorite (fig.2-2). This is the main reason why hydrostatic energy converters are used in industrial apparatus. transformation of the energy in hydraulic transmission. 1. driving motor (electric, diesel engine);2. mechanical energy;3. pump; 4. hydraulic energy; 5. hydraulic motor; 6. mechanical energy; 7. load variation of the mass per unit power in hydrostatic and hydrodynamic energy converters 1、hydrostatic; 2.hydrodynamicOnly displacement energy converters are dealt with in the following. The elements performing converters provide one or several size. Expansion of the working chambers in a pump is produced by the external energy admitted, and in the motor by the hydraulic energy. Inflow of the fluid occurs during expansion of the working chamber, while the outflow (displacement) is realized during contraction. Such devices are usually called displacement energy converters.The Hydrostatic Power In order to have a fluid of volume V1 flowing in a vessel at pressure work spent on compression W1 and transfer of the process, let us imagine a piston mechanism (fig.2-3(a) which may be connected with the aid of valves Z0 and Z1 to the external medium under pressure P0 and reservoir of pressure p1.in the upper position of the piston (x=x0) with Z0 open the cylinder chamber is filled with fluid of volume V0 and pressure P0. now shut the value Z0 and start the piston moving downwards. If Z1 is shut the fluid volume in position X=X1 of the piston decreases from V0 to V1, while the pressure rises to P1. the external work required for actuation of the piston (assuming isothermal change) is W1=-0x0(P-P0)Adx=-v1v0(P-P0)dvSelect from Hydraulic Power Transmission机器和机器零件的设计机器设计机器设计是为了特定的目的而发明或改进机器的一种艺术。一般来讲,机器是有多种不同的合理设计并有序装配在一起的部件构成的,在最初的机器设计阶段,必须基本明确负载、元件的运动情况、工程材料的合理使用性能。负责新机器的设计最初的最重要的是经济性考虑。一般来说,选择总成本最低的设计方案,不仅要考虑设计、制造、销售、安装的成本。还要考虑服务的费用,机械要保证必要的安全性能和美观的外形。制造机器的目标不仅要追求保证只用功能的合理寿命,还要保证足够便宜以同时保证其经济的可行性。负责设计机器的工程师,不仅要经过专业的培训,而且必须是一个准确判断而又有丰富经验的人,具有一种有足够时间从事专门的实际工作的素质。机器零件的设计相同的理论或方程可应用在一个一起的非常小的零件上,也可用在一个复杂的设备的大型相似件上,既然如此,毫无疑问,数学计算是绝对的和最终的。他们都符合不同的设想,这必须由工程量决定。有时,一台机器的零件全部计算仅仅是设计的一部分。零件的结构和尺寸通常根据实际考虑。另一方面,如果机器和昂贵,或者质量很重要,例如飞机,那麽每一个零件都要设计计算。当然,设计计算的目的是试图预测零件的应力和变形,以保证其安全的带动负载,这是必要的,并且其也许影响到机器的最终寿命。当然,所有的计算依赖于这些结构材料通过试验测定的物理性能。国际上的设计方法试图通过从一些相对简单的而基本的实验中得到一些结果,这些试验,例如结构复杂的及现代机械设计到的电压、转矩和疲劳强度。另外,可以充分证明,一些细节,如表面粗糙度、圆角、开槽、制造公差和热处理都对机械零件的强度及使用寿命有影响。设计和构建布局要完全详细地说明每一个细节,并且对最终产品进行必要的测试。综上所述,机械设计是一个非常宽的工程技术领域。例如,从设计理念到设计分析的每一个阶段,制造,市场,销售。以下是机械设计的一般领域应考虑的主要方面的清单:最初的设计理念 受力分析 材料的选择 外形 制造 安全性 环境影响 可靠性及寿命在没有破坏的情况下,强度是抵抗引起应力和应变的一种量度。这些力可能是:渐变力 瞬时力 冲击力 不断变化的力 温差如果一个机器的关键件损坏,整个机器必须关闭,直到修理好为止。设计一台新机器时,关键件具有足够的抵抗破坏的能力是非常重要的。设计者应尽可能准确地确定所有的性质、大小、方向及作用点。机器设计不是这样,但精确的科学是这样,因此很难准确地确定所有力。另外,一种特殊材料的不同样本会显现出不同的性能,像抗负载、温度和其他外部条件。尽管如此,在机械设计中给予合理综合的设计计算是非常有用的。此外,显而易见的是一个知道零件是如何和为什麽破坏的设计师可以设计出需要很少维修的可靠机器。有时,一次失败是严重的,例如高速行驶的汽车的轮胎爆裂。另一方面,失败未必是麻烦。例如,汽车的冷却系统的散热器皮带管松开。这种破坏的后果通常是损失一些散热片,可以探测并改正过来。零件负载类型是一个重要的标志。一般而言,变化的动负载比静负载会引起更大的差异。因此,疲劳强度必须符合。另一个关心的方面是这种材料是否直或易碎。例如有疲劳破坏的地方不易使用易碎的材料。一般的,设计师要靠考虑所有破坏情况,其包括以下方面:应力 应变 外形 腐蚀 震动 外部环境破坏 紧固件的松脱零件的尺寸和外形的选择也有很多因素。外部负荷的影响,如几何间断,由于轮廓而产生的残余应力和组合件干涉。选自机械元件设计第六版,斯鲍特、普瑞特斯等,1985年和机械设计埃斯普特斯、查里斯、麦瑞欧出版公司,1975年。材料的机械性能的机械性能可以被分成三个方面:物理性能,化学性能,机械性能。物理性能密度或比重、温度等可以归为这一类。化学性能这一种类包括很多化学性能。其中包括酸碱性、化学反应性、腐蚀性。其中最重要的是腐蚀性,在外行人看来,腐蚀性被解释为在某处的零件抵抗腐蚀的能力。机械性能机械性能包括拉伸性能、压缩性能、剪切性能、扭转性能、冲击性能、疲劳性能和蠕变。材料的拉伸强度可以通过试件的横截面积出试件承受的最大载荷得到,这是在拉伸试验中,应力沿Y轴,应边沿X轴变化的曲线。一种材料加载时开始发生变化的初值取决于负载的大小。当负载去掉时可以看到变形消失。对于很多材料而言,在达到弹性极限的一定应力值A之前,一直表现为这样。在应力-应变图中,这是
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:草坪播种机的设计
链接地址:https://www.renrendoc.com/p-22854776.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!