成品轴承自动清洗生产线上料装置设计 - 复件(1)
收藏
资源目录
压缩包内文档预览:
编号:22870984
类型:共享资源
大小:4.15MB
格式:RAR
上传时间:2019-11-03
上传人:qq77****057
认证信息
个人认证
李**(实名认证)
江苏
IP属地:江苏
30
积分
- 关 键 词:
-
成品轴承自动清洗生产线上料装置设计
复件(1)
成品
轴承
自动
清洗
生产
线上
装置
设计
复件
- 资源描述:
-
成品轴承自动清洗生产线上料装置设计 - 复件(1),成品轴承自动清洗生产线上料装置设计,复件(1),成品,轴承,自动,清洗,生产,线上,装置,设计,复件
- 内容简介:
-
3.1.2 Effects of pre-strain and rake angle in machining copperIn the previous section, the machining of annealed metals by a 6 rake angle tool was considered. Both pre-strain and an increased rake angle result in reduced specific cutting forces and reduced cutting temperatures, but have little effect on the stressses on the tool. These generalizations may be illustrated by the cutting of copper, a metal sufficiently soft (as also is aluminium) to allow machining by tools of rake angle up to around 40. Figure 3.6 shows examples of specific forces and shear plane angles measured in turning annealed and heavily cold-worked copper at feeds in the range 0.15 to 0.2 mm, with high speed steel tools of rake angle from 6 to 35. Specific forces vary over a sixfold range at the lowest cutting speed, with shear plane angles from 8 to 32. The left panel of Figure 3.7 shows that the estimated tool contact stresses change little with rake angle, although they are clearly larger for the annealed than the pre-strained material. The right-hand panel shows that the temperature rises are halved on changing from a 6 to 35 rake angle tool. These observations, that tool stresses are determined bythe material being cut and do not vary much with the cutting conditions, while temperatures depend strongly on both the material being cut and the cutting conditions, is a continuing theme that will be developed for metal alloys in the following sections.3.1.3 Machining copper and aluminium alloysIt is often found that alloys of metals machine with larger shear plane angles and hence lower specific forces than the elemental metals themselves. Sometimes a strong reason is a lower value of the strain hardening parameter Dk/kmax, at other times the chip/tool friction (as indicated by the friction coefficient) is less; and at others again it is not at all obvious why this should be so. But even when the specific forces are lower, the tool contact stress can be higher. In this section, examples of machining two copper and one aluminium alloy are taken to illustrate this. Figure 3.8 records the behaviours of a CuNi and a CuZn alloy. The CuNi alloy, with 80%Ni, might better be considered as a Ni alloy. However, it machines at a higher shear plane angle at a given cutting speed than either copper or nickel, despite its strain-hardening characteristic being similar to or more severe than either of these (Appendix 4.1). The CuZn alloy (an a-brass) is a well-known very easy material to machine. Its shear plane angle is twice as large as that of Cu, despite having a similar strain-hardening characteristic (Appendix 4.1 again) and an apparently higher friction interaction with the tool (as judged by the relative sizes of its specific thrust and cutting forces). (Figure 3.8 describes the machining of an annealed brass. After cold-working, even higher shear plane angles, and lower specific forces are obtained.) These two examples are ones where the reason for the easier machining of the alloys compared with the elemental metals is not obvious from their room temperature, low strain rate mechanical behaviours. Figure 3.9 shows machining data for an aluminium alloy. In this case the variation of behaviour with rake angle is shown. At a rake angle and speed comparable to that shown in Figure 3.3, the shear plane angle is five times as large and the specific cutting force is half as large for the alloy as for pure Al. In this case both the strain-hardening and friction factors are less for the alloy than for pure Al.For both the copper and aluminium alloy examples, the primary shear plane shear stress and the average rake contact stresses are similar to, or slightly larger than, those for theelemental metals. Figure 3.8 shows only the values of k, but (sn)av may be calculated to be 0.6k. Figure 3.9 shows both k and (sn)av. It also shows that, in this case, the estimated rake face temperature does not change as the rake angle is reduced. This is different fromthe observations recorded in Figure 3.7: perhaps the maximum temperature is limited bymelting of the aluminium alloy? The choice in Figure 3.9 of showing how machining parameters vary with rake angle has been made to introduce the observation that, in this case, at a rake angle of around 35 the thrust force passes through zero. Consequently, such a high rake angle is appropriate for machining thin walled structures, for which thrust forces might cause distortions in the finished part. However, the main point of this section, to be carried forward to Section 3.2 on tool materials, is that the range of values estimated for k follows the range expected from Figure 3.1 and the estimated values of (sn)av range from 0.5 to 1.0k. This is summarized in Table 3.4 which also contains data for the other alloy systems to be considered next.3.1.4 Machining austenitic steels and temperature resistant nickel andtitanium alloysThe austenitic steels, NiCr, and Ti alloys are at the opposite extreme of severity to the aluminium and copper alloys. Although their specific forces are in the same range and their shear plane angles are higher, the tool stresses and temperatures (for a given speed and feed) that they generate are significantly higher. Figure 3.10 presents observations for two austenitic steels, a NiCr and a Ti alloy. One of the austenitic steels (the 18Cr8Ni material) is a common stainless steel. The 18Mn5Cr material, which also contains 0.47C, is an extremly difficult to machine creep and abrasion resistant material. The NiCr alloy is a commercial Inconel alloy, X750. In all cases the feed was 0.2 mm except for the Ti alloy, for which it was 0.1 mm. The rake angle was 6 except for the NiCr alloy, for which it was 0. Specific cutting forces are in the range 2 to 4 GPa. Thrust forces are mainly between 1 and 2 GPa. Shear plane angles are mainly greater than 25. In most cases, the chip formation is not steady but serrated. The values shown in Figure 3.10 are average values. Figure 3.11 shows stresses and temperatures estimated from these. The larger stresses and temperatures are clear.3.1.5 Machining carbon and low alloy steelsCarbon and alloy steels span the range of machinability between aluminium and copper alloys on the one hand and austentic steels and temperature resistant alloys on the other. There are two aspects to this. The wide range of materials yield stresses that can be achieved by alloying iron with carbon and small amounts of other metals, results in their spanning the range as far as tool stressing is concerned. Their intermediate thermal conductivities and diffusivities result in their spanning the range with respect to temperature rise per unit feed and also cutting speed.Figure 3.12 shows typical specific force and shear plane angle variations with cutting speed measured in turning steel bars that have received no particular heat treatment other than the hot rolling process used to manufacture them. At cutting speeds around 100 m/min the specific forces of 2 to 3 GPa are smaller than those for pure iron (Figure 3.3), but as speed increases, the differences between the steels and pure iron reduce. In the same way as for many other alloy systems, the shear plane angles of the ferrous alloys are larger than for the machining of pure iron. In the hot rolled condition, steels (other than the austenitic steels considered in the previous section) have a structure of ferrite and pearlite (or, at high carbon levels, pearlite and cementite). For equal coarsenesses of pearlite, the steels hardness increases with carbon content. The left panel of Figure 3.13 shows how the estimated k and (sn)av values from the data of Figure 3.12 increase with carbon content. Additional results have been included, for the machining of a 0.13C and a 0.4C steel. An increase of both k and (sn)av with %C is clear. The right panel of the figure likewise shows that the increasing carbon content gives rise to increasing temperatures for a given cutting speed. This comes from the increasing shear stress levels. This completes this brief survey of the stresses and temperatures generated by different alloy groups in machining. Tool stresses are mainly controlled by the metal being machined and vary little with cutting conditions (although the tool rake face area over which they act changes with speed and, obviously, also with feed). Temperatures, on the other hand, depend not only on the material being machined (both through stress levels and thermal properties) but also on the speeds and feeds used.3.1.6 Machining with built-up edge formationIn the previous section, data were presented mainly for cutting speeds greater than 100 m/min. This is because, at slightly lower cutting speeds, at the feeds considered, those steels machine with a built-up edge (BUE). In Chapter 2, photographs were shown of BUE formation. Figure 3.14 shows, for a 0.15C steel, what changes in specific force and shear plane angle are typically associated with this. In this example, the largest BUE occurred at a cutting speed close to 25 m/min. There, the specific forces passed through a minimum and the shear plane angle through a maximum. Qualitatively, this may be explained by the BUE increasing the effective rake angle of the cutting tool. Built-up edge formation occurs at some low speed or other for almost all metal alloys. It offers a way of relieving the large strains (small shear plane angles) that can occur at low speeds, but at the expense of worsening the cut surface finish. For those alloys that do show BUE formation, the cutting speed at which the BUE is largest reduces as the feed increases. Figure 3.15 gathers data for three ferrous alloys and one Ni-Cr creep resistant alloy (Nimonic 80). One definition of high speed machining is machining at speeds above those of built-up-edge formation. These are the conditions mostly focused on in this book.3.1.7 SummarySection 3.1 mentioned the variety of specific forces and shear plane angles that are commonly observed in machining aluminium, copper, ferrous, nickel and titanium alloys. It has sought to establish that the average contact stresses that a tool must withstand depend mainly on the material being machined, through the level of that materials shear flow stress and hardly at all on the cutting speed and feed nor on the tool rake angle. Table 3.4 lists the range of these stresses. Peak contact stresses may be two to three times as large as the average values recorded in the table. In contrast, the temperatures that a tool must withstand do depend on cutting speed and feed and rake angle, and on the work materials 96 Work and tool materials Fig. 3.17 Machining characterisitcs of a low alloy () and a semi-free-cutting low alloy (o) steel (f = 0.25 mm, = 6o) thermal properties: diffusivity, conductivity and heat capacity. By both thermal and stress severity criteria, the easiest metals to machine are alumimium alloys and copper alloys.The most difficult to machine are austenitic steels, nickel heat resistant alloys and titanium alloys. Ferritic and pearlitic steels lie between these extremes, with stresses and temperatures increasing with carbon content and hardness. Beyond that, this section has been mainly descriptive, particularly with respect to reporting what shear plane angles have been measured for the different alloys. This remains the main task of predictive mechanics. The next section, on tool material properties, complements this one, in describing the properties of tool materials that influence and enable the tools to withstand the machininggenerated stresses and temperature .中原工学院毕业设计开题报告1 本课题所涉及的内容及其研究的综述1.1自动化生产线简介自动生产线是由工件传送系统和控制系统,将一组自动机床和辅助设备按照工艺顺序联结起来,自动完成产品全部或部分制造过程的生产系统,简称自动线。在大批、大量生产中采用自动线能提高劳动生产率,稳定和提高产品质量,改善劳动条件,缩减生产占地面积,降低生产成本,缩短生产周期,保证生产均衡性,有显著的经济效益。从二十世纪20年代开始,随着汽车、滚动轴承、小型电动机和缝纫机等工业发展,机械制造中开始出现自动线,最早出现的是组合机床自动线。在此之前,首先是在汽车工业中出现了流水生产线和半自动生产线,随后发展成为自动线。第二次世界大战后,在工业发达国家的机械制造业中,自动线的数目出现了急剧增。机械制造业中有铸造、锻造、冲压、热处理、焊接、切削加工和机械装配等自动线,也有包括不同性质的工序,如毛坯制造、加工、装配、检验和包装等的综合自动线。 自动线中设备的联结方式有刚性联接和柔性联接两种。在刚性联接自动线中,工序之间没有储料装置,工件的加工和传送过程有严格的节奏性。当某一台设备发生故障而停歇时,会引起全线停工。因此,对刚性联接自动线中各种设备的工作可靠性要求高。 在柔性联接自动线中,各工序(或工段)之间设有储料装置,各工序节拍不必严格一致,某一台设备短暂停歇时,可以由储料装置在一定时间内起调剂平衡的作用,因而不会影响其他设备正常工作。综合自动线、装配自动线和较长的组合机床自动线常采用柔性联接。 切削加工自动线在机械制造业中发展最快、应用最广。主要有:用于加工箱体、壳体、杂类等零件的组合机床自动线;用于加工轴类、盘环类等零件的,由通用、专门化或专用自动机床组成的自动线;旋转体加工自动线;用于加工工序简单小型零件的转子自动线等。自动线的工件传送系统一般包括机床上下料装置、传送装置和储料装置。在旋转体加工自动线中,传送装置包括重力输送式或强制输送式的料槽或料道,提升、转位和分配装置等。有时采用机械手完成传送装置的某些功能。在组合机床自动线中当工件有合适的输送基面时,采用直接输送方式,其传送装置有各种步进式输送装置、转位装置和翻转装置等对于外形不规则、无合适的输送基面的工件,通常装在随行夹具上定位和输送,这种情况下要增设随行夹具的返回装置。 自动线的控制系统主要用于保证线内的机床、工件传送系统,以及辅助设备按照规定的工作循环和联锁要求正常工作,并设有故障寻检装置和信号装置。为适应自动线的调试和正常运行的要求,控制系统有三种工作状态:调整、半自动和自动。在调整状态时可手动操作和调整,实现单台设备的各个动作;在半自动状态时可实现单台设备的单循环工作;在自动状态时自动线能连续工作。 控制系统有“预停”控制机能,自动线在正常工作情况下需要停车时,能在完成一个工作循环、各机床的有关运动部件都回到原始位置后才停车。自动线的其他辅助设备是根据工艺需要和自动化程度设置的,如有清洗机工件自动检验装置、自动换刀装置、自动捧屑系统和集中冷却系统等。为提高自动线的生产率,必须保证自动线的工作可靠性。影响自动线工作可靠性的主要因素是加工质量的稳定性和设备工作可靠性。 自动线的发展方向主要是提高生产率和增大多用性、灵活性。为适应多品种生产的需要,将发展能快速调整的可调自动线。现代生产和科学技术的发展,对自动化技 术提出越来越高的要求,同时也为自动化技术的革新提供了必要条件。数字控制机床、工业机器人和电子计算机等技术的发展,以及成组技术的应用,将使自动线的灵活性更大,可实现多品种、中小批量生产的自动化。多品种可调自动线,降低了自动线生产的经济批量,因而在机械制造业中的应用越来越广泛,并向更高度自动化的柔性制造系统发展。1.2自动上料在机械生产中的作用在自动化加工、装配生产线中,能自动完成将工件向加工或装配机械供给并上料的装置,称为自动上料装置。是自动化生产先线中一个重要环节。统计表明,在工件的加工装配过程中,工件的供给、上料、下料及搬运等工作所需费用约占全部费用的1/3以上,所需的工时约占全部工时的2/3以上,而且绝大多数的事故都发生在这些工序中,尤其是成批大量生产的场合,当要求生产效率很高而且机动工时很短时,上下料是一项重复而繁重的作业。所以,为了提高生产率、减轻作业者的劳动强度,保证安全生产,实现上下料自动化是很有必要的。自动上料装置通常由工料器、分路机构、合路机构、上料机构及输送机构等所组成。其中,供料器、隔离机构及上料机构是其最基本的三个组成部分,各机构之间的连接通常使用料道或其它输送机构。在实际应用中,上述各机构往往不是彼此独立的,有事一个机构既能将工件隔离又能将其分路,既能将能工件隔离又能上料。在当今工业发达国家,自动上料装置在各类制造业中比比皆是,上产过程的自动化不仅大大提高了生产率,把人们从繁重的劳动中解脱出来;而且对提高产品质量,降低成本、促进产业结构的合理化起到了积极的 作用。随着电子技术的发展,现在自动上料装置中已经越来越多的采用传感器等电子设备,这样不仅能提高精度,而且能减小设备的大小,降低成本,这已是未来的发展趋势。1.3 本课题涉及内容1. 轴承清洗方式 压紧外套,内套旋转使轴承处于共作状态下清洗。2.圆柱滚子轴承N308E生产类型:大批大量参考文献:1 黄大宇 梅瑛主编. 机械设计课程设计.吉林大学出版社,20072 徐灏主编. 机械设计手册第二版.北京:机械工业出版社,20003 彭文生等主编.机械设计.北京:高等教育出版社,20024 黄玉美等主编.机械制造装备设计. 高等教育出版社,20065 刘德忠 费仁元主编.装配自动化. 高等教育出版社,20032 本课题有待解决的主要关键问题工件的上料通常是指将定向羊列好的工件装入加工机械夹具中作业,是自动化上料装置中最为复杂的一环。工件的上料通常是指将定向羊列好的工件装入加工机械夹具中作业,是自动化上料装置中最为复杂的一环。上料机构的设计,关键在于根据工件的形状、重量、特性及要实现的动作等选择最适当的上料方法。该课题全称为成品轴承自动生产线自动上料装置设计。即针对特定的清洗方式设计上料装置。由于清洗方式及设计要求的限制,解决节能这个问题的思路在于寻求合适的机构或组合机构来来实现轴承的送料、定位、及停歇。送料与定位易于完成,问题核心在于清洗,因此必须拥有足够长的清洗时间,即停歇时间。3 对课题要求及预期目标的可行性分析(包括解决关键问题技术和所需条件两方面)1.该方案采用组合机构,如图3-1所示该机构的传动比等于凸轮的启停之比与不完全齿轮启停之比的成积。因此容易获得较大的停歇时间。如图3-1所示:图3-1 不完全齿轮-凸轮组合机构示意图 2. 送料方式 送料机构如图3-2所示。 当轴承到达A位置时,凸轮1动作,将轴承推向B位置,在B位置经清洗后再由凸轮2推向C位置,由输送带带走。两凸轮相对运动的原则为:当凸轮2推动轴承至输送带回到起始位置时,凸轮1刚好准备运动。 图3-2 送料机构示意图 3.为了使得两凸轮能够按照以上要求以上动作,两凸轮间应有一定的连接,如下图3-3示: 图3-3 传功机构示意图4.该机构的传动比等于凸轮的启停之比与不完全齿轮启停之比的成积。因此容易获得较大的停歇时间。4 完成本课题的工作计划及进度安排3.083.23 课题调研、实习、开题报告、译文3.244.05 总体方案论证4.066.04 总体结构设计及具体零部件设计6.056.12 评阅6.136.15 答辩6.166.19 修改5 指导教师审阅意见指导教师(签字): 年 月 日6 指导小组意见指导小组组长(签字): 年 月 日说明:1. 本报告前4项内容由承担毕业论文(设计)课题任务的学生独立撰写;2. 本报告必须在第八学期开学两周内交指导教师审阅并提出修改意见;3. 学生须在小组内进行报告,并进行讨论;4.本报告作为指导教师、毕业论文(设计)指导小组审查学生能否承担该毕业设计(论文)课题和是否按时完成进度的检查依据,并接受学校的抽查。8中原工学院毕业设计实习报告毕业实习报告题目名称:成品轴承自动清洗生产线上料装置 设计及防锈装置设计 院系名称: 机电学院 班 级: 机自063班 学 号: 200600314330 学生姓名: 王孟孟 指导教师: 胡敏 2010 年3月目 录1 前 言22 报告内容3河南新飞电器有限公司32.1 公司简介32.2 企业文化32.3 产品介绍42.4 企业技术生产63 课题调研73.1 课题分析73.2 预期目标的可行性分析83.3 设计中具体需要完成的工作103.4 课题调研总结104 实习总结105 参考文献:111.前 言毕业实习是毕业设计前不可缺少的一个环节。不仅能够加深对毕业设计课题的认识,为以后做好毕业设计做好充分的准备;而且使我们可以更广泛的直接接触社会,加深对实际生产的认识,培养自己的实践能力,为我们毕业以后社会角色的转变打下基础。2010年3月23日,在毕业设计导师的带领下,参观考察了河南新飞电器有限公司。该企业以生产冰箱、冷柜、空调等为主,因出色的无氟与节能技术而被公认为中国家电绿色品牌。参观过程中,我们观察研究与课题相关的技术设备运行情况,并请企业技术人员介绍相关专业知识,同时向毕业设计导师及现场操作人员请教相关知识,不仅加深了对专业知识的认识,也使我对毕业设计课题有了新的认知。该公司在产品生产制造中采用大量自动化生产线,此部分内容和我毕业设计课题有密切的联系,通过观察研究现场生产中的各个自动化生产线,了解其结构及工作原理,为我的毕业设计课题提供了很好的参考借鉴基础。2 报告内容河南新飞电器有限公司2.1公司简介 河南新飞电器有限公司是以冰箱、冷柜、空调为主导产品的现代化白色家电制造企业,是中国最大的绿色无氟冰箱生产基地。自1986年投产电冰箱以来,新飞冰箱已从投产之初的一个系列、三个品种发展到现在的80大系列1000多个花色品种,产品涵盖直冷、风冷、风直混合制冷、无氟制冷、半导体制冷等多个领域,各项性能指标均居国内同类产品先进水平。目前,新飞已形成冰箱、冷柜、家用空调器等白色家电多元化产品体系。新飞公司拥有严密科学的质量控制体系,公司率先通过了ISO9001国际标准质量体系认证和ISO14001环境管理体系认证,成为中国屈指可数的 “双保”(质保+环保)企业之一。新飞还先后通过美国UL、德国GS、欧共体CE、加拿大CSA、日本JET、澳大利亚QAS等一系列国际认证,成为世界级合格商品供应商。目前,新飞产品已出口世界50多个国家和地区。 河南新飞电器有限公司模具中心是一家以设计制造轻工业非标准设备、高精密注塑模具、吸塑模具、发泡模具、冲压模具为主营业务的高新技术产业。已经建立了完善的ISO9001质量保证体系,并通过上海质量体系审核认证中心的认证。新飞模具中心积极向外拓展业务,目前法国和意大利等国家都有新飞的模具产品。2006年,新飞推出“双冠王”与F4的升级版,即外观更加靓丽的“超级双冠王”和增添了杀菌功能的“F5保鲜冰箱”;2007年新飞于行业内首家推出获7项国家专利的“水呼吸养鲜”并集节能、杀菌于一体的“水晶双冠王”冰箱,成为集节能、健康、保鲜多功能于一身的全能冠军;2008年,新飞以优化升级的节能新技术、新材料,精工制造出日耗电量仅有0.29度的节能王冰箱并推向市场,挑战冰箱节能极限。2.2企业文化 新飞的产品以“绿”为主导,处处考虑到环保,为消费者提供绿色的生活,同时也为消费者节省能源,新飞是值得信赖的品牌。新飞倡导的绿色生活是一种自然、健康、时尚的生活方式,而绿色生活圈就是由注重健康、崇尚自然、有爱心、有情趣、积极向上的企业、团体、家庭、个人与绿色产品共同组成。新飞公司率先在家电行业提出“用户永远是正确的”服务理念,“突出一个快捷”、“确保一个质量”、“落实一个满意”,为消费者提供了实实在在的贴心的服务,真正使用户感受到“买新飞就是买质量,买新飞就是买放心,买新飞就是买实惠,买新飞就是买满意”。 目前新飞的企业文化定位已从过去的务实型、竞争型、制度型向目前的目标型、学习型、自主型转移。新飞正是通过大力倡导以人为本的自主型企业文化,才使企业的亲和力、向心力、凝聚力不断提升,才使企业的团队精神得以充分发挥;新飞正是通过大力倡导全员学习的学习型企业文化,才使企业的创新能力不断增强,企业的核心竞争力不断提高,从而使新飞的经营业绩大幅度攀升。在新飞的在新飞的每个角落有着不同的格言。新飞的企业精神:学习,创新,团队,激情。新飞公司经营理念:诚信经营,永续发展,成就员工,服务社会。新飞员工座右铭:新飞靠我们振兴,我们靠新飞发展。新飞环境管理格言:胸怀蓝色理想,创造绿色世界。新飞学习教育理念:全员学习,提高素质,打造现代企业团队;员工学习化生存,企业教育化经营。新飞公司团队精神:依靠学习,依靠团队,依靠用人。2.3 产品介绍河南新飞电器有限公司是以冰箱、冷柜、空调为主导产品的现代化白色家电制造企业,是中国最大的绿色无氟冰箱生产基地。自1986年投产电冰箱以来,新飞冰箱已从投产之初的一个系列、三个品种发展到现在的80大系列1000多个花色品种,产品涵盖直冷、风冷、风直混合制冷、无氟制冷、半导体制冷等多个领域,各项性能指标均居国内同类产品先进水平。目前,新飞已形成冰箱、冷柜、家用空调器等白色家电多元化产品体系。作为国际化节能专家,新飞一直以领先行业的视野远见未来,相继推出“欧洲能效A+”、“双冠王”等系列冰箱,节能健康,双冠天下。 (a) 8CHA系列 (b)节能王系列 BCD-179CH (c) MC系列 BCD-218MC (d) 天尊系列 (e) 2M系列图2-1 新飞生产的冰箱产品新飞空调在空调遥控器上创新设计出“26C按键”,只需轻轻一按,即为您轻松实现健康又节能的理想状态,带来节能、健康、舒适、静音的多重享受。 (a)变频王系列 (b) 倾爽系列 (c) 风范王系列 (d) 新风采系列 (e) 蓝魅系列图2-2 新飞生产的空调产品2001年2月,新飞冰箱被国家质量技术监督局认定为首批国家免检产品;2001年9月,新飞冰箱被中国名牌战略推进委员会认定为首批“中国名牌产品”;2002年5月,新飞冰箱首批获得3C认证;2002年9月,新飞冷柜被中国名牌战略推进委员会认定为“中国名牌产品”。2003年11月,在“首届中国市场产品质量用户满意度调查”活动中,新飞电器同时获得冰箱“品质信誉第一品牌”、冷柜“最具竞争力第一品牌”、空调“最具潜力第一品牌”三项荣誉称号,成为此次活动中获奖最多的家电品牌之一。2004年9月,新飞冰箱蝉联“中国名牌产品”称号;2005年9月,新飞冷柜蝉联“中国名牌产品”称号;2005年9月,新飞成为中部六省第一家“出口免验”企业,获得对外出口的绿色通行证。2005年,新飞的主推产品双冠王冰箱先后荣获“2005年中国家用电子电器产品创新奖”、“2005年中国最值得购买的十大冰洗产品”、“2005年度中国节能健康家电最具影响力品牌”等称号。2006年,新飞推出“双冠王”与F4的升级版,即外观更加靓丽的“超级双冠王”和增添了杀菌功能的“F5保鲜冰箱”;2007年新飞于行业内首家推出获7项国家专利的“水呼吸养鲜”并集节能、杀菌于一体的“水晶双冠王”冰箱,成为集节能、健康、保鲜多功能于一身的全能冠军;2008年,新飞以优化升级的节能新技术、新材料,精工制造出日耗电量仅有0.29度的节能王冰箱并推向市场,挑战冰箱节能极限。2.4 企业技术生产 新飞技术中心建有国家级技术中心、河南省家用制冷设备工程技术研究中心,新飞技术中心具有雄厚的科研实力。各类专业人员及工程技术人员1300多名,专职技术开发人员400余名,中高级职称的有200多名,硕士60多名,博士5名,形成了一支实力卓越的战斗团体。 图2-3 新飞产品大厅 图2-4 冰箱研究所一角 冰箱研究所担任着新飞电器冰箱的设计任务,每年都在不断推出符合市场需求、性能先进、外观新颖的冰箱新产品。冰箱研究所是一支勇于创新、敢于挑战、具有吃苦耐劳精神的团队。新飞冰箱1990年日耗电量为1度,1995年降为0.8度,2000年下降到0.65度,2004年,又及时推出了国际领先的2CH欧洲能效A+系列冰箱,整机耗电量每天0.35度。研发出国际领先的既节能又
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。