peijian.dwg
peijian.dwg

节能车车架设计与优化

收藏

压缩包内文档预览:
预览图
编号:22889449    类型:共享资源    大小:6.06MB    格式:ZIP    上传时间:2019-11-03 上传人:机****料 IP属地:河南
30
积分
关 键 词:
节能 车车 架设 优化
资源描述:
节能车车架设计与优化,节能,车车,架设,优化
内容简介:
毕 业 设 计(论 文)任 务 书 设计(论文)题目:节能车车架设计与优化 学生姓名:任务书填写要求1毕业设计(论文)任务书由指导教师根据各课题的具体情况填写,经学生所在专业的负责人审查、系(院)领导签字后生效。此任务书应在毕业设计(论文)开始前一周内填好并发给学生。2任务书内容必须用黑墨水笔工整书写,不得涂改或潦草书写;或者按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,要求正文小4号宋体,1.5倍行距,禁止打印在其它纸上剪贴。3任务书内填写的内容,必须和学生毕业设计(论文)完成的情况相一致,若有变更,应当经过所在专业及系(院)主管领导审批后方可重新填写。4任务书内有关“学院”、“专业”等名称的填写,应写中文全称,不能写数字代码。学生的“学号”要写全号,不能只写最后2位或1位数字。 5任务书内“主要参考文献”的填写,应按照金陵科技学院本科毕业设计(论文)撰写规范的要求书写。 6有关年月日等日期的填写,应当按照国标GB/T 740894数据元和交换格式、信息交换、日期和时间表示法规定的要求,一律用阿拉伯数字书写。如“2002年4月2日”或“2002-04-02”。毕 业 设 计(论 文)任 务 书1本毕业设计(论文)课题应达到的目的: 本毕业设计课题主要是完成节能车车架的设计和优化。目的是培养学生综合运用所学的基础理论、专业知识和专业基本技能分析以及解决实际问题,训练初步工程设计的能力。根据车辆工程专业的特点,着重培养以下几方面能力:1调查研究、中外文献检索、阅读与翻译的能力;2综合运用基础理论、专业理论和知识分析解决实际问题的能力;3查阅和使用专业设计、维修等手册的能力;4设计、计算与绘图的能力,包括使用计算机进行绘图的能力;掌握一定的测试技术,进行性能分析; 5撰写设计说明书(论文)的能力。 2本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等): 本毕业设计课题的内容:对节能车的车架进行设计,利用三维设计软件进行建模和模拟仿真,对车架在实际应用中出现的问题进行分析研究,对车架进行优化。设计过程中需要对节能车的强度、刚度、舒适性和安全性等方面进行综合分析,车架结构合理、质量轻。本毕业设计课题的要求:1.通过查阅资料,按时完成开题报告书。2.按时完成毕业设计外文参考资料。3.设计出节能车的车架并进行优化。4.能够完成指导老师布置的课题任务,体现一定的创新性。 5.撰写毕业论文,按时参加答辩,在答辩前各项规定的资料要齐全。 毕 业 设 计(论 文)任 务 书3对本毕业设计(论文)课题成果的要求包括图表、实物等硬件要求:1.外文参考资料译文(附原文)不少于3000字;2.有结构完整、合理可靠的技术方案,对节能车的车架进行三维建模,完成符合毕业设计要求的图纸工作量;3.按期完成符合金陵科技学院本科生毕业设计(论文)工作条例要求的毕业设计论文,不少于1万字,能详细说明设计步骤和思路。 4主要参考文献: 1 杨沿平.中国汽车节能思考M.北京:机械工业出版社,2010.2 (日)松本康平.汽车环保技术M.曹秉刚译.西安:西安交通大学出版社,2005.3 欧阳明高.我国节能与新能源汽车发展战略与对策J.科学新闻,2007,11.4 冯美斌.汽车轻量化技术中新材料的发展及应用J.汽车工程,2006,28.5 王桂姣,周建美.节能车车架选型和轻量化设计J.汽车科技,2008,05.6 余志生.汽车理论M.北京:机械工业出版社,2010.7 常明.汽车底盘构造M.北京:北京理工大学出版社,2012.8 王霄峰.汽车底盘设计M.北京:清华大学出版社,2010.9 (美)迈利克.汽车轻量化-材料、设计与制造M.于京诺译.北京:机械工业出版社,2012.10 (日)鸠田幸夫.汽车设计制造指南M.王利荣译.北京:机械工业出版社,2012.11 丁柏群,王晓娟.汽车制造工艺技术M.北京:国防工业出版社,2008.12 关文达.汽车构造M.北京:清华大学出版社,2014.13 刘玉梅.汽车节能技术与原理M.北京:机械工业出版社,2009.14 李平,谌海霞.现代汽车环保与节能技术的发展J.公路与汽运,2006,4(2):15任朝军.UG NX 8.5中文版机械设计从零开始M.北京:电子工业出版社,2014.16任军学,田卫军.UG机械设计经典实例详解M.北京:电子工业出版社,2008.17王新荣,陈永波.有限元法基础及ANSYS应用M.北京:科学出版社,2008.毕 业 设 计(论 文)任 务 书5本毕业设计(论文)课题工作进度计划:2015.12.05-2016.01.15确定选题,填写审题表;指导教师下发任务书,学生查阅课题相关参考文献、资料,撰写开题报告。2016.01.16-2016.02.25提交开题报告、外文参考资料及译文、毕业设计(论文)大纲;开始毕业设计(论文)。2016.02.26-2016.04.15具体设计或研究方案实施,提交毕业设计(论文)草稿,填写中期检查表。2016.04.16-2016.05.05完成论文或设计说明书、图纸等材料,提交毕业设计(论文)定稿,指导老师审核。2016.05.06-2016.05.13提交毕业设计纸质文档,学生准备答辩;评阅教师评阅学生毕业设计(论文)。2016.05.13-2016.05.26根据学院统一安排,进行毕业设计(论文)答辩。所在专业审查意见: 课题内容和要求符合毕业设计要求。 负责人: 2016 年 4 月 14 日毕 业 设 计(论 文)开 题 报 告 设计(论文)题目:节能车车架设计与优化 学生姓名: 开题报告填写要求 1开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效;2开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见;3“文献综述”应按论文的框架成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇(不包括辞典、手册);4有关年月日等日期的填写,应当按照国标GB/T 740894数据元和交换格式、信息交换、日期和时间表示法规定的要求,一律用阿拉伯数字书写。如“2004年4月26日”或“2004-04-26”。5、开题报告(文献综述)字体请按宋体、小四号书写,行间距1.5倍。 毕 业 设 计(论文) 开 题 报 告 1结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写不少于1000字左右的文献综述: 一、前言由于当代社会对节能车的需求,为此针对节能车车架进行设计和优化,减轻节能车整车的质量。车架是汽车的装配基体和承载基体,其功用是支承连接汽车的各总成或零部件,同时承受着传给它的各种力和力矩。因此,车架要有足够的强度、弯曲刚度和适当的扭转刚度,同时车架自身的质量要尽量减轻,以减轻整车的质量。所以节能车车架的轻量化设计也成为了汽车研究领域的研究热点之一。本次毕业设计对节能车车架的材料、类型进行合理选择以及外廓尺寸的确定,然后利用UG软件进行三维建模并且对车架的三维模型进行ANSYS有限元分析。二、车架设计优化的关键及意义在整车质量中,车架是轻量化设计的主要对象之一,故车架的轻量化程度对于节能车的节能成效来讲固然重要。而车架轻量化程度还不得不考虑其刚度,强度等性能指标。因此,需在保证足够刚度和强度的前提下,采用较优的的结构、材料使车架质量达到最轻。完成车架优化设计的关键是建立合理的力学模型、优化参数模型、有限元模型。传统的设计方法很难综合考虑车架的复杂受力及变形的情况,而有限元正好能够解决这一问题。通过有限元的静态分析,能够得出车架的抗弯和抗扭特性,运用有限元对初步设计的车架三维模型进行辅助分析将大大提高车架的开发效能和车架的性能。车架的开发设计的流程为:以边梁式车架为出发点,设计新的车架结构;选用合适的材质,建立车架的三维模型,利用有限元软件对车架进行3D网格划分;确定载荷及约束条件并且求出关键部位的变形。车架设计优化的意义:(1)经济意义体现:随着我国经济全球化的不断加快,我国对国际能源及原材料市场的依赖程度不断加大,从目前来看,国际油价和工业材料的价格也是不断攀升,我国经济在能源领域比较棘手。车架的轻量化能够减少整车质量,从而能使汽车达到节能减排的目的,节约了能源和资本,从而具有一定的现实意义和经济意义。(2)社会意义体现:自从工业革命以来,世界工业发展飞速,能源开采量逐年增高,汽车工业发展尤为迅速,汽车保有量也呈递增趋势。有限的能源如何能用的更长久是值得人类和社会反思的事情,节能车的普及使得能源的利用率提高,车架的优化设计是使得汽车能够节能减排的主要手段之一,因此车架的优化设计的社会意义很大。三、结语本次的毕业设计的课题是节能车车架设计与优化,通过查阅大量的相关资料,了解车架的设计过程和优化方法,熟悉掌握UG和ANSYS软件在设计中的应用,对以后的工作有一定的帮助。 参考文献:1 杨沿平.中国汽车节能思考M.北京:机械工业出版社,2010.2 (日)松本康平.汽车环保技术M.曹秉刚译.西安:西安交通大学出版社,2005.3 欧阳明高.我国节能与新能源汽车发展战略与对策J.科学新闻,2007,11.4 冯美斌.汽车轻量化技术中新材料的发展及应用J.汽车工程,2006,28.5 王桂姣,周建美.节能车车架选型和轻量化设计J.汽车科技,2008,05.6 余志生.汽车理论M.北京:机械工业出版社,2010.7 常明.汽车底盘构造M.北京:北京理工大学出版社,2012.8 王霄峰.汽车底盘设计M.北京:清华大学出版社,2010.9 (美)迈利克.汽车轻量化-材料、设计与制造M.于京诺译.北京:机械工业出版社,2012.10 (日)鸠田幸夫.汽车设计制造指南M.王利荣译.北京:机械工业出版社,2012.11 丁柏群,王晓娟.汽车制造工艺技术M.北京:国防工业出版社,2008.12 关文达.汽车构造M.北京:清华大学出版社,2014.13 刘玉梅.汽车节能技术与原理M.北京:机械工业出版社,2009.14 李平,谌海霞.现代汽车环保与节能技术的发展J.公路与汽运,2006,4(2):15任朝军.UG NX 8.5中文版机械设计从零开始M.北京:电子工业出版社,2014.16任军学,田卫军.UG机械设计经典实例详解M.北京:电子工业出版社,2008.17王新荣,陈永波.有限元法基础及ANSYS应用M.北京:科学出版社,2008.毕 业 设 计(论文) 开 题 报 告 2本课题要研究或解决的问题和拟采用的研究手段(途径): 一、研究内容:分析节能车车架的结构形式及工作原理,进行总体方案设计,完成车架的总体设计及关键零部件设计及计算校核,建立节能车车架的UG三维实体模型,并且将三维模型通过专用模型数据转换接口导入ANSYS软件进行有限元受力分析,获得车架在载荷工况作用下的应力、应变及变形状况。二、研究手段: 1、查阅相关的书籍、期刊,掌握节能车转向和车架设计,分析相关知识。 2、熟练掌握UG、ANSYS软件建模与仿真模块。 3、拟定论文大纲并按照论文大纲逐步实施。 4、遇到问题及时与相关专业人士和指导老师进行交流并及时解决。 5、总结经验与收获。毕 业 设 计(论文) 开 题 报 告 指导教师意见:1对“文献综述”的评语: 该生广泛查阅了相关文献资料,能将所搜集到的文献资料归纳、整理及分析比较,并进行了一定的总结。撰写的文献综述符合毕业设计课题研究的方向,与所学专业联系紧密,符合文献综述的基本要求。 2对本课题的深度、广度及工作量的意见和对设计(论文)结果的预测: 本课题深度广度适中,工作量符合毕业论文要求;充分利用毕业设计阶段进一步学习,应当能够如期完成毕业论文工作,同意开题。 3.是否同意开题: 同意 不同意 指导教师: 2016 年 04 月 14 日所在专业审查意见:符合毕业设计(论文)要求,同意开题。 负责人: 2016 年 04 月 14 日毕 业 设 计(论 文)外 文 参 考 资 料 及 译 文译文题目: Design and Finite Element Analysis of an Automotive Clutch Assembly 汽车离合器总成的设计与有限元分析 学生姓名:专业:所在学院:指导教师:职称:Design and Finite Element Analysis of an Automotive Clutch AssemblyAbstractThe purpose of a clutch is to initiate motion or increase the velocity of a body generally by transferring kinetic energy from another moving body. The mass being accelerated is generally a rotating inertial body. The present paper deals with designing a friction clutch assembly using Solid Works Office Premium software. The assembly comprises of the clutch plate, the pressure plate and a diaphragm spring. Static structural analysis was done using ANSYS software. The plots for equivalent stress, total deformation and factor of safety were obtained and the design was continuously optimized till a safe design was obtained. Uniform wear theory was used for the analysis. The material assignment is as follows: clutch plate- structural steel, pressure plate- cast iron GS-70-02 and diaphragm spring- spring steel. The friction material assumed is molded asbestos opposing cast iron/ steel surface.Keywords: Design, Finite Element Analysis, Clutch assembly.1. IntroductionThe finite element analysis is the most widely accepted computational tool in engineering analysis. Through solid modeling, the component is described to the computer and this description affords sufficient geometric data for construction of mesh for finite element modeling.The main clutch of heavy vehicles is the basic execution component,which realizes the vehicle to start,shift,move and stop.Separating the main clutch will prevent the transmission device and the engine from being damaged by too heavy load during the violent change of the load over the heavy vehicle.1.1 ClutchA Clutch is a machine member used to connect the driving shaft to a driven shaft, so that the driven shaft may be started or stopped at any time, without stopping the driving shaft. A clutch thus provides an interruptible connection between two rotating shafts. Clutches allow a high inertia load to be started with a small power. Clutches are also used extensively in production machinery of all types.1.2 Pressure PlatePressure plate is a cast iron plate that provides a pivot fulcrum for the diaphragm spring, a friction surface for the disc and a mounting surface for the drive straps. Pressure plates are round, metallic devices containing springs and fingers, or levers and controlled by the release fork connected to the shifter. All of the clutch components are enclosed in the bell housing of the transmission, between the rear of the engine and the front of the gearbox. The pressure plate pushes the clutch disc against the constantly spinning engine flywheel. The clutch disc, therefore, is either stationary or rotating at the same speed as the flywheel. Friction material, similar to that found on brake pads and brake drums, causes the clutch disc to spin at the same speed as the engine flywheel. It is this friction between clutch disc and flywheel that allows the engine torque to drive the wheels.1.3 Diaphragm SpringBhandari (2008) explained in his experiment that Diaphragm spring is a flat, spring-steel disc compressed between the cover and pressure plate that, when pushed by the release bearing, engages and disengages the clutch. The diaphragm spring is a single thin sheet of metal which yields when pressure is applied to it. When pressure is removed the metal springs back to its original shape. The centre portion of the diaphragm spring is slit into numerous fingers that act as release levers. When the clutch assembly rotates with the engine these weights are flung outwards by centrifugal forces and cause the levers to press against the pressure plate. During disengagement of the clutch the fingers are moved forward by the release bearing. The spring pivots over the fulcrum ring and its outer rim moves away from the flywheel. The retracting spring pulls the pressure plate away from the clutch plate thus disengaging the clutch.When the driver steps on the clutch pedal, a number of springs in the pressure plate are compressed by multiple (most often three) fingers. This compression of the spring(s) pulls the pressure plate and the clutch disc away from the flywheel and thus prevents the clutch disc from rotating. When the clutch disc is stationary, the driver can shift into the proper gear and release the clutch pedal. When the pedal is let up, the fingers in the pressure plate release their grip and the spring(s) expand to push the pressure plate into the clutch disc, there by engaging the flywheel. This release process is often called the “clamp load”.It shall be noted that in Diaphragm Springs, Residual stress occurs in either front or rear surface, or both surfaces used for automobile clutches due to shot peening. Studies reveal that the residual stress remarkably affects the load deflection (P) curve of diaphragm springs.2. Static Structural Analysis2.1 Equivalent Stress (Von Mises Stress)While the Equivalent Stress at a point does not uniquely define the state of stress at that point, it provides adequate information to assess the safety of the design for many ductile materials. Unlike stress components, the Equivalent Stress has no direction. It is fully defined by magnitude with stress units. To calculate the factors of safety at different points, the Von Mises Yield Criterion is used, which states that a material starts to yield at a point when the Equivalent Stress reaches the yield strength of the material.Equivalent stress is related to the principal stresses by the equation:(S1-S2)2 + (S2-S3)2 + (S3-S1)2 = 2Se2(1)Equivalent stress is often used in design work because it allows any arbitrary three -dimensional stress state to be represented as a single positive stress value. Equivalent stress is part of the maximum equivalent stress failure theory used to predict yielding in a ductile material.2.2 Total DeformationPhysical Deformations can be calculated on and inside a part or an assembly. Fixed supports prevent Deformation; locations without a fixed support usually experience deformation relative to the original location. Deformation is calculated relative to the part or assembly in world coordinate system.U2 = (Ux2 + Uy 2 + Uz2)(2)Ux, Uy and Uz are the three components of Deformation.2.3 Stress Tool (Factor of Safety)The following stress tools are available in the solution object:1) Maximum Equivalent Stress Safety Tool2) Maximum Shear Stress Safety Tool3) Mohr-Coulomb Stress Safety Tool4) Maximum Tensile Stress Safety ToolIn the present analysis Maximum Equivalent Stress Safety Tool has been used. The Maximum Equivalent Stress Safety tool is based on the maximum equivalent stress failure theory for ductile materials, also referred to as the Von Mises theory, octahedral shear stress theory, or maximum distortion (or shear strain) energy theory. Out of the four failure theories supported by Simulation, this theory is generally considered as the most appropriate for ductile materials such as aluminum, brass and steel.The theory states that a particular combination of principal stresses cause failure if the maximum equivalent stress in a structure equals or exceeds a specific stress limit:Se Slimit.Expressing the theory as a design goal:Se / Slimit 1If failure is defined by material yielding, it follows that the design goal is to limit the maximum equivalent stress to be less than the yield strength of the material:Se / Sy 1An alternate but less common definition states that fracturing occurs when the maximum equivalent stress reaches or exceeds the ultimate strength of the material:Se / Su 1Safety Factor:Fs = Slimit / Se.Using the Equivalent Stress (Von Mises Stress), the Total Deformation and the Stress Tools; it was determined whether the parts would yield under loading conditions or not. The design was continuously optimized during the process.2.4 Design ConsiderationsA clutch of good design must have adequate torque capacity, ability to withstand and dissipate heat and should have a long life. The clutch must have positive release, smooth engagement, low operating force and ease of repair. To permit easy engagement and to prevent excessive wear during the engagement period the facing should be flexible and the largest possible area should be in contact during engagement. To overcome the inertia of the driven parts, when starting, clutches should be designed for overload capacities of 75 to 100 percent.3. Finite Element Analysis of Clutch AssemblyThe finite element analysis of clutch assembly was carried out in the following steps:1) Calculation of the dimensions of the clutch assembly2) Material selection for the clutch plate, pressure plate and diaphragm spring3) Creating a three-dimensional model of clutch assembly (clutch plate, pressure plate and diaphragm spring) in Solid Works Office Premium Software4) Exporting the model to ANSYS for simulation and dividing it into small elements5) Defining the material property and geometry data 6) Defining the Environment (a combination of loads and supports) 7)Submitting the Model to the ANSYS solver; Obtaining Solution (Equivalent stress, Total Deformation and Stress Tool) and evaluation of the results3.1Calculation of the dimensions of clutch assemblyFirst of all the values of coefficient of friction and pressure for clutch were selected from Table 1.It shall be noted that for a friction clutch, during its life time, changes in the friction materials topography occur. that these changes will influence the friction characteristics of the clutch, and therefore affect the performance of the transmission system.Table 1: The values of different parameters for Moulded Asbestos on Cast Iron or SteelContact SurfacesCoefficient of frictionMax Temp,BearingPressureCommentCNWearing surfaceOpposing surfaceWetDryMolded AsbestosCast Iron or Steel0.08-0.120.2-0.52600.34-0.98Wide field of applicationsSelecting, Coefficient of friction = 0.2857 and Bearing Pressure F = 0.7 NTake:Do =180 (Keeping Do constant and calculating the values of other dimensions)The ratio of inner to outer diameter for maximum torque transmission:X= (Di/Do) = 0.48; for Pressure= constant.X= (Di/Do) = 0.577; for Pressure= constant.Where:Di = Inner diameterDo = Outer diameterAssuming uniform wear theory:Therefore; Di=Do*0.577Di=180*0.577Di=103.86Fa= *F*Di*(Do-Di)/2Fa=3.14*0.7*103.86*(180-103.86)/2Fa=8695.190 NMt=n*Fa*(Dm)/2Mt= 2*0.2857 *8695.190*(180+103.86)/2)/2Mt = 352600 N-mmd= (16*Mt)/ (pi*td) 1/3d = (16*352600)/(3.14*40)1/3d = 35.54 mmWhere:Fa = Normal Force Mt = Torque Transmitted3.2 Material SelectionThe following materials were selected for finite element analysis:1)Clutch Plate: Structural Steel.2)Pressure Plate: Cast Iron GS-70-02.3)Diaphragm Spring: Spring Steel.The table 2 shows the mechanical properties of the above three selected materials.Table 2: The mechanical properties of the three selected materialsS. No.MaterialElasticModulus (Pa)PoissonRatioCoefficien ofThermal ExpansionDensity kg/m31.Structural Steel2.0x10111.31.20x10-5/C78502.Cast IronGS-70-021.8 x10110.281.229 x 10-4/C74003.Spring Steel2.1 x10110.33.26 x 10-6/ C78503.3 Development of 3-D model for clutch assembly in Solid Works Software3.3.1. Clutch PlateIt is an assembly formed from: a Plate, Friction Lining and a Splined Hub.1) Plate: The features used in Solid Works are Extrude, Cut-Extrude, Circular Pattern and Fillets.2) Friction lining: The features used in Solid Works are Extrude, Cut-Extrude.3) Splined Hub: The features used in Solid Works are Extrude, Circular Pattern.Clutch Plate Assembly: Mate feature in Solid Works was used to join the three components.3.3.2. Pressure PlateIt is mated with friction lining and the features used in Solid Works are Assembly Mates, Loft (extending over 4 planes), Cut-Loft (extending over 3 planes) Cut-Extrude.3.3.3. Diaphragm SpringThe features used in Solid Works are Loft (extending over 6 planes), Shell, Cut-Extrude, Circular pattern, Extrude. The figure 1 shows the finite element model of the clutch assembly (Exploded View):Fig. 1. The finite element model of the clutch assembly3.4 Finite element analysis of each part of clutch assembly using ANSYS software3.4.1 Clutch PlateA Mesh was created (Dividing the model into small elements). Material property and geometry data were defined (as per the section 3.1 and 3.2). The Environment (a combination of loads and supports) was defined is follows:Loads: Moment: 176.3 N-m (each side); Pressure: 0.7 MPa.The Model was submitted to the ANSYS solver and the solutions for the Equivalent von mises stress, Total Deformation and Stress Tool were obtained. The figure 2 shows the distribution of equivalent von-mises stress over the clutch plate. The figure 3. shows the distribution of total deformation over the clutch plate. The figure 4 shows the distribution of Factor of Safety (Stress Tool) over the clutch plate. The figure 4 shows that the minimum factor of safety for the clutch plate is greater than10.Fig. 2 The equivalent von-Mises stress plot for the clutch plateFig. 3 The Total Deformation plot for the clutch plateFig. 4. The Factor of Safety (Stress Tool) plot for the clutch plate3.4.2 Pressure PlateThe model of the pressure plate was meshed. The material property and geometry data were defined as per section 3.1 and 3.2. The Environment (a combination of loads and supports) was defined is follows:Loads: Moment = 356.2 N-mPressure 1 = 0.7 MPa; Pressure 2 = 0.75 MPa.(Pressure 1 acts on the back surface of the pressure plate; it is the reaction pressure from the clutch plate, and Pressure 2 acts on the front portion of the pressure plate facing the diaphragm spring)The Model was submitted to the ANSYS solver and solutions were obtained (Equivalent von-Mises stress, Total Deformation and Stress Tool). The figure 5 shows the distribution of equivalent von-Mises stress over the entire pressure plate. The figure 6 shows the distribution of total deformation over the entire pressure plate. The figure 7 shows the distribution of factor of safety (Stress Tool) over the entire pressure plate. The figure 7 shows that the minimum factor of safety for the pressure plate is 1.797. Fig. 5. The equivalent von-Mises stress plot for the pressure plateFig. 6 The total deformation plot for the pressure plateFig 7. The Factor of Safety (Stress Tool) plot for the pressure plate3.4.3 Diaphragm SpringThe model of diaphragm spring was meshed. The material property and geometry data were defined as per section 3.1 and 3.2. The Environment was defined is follows:Loads: Moment = 356.2 N-m; Force = 10 N.The Model was submitted to the ANSYS solver and Solutions for equivalent von -Mises stress, Total Deformation and Stress Tool were obtained. The figure 8. shows the distribution of equivalent von-Mises stress over the entire diaphragm spring.The figure 9 shows the distribution of total deformation over the entire diaphragm spring. The figure 10 shows the distribution of factor of safety (Stress Tool) over the entire diaphragm spring. The figure 10 shows that the minimum factor of safety for the diaphragm spring is 2.1657.Fig. 8. The equivalent von-Mises stress plot for the diaphragm springFig. 9. The total deformation plot for the diaphragm springFig. 10. The Factor of Safety (Stress Tool) plot for the diaphragm springConclusionsIn the present work a friction clutch assembly was designed and a model of the same was created in Solid Works Office Premium Software. It consist of three parts viz. clutch plate, pressure plate and diaphragm spring. Finite element analysis was performed in ANSYS software. The finite element analysis was carried out in three steps: Pre-processing, Solving and Post processing. The plots for Equivalent von-Mises stress, total deformation and stress tool (factor of safety) were calculated and analyzed. The finite element analysis showed that the designed friction clutch assembly is safe.汽车离合器总成的设计与有限元分析摘要离合器的作用就是依靠转移来自另一个运动物体的动能来启动或加速,离合器的加速通常是惯性旋转。本论文涉及了利用可靠的高端办公软件设计一个摩擦离合器,离合器总成由程度从动盘、压盘和膜片弹簧组成。静态结构分析由ANSYS软件完成,求出等效应力的划分、总变形和安全系数,并且不断的优化直到得到一个安全可靠的设计。均匀磨损理论用于分析,材料使用如下:从动盘结构钢、压盘铸铁、膜片弹簧弹簧钢。假设摩擦材质是不同于模制石棉的铸铁/钢表面。关键词:设计、有限元分析、汽车离合器总成。1、 介绍有限元分析是最被广泛接受的用于工程分析的计算工具。通过给电脑提供实体模型、组件描述,并且此描述为建立有限元模型的网格提供了足够的几何数据。重型车辆的主离合器的基本执行组件是用来实现车辆的启动、转变、移动和停止,分离主离合器将防止传动装置和负荷剧烈变换期间的发动机受到重载而损坏。1.1离合器离合器是一种用来连接主动轴和从动轴的机械构件,以便从动轴可能随时启动或停止,而主动轴没有停止。因此,离合器提供了一个可中断的两个转动轴之间的连接。离合器允许高惯性负荷始于小功率,离合器也被广泛用于所有类型的机械生产。1.2压盘压盘是一个铸铁盘,它给膜片弹簧、摩擦片表面和驱动皮带的安装提供了一个主支点。压盘是圆环形的,金属设备包含弹簧、指针或杠杆,通过分离叉连接到移动位置。所有的离合器组件都封闭在变速器外壳内,安装在发动机后面和变速器前面。压盘将离合器圆盘推向不断旋转的发动机飞轮,因此,离合器盘不是静止的就是和飞轮同转数旋转,正是离合器片与飞轮间的摩擦让发动机转矩驱动车轮。1.3膜片弹簧班达里(2008)在实验中解释到膜片弹簧是平的,当推动分离轴承,离合器就啮合或分离,在覆盖面和压盘之间的膜片弹簧被压缩。当施加压力时,膜片弹簧是一层很薄的金属片;当撤销压力后回到原来的形状。膜片弹簧中部的棘爪裂缝作为分离杠杆。离心力将发动机的离合器总成的强度往外扔,导致杠杆挤压压盘,依靠分离轴承的前移使棘爪脱离。弹簧的轴心在支撑环之上,它的外轮缘远离飞轮,回位弹簧拉着压盘远离离合器片,从而分离离合器。 当驾驶员踩下离合器踏板,由多个棘爪(最多3个)压缩压盘上的若干数量的弹簧,这种压缩弹簧将压盘和离合器片拉离飞轮,从而阻止离合器圆盘的旋转,当离合器圆盘静止驾驶员可以切换合适的档位;而松开离合器踏板,压盘上的棘爪释放,弹簧扩大到推动离合器圆盘上的压盘,以上工作通过飞轮,这种释放过程通常被称为“加紧力”。应当注意在弹簧膜片中,残余应力发生在前面或者后面,由于喷丸硬化两者都用于汽车离合器。研究表明,残余应力显著影响膜片弹簧的载荷挠度曲线。2、 静态结构分析2.1等效应力(冯.米塞斯应力)在一个点上的等效应力无法唯一定义在这个阶段上是应力状态,它为许多塑新材料提供了足够的信息来评估这个设计的安全性。不同于压力组件,等效应力是没有方向的,它的压力大小和单位是充分明确的。材料开始在某一点屈服时,当等效应力达到材料的屈服强度时使用冯.米塞斯屈服准则来计算不同点的安全性。等效应力与主应力的关联方程式:(S1-S2)2+(S2-S3)2+(S3-S1)2=2Se2 等效应力通常应用于设计工作,因为它允许将一些任意的三维应力状态表现为一个正的压力值,等效应力是最大等效应力用于预测材料屈服的一部分强度理论。2.2总变形在某个部分或一个组件内的物理变形是可以计算的,固定支架可以防止变形,相对于没有固定支点的原始位置经常变形,在坐标系中的部件或组件的变形可以被计算:U2=(Ux2+Uy2+Uz2) Ux、Uy、Uz是变形的三个部分2.3应力工具(安全系数)以下是应力工具可解决的对象:1) 最大等效应力2) 最大剪应力3) 最大拉应力4) 摩尔库仑应力目前最大等效应力分析工具已被使用。最大等效应力工具是基于塑性材料最大等效应力强度理论的,也参考了等效应力、八面体剪应力理论或最大变形(剪切应力)强度理论。由于这四个强度理论的仿真支持,这个理论被认为是最适合塑性材料的比如铝、黄铜和钢铁。这个理论表明如果一个构件的最大等效应
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:节能车车架设计与优化
链接地址:https://www.renrendoc.com/p-22889449.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!