05毕业设计论文.doc

客车车架轻量化的研究与设计

收藏

压缩包内文档预览:(预览前20页/共35页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:22889457    类型:共享资源    大小:2.72MB    格式:ZIP    上传时间:2019-11-03 上传人:机****料 IP属地:河南
30
积分
关 键 词:
客车 车架 量化 研究 设计
资源描述:
客车车架轻量化的研究与设计,客车,车架,量化,研究,设计
内容简介:
毕 业 设 计(论 文)任 务 书 设计(论文)题目:客车车架轻量化的研究与设计 学生姓名:任务书填写要求1毕业设计(论文)任务书由指导教师根据各课题的具体情况填写,经学生所在专业的负责人审查、系(院)领导签字后生效。此任务书应在毕业设计(论文)开始前一周内填好并发给学生。2任务书内容必须用黑墨水笔工整书写,不得涂改或潦草书写;或者按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,要求正文小4号宋体,1.5倍行距,禁止打印在其它纸上剪贴。3任务书内填写的内容,必须和学生毕业设计(论文)完成的情况相一致,若有变更,应当经过所在专业及系(院)主管领导审批后方可重新填写。4任务书内有关“学院”、“专业”等名称的填写,应写中文全称,不能写数字代码。学生的“学号”要写全号,不能只写最后2位或1位数字。 5任务书内“主要参考文献”的填写,应按照金陵科技学院本科毕业设计(论文)撰写规范的要求书写。 6有关年月日等日期的填写,应当按照国标GB/T 740894数据元和交换格式、信息交换、日期和时间表示法规定的要求,一律用阿拉伯数字书写。如“2002年4月2日”或“2002-04-02”。毕 业 设 计(论 文)任 务 书1本毕业设计(论文)课题应达到的目的: 通过本次毕业论文要求学生能够利用有限元软件对客车车架轻量化进行分析与研究,其目的在于培养学生综合分析和解决相关问题的独立工作能力,拓宽和深化学生的知识;培养学生正确使用技术资料,国家设计手册;正确进行数据处理,编写技术文件等方面的工作能力;使学生养成良好的工作态度,工作作风。同时掌握进行调查研究、面向实际、面向生产,面向工人和工程技术人员学习的工作方法。 2本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等): 介绍客车车架轻量化的现状和发展趋势,根据车架参数对客车车架进行三维建模 ,对建立的模型导入有限元分析软件,然后确定约束与载荷,对车架进行应力分析与模态分析,在仿真结果的基础上对车架进行轻量化设计计算,然后用软件对车架重新进行校核。最后得出轻量化车架三维数据。要求研究内容正确、完整,符合论文撰写规范,工作量充足。毕业设计文笔流畅,叙述清晰。应具备计算机一台,Ansys和Catia软件,相关文献从校园期刊网获得。 毕 业 设 计(论 文)任 务 书3对本毕业设计(论文)课题成果的要求包括图表、实物等硬件要求:按期完成一篇符合金陵科技学院论文规范的毕业设计(毕业论文)1.5万字以上(并附相关的分析数据,图表),能详细说明研究思路;能有结构完整,合理可靠的技术方案;能有相应的设计说明,图纸和技术参数说明,并将验证结果在文中列出。 4主要参考文献: 1. 陈德玲.YBL6100C43aH客车车架有限元分析与试验研究 D.南京理工大学20032.王波.电动客车轻量化探讨J.客车技术与研究.2012(02)3.闫循波.基于ANSYS的SUV型客车车架强度计算及优化设计J.新技术新工艺.2013(09)4.段本明.基于动力学分析的车架轻量化研究现状J.机械设计与制造工程.2013(04)5. 赵紫纯.车架结构轻量化设计研究D.中北大学 20136.陈得意.基于相对灵敏度分析的中型客车车架轻量化设计J.汽车科技.2014(06)7.薛大维.客车车架有限元静力学分析J.哈尔滨工业大学学报.2006(07)8.赵文杰.某客车车架的动态特性分析及匹配研究D.合肥工业大学 20139.陈堃.电动客车车架有限元分析及轻量化设计D.昆明理工大学 201310.木标.某客车车架结构性能分析及优化D.合肥工业大学 201311.王松.某商用客车车架有限元分析与结构优化D.武汉科技大学 201212.曲伟.某中型客车车架动态性能分析与结构优化D.吉林大学 201413.桑璟如.我国客车车架结构设计的发展变化J.汽车科技.2004(02)14.苏庆.运用CAE技术进行某微型客车车架结构的分析与优化设计J.农业装备与车辆工程.2005(12)15.王松.客车车架有限元分析及尺寸优化D.武汉科技大学 2012毕 业 设 计(论 文)任 务 书5本毕业设计(论文)课题工作进度计划:2015.12.05-2016.01.15确定选题,填写审题表;指导教师下发任务书,学生查阅课题相关参考文献、资料,撰写开题报告。2016.01.16-2016.02.25提交开题报告、外文参考资料及译文、毕业设计(论文)大纲;开始毕业设计(论文)。2016.02.26-2016.04.15具体设计或研究方案实施,提交毕业设计(论文)草稿,填写中期检查表。2016.04.16-2016.05.05完成论文或设计说明书、图纸等材料,提交毕业设计(论文)定稿,指导老师审核。2016.05.06-2016.05.13提交毕业设计纸质文档,学生准备答辩;评阅教师评阅学生毕业设计(论文)。2016.05.13-2016.05.26根据学院统一安排,进行毕业设计(论文)答辩。所在专业审查意见: 通过 负责人: 2016 年 1 月 22 日毕 业 设 计(论 文)开 题 报 告 设计(论文)题目:客车车架轻量化的研究与设计 学生姓名:开题报告填写要求 1开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效;2开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见;3“文献综述”应按论文的框架成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇(不包括辞典、手册);4有关年月日等日期的填写,应当按照国标GB/T 740894数据元和交换格式、信息交换、日期和时间表示法规定的要求,一律用阿拉伯数字书写。如“2004年4月26日”或“2004-04-26”。5、开题报告(文献综述)字体请按宋体、小四号书写,行间距1.5倍。 毕 业 设 计(论文) 开 题 报 告 1结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写不少于1000字左右的文献综述: 一、前言随着全球汽车保有量的与日俱增,轻型节能环保型车辆成为当今汽车工业研究开发的重点。车架是汽车各总成的安装基体,它将发动机、底盘和车身等总成连成一个有机的整体,即将各总成组成为一辆完整的汽车。车架的功用是支撑联接汽车的各零部件,并承受来自车内外的各种静载荷和动载荷。其主要特点是:满足汽车总体布置要求,具有足够强度,适当刚度和轻质量,贴近地面。汽车车架总成是汽车主要承载部件,其承受着所装载的全部质量,汽车大部分部件,例如发动机总成、驾驶室货箱和传动总成等都与车架直接相连,传递着全部驱动力和制动力,车架总成是汽车的重要总成之一,其结构的强弱直接影响到整车的性能和使用寿命。客车车架轻量化的目的在于提高发动机的效率,减少车辆行驶阻力,减轻汽车质量并节省材料。就整车而言,当车架的重量降低之后自然会改善整车的动力性和经济性等性能。综上所述,研究车架并使其轻量化具有很重要的现实意义。二、主题 随着现代汽车设计要求的日益提高,客车车架的设计与制造是开发新车型最重要的组成部分。现代车架设计已发展到包括有限元法、优化、动态设计等在内的计算机分析、预测和模拟阶段,计算机技术与现代电子测试技术相结合已成为汽车车架研究中十分行之有效的方法。目前,车架的轻量化研究已经非常成熟,借助先进的计算机技术,已经从传统的模仿和依靠经验为主转变为基于有限元的正向分析设计。在车架的轻量化研究中,真实而准确地施加车架载荷是检验轻量化研究可靠与否的关键步骤,目前单纯施加静载荷或者用动载荷系数来表示车架所受的动态载荷的研究方法,并不能准确描述车架的实际受力工况,更不能描述车架刚性运动与自身变形之间的相互影响的关系。段本明的基于动力学分析的车架轻量化研究现状一文中指出:为真实准确地获得车架动态载荷,并基于此进行车架轻量化研究,提出了基于刚柔耦合动态仿真的方法来对车架轻量化进行研究,即通过车架的动力学分析得到车架真实动态载荷。通过此种方法更能准确描述车架实际的工况,轻量化结果可信度更高。陈堃的电动客车车架有限元分析及轻量化设计一文对电动客车的车架进行了有限元静态和动态的分析,通过得到的计算结果表明该车架有较大的优化空间,并对其进行了轻量化设计。以强度为约束条件,以各个梁的厚度为设计变量,对车架进行了轻量化设计,并对新车架又重新进行了计算分析,验证了设计的合理性。经过轻量化设计后,不仅在静态和动态性能方面仍然满足使用要求,并且质量得到了减轻,取得了较好的轻量化结果。闫循波的基于ANSYS的SUV型客车车架强度计算及优化设计一文利用ANSYS软件,计算了客车车架的强度和刚度;并在此分析的基础上,建立了车架的优化设计空间。以车架最大应力作为优化设计的性能约束,以车架质量作为优化目标,使车架在满足使用要求的前提下达到质量最轻化,为车架的优化设计提供了可行的方法。陈得意的基于相对灵敏度分析的中型客车车架轻量化设计一文中建立了某客车车架的有限元模型,分析了车架的弯曲和扭转刚度。对车架各构件进行了灵敏度分析,取质量灵敏度与刚度灵敏度之比较大的构件厚度作为设计变量,以质量最小作为目标函数,以位移为约束条件,对车架进行了轻量化设计。优化结果表明,基于灵敏度分析的优化设计方法可行,轻量化效果明显。三、结语课题介绍客车车架轻量化的现状和发展趋势,根据车架参数对客车车架进行三维建模 ,对建立的模型导入有限元分析软件,然后确定约束与载荷,对车架进行应力分析与模态分析,在仿真结果的基础上对车架进行轻量化设计计算,然后用软件对车架重新进行校核。最后得出轻量化车架三维数据。客用车辆的使用特殊性要求车架更加结实可靠寿命长,结构简单和重量轻。因此,对于客车来说,车架轻量化设计是至关重要的。参考文献:1 陈德玲.YBL6100C43aH客车车架有限元分析与试验研究D.南京:南京理工大学,2003.2 王波.电动客车轻量化探讨J.客车技术与研究,2012(02):17243 闫循波.基于ANSYS的SUV型客车车架强度计算及优化设计J.新技术新工艺,2013(09):29314 段本明.基于动力学分析的车架轻量化研究现状J.机械设计与制造工程,2013(04):72745 赵紫纯.车架结构轻量化设计研究D.山西:中北大学,2013.6 陈得意.基于相对灵敏度分析的中型客车车架轻量化设计J.汽车科技,2014(06):27297 薛大维.客车车架有限元静力学分析J.哈尔滨工业大学学报,2006(07):107610788 赵文杰.某客车车架的动态特性分析及匹配研究D.合肥:合肥工业大学,2013.9 陈堃.电动客车车架有限元分析及轻量化设计D.昆明:昆明理工大学,2013.10 木标.某客车车架结构性能分析及优化D.合肥:合肥工业大学,2013.11 王松.某商用客车车架有限元分析与结构优化D.武汉:武汉科技大学,2012.12 曲伟.某中型客车车架动态性能分析与结构优化D.吉林:吉林大学,2014.13 桑璟如.我国客车车架结构设计的发展变化J.汽车科技,2004(02):010314 苏庆.运用CAE技术进行某微型客车车架结构的分析与优化设计J.农业装备与车辆工程,2005(12):273215 王松.客车车架有限元分析及尺寸优化D.武汉:武汉科技大学,2012. 毕 业 设 计(论文) 开 题 报 告 2本课题要研究或解决的问题和拟采用的研究手段(途径): 一、研究问题以某客车车辆基本参数为依据对客车车架进行三维建模 ,对建立的模型导入有限元分析软件,然后确定约束与载荷,对车架进行应力分析与模态分析,在仿真结果的基础上对车架进行轻量化设计计算,然后用软件对车架重新进行校核。最后得出轻量化车架三维数据,分析其数据结果为车架轻量化设计提供参考。二、研究方法 (1)查阅客车车架轻量化设计资料,学习关于课题领域的研究方法。 (2)熟悉CATIA,Pro/E,ANSYS等软件。 (3)在掌握充分资料的基础上制定毕业设计实施计划。 (4)遇到问题及时与指导老师交流、请教。 毕 业 设 计(论文) 开 题 报 告 指导教师意见:1对“文献综述”的评语:文献综述基本符合毕业论文课题研究的方向,与所学专业联系比较紧密。在查阅相关资料后进行了总结,基本符合文献综述的特点与要求。 2对本课题的深度、广度及工作量的意见和对设计(论文)结果的预测:本课题深度广度适中,工作量符合毕业论文要求;经过认真充分的准备工作,应当能够如期完成毕业论文工作。 3.是否同意开题: 同意 不同意 指导教师: 2016 年 03 月 07 日所在专业审查意见:同意 负责人: 2016 年 04 月 07 日毕 业 设 计(论 文)外 文 参 考 资 料 及 译 文 译文题目: Spin control for cars 汽车的转向控制 学生姓名:专业:所在学院:指导教师:职称:Spin control for carsAbstract Stability control systems are the latest in a string of technologies focusing on improved diriving safety. Such systems detect the initial phases of a skid and restore directional control in 40 milliseconds, seven times faster than the reaction time of the average human. They correct vehicle paths by adjusting engine torque or applying the left- or-right-side brakes, or both, as needed. The technology has already been applied to the Mercedes-Benz S600 coupe.Keywords Stability control system Traction control Spin handlers Yaw rate gyro 1. Stability control system Automatic stability systems can detect the onset of a skid and bring a fishtailing vehicle back on course even before its driver can react. Safety glass, seat belts, crumple zones, air bags, antilock brakes, traction control, and now stability control. The continuing progression of safety systems for cars has yielded yet another device designed to keep occupants from injury. Stability control systems help drivers recover from uncontrolled skids in curves, thus avoiding spinouts and accidents. Using computers and an array of sensors, a stability control system detects the onset of a skid and restores directional control more quickly than a human driver can. Every microsecond, the system takes a snapshot, calculating whether a car is going exactly in the direction it is being steered. If there is the slightest difference between where the driver is steering and where the vehicle is going, the system corrects its path in a split-second by adjusting engine torque and/or applying the cats left- or right-side brakes as needed. Typical reaction time is 40 milliseconds - seven times faster than that of the average human. A stability control system senses the drivers desired motion from the steering angle, the accelerator pedal position, and the brake pressure while determining the vehicles actual motion from the yaw rate (vehicle rotation about its vertical axis) and lateral acceleration, explained Anton van Zanten, project leader of the Robert Bosch engineering team. Van Zantens group and a team of engineers from Mercedes-Benz, led by project manager Armin Muller, developed the first fully effective stability control system, which regulates engine torque and wheel brake pressures using traction control components to minimize the difference between the desired and actual motion. Automotive safety experts believe that stability control systems will reduce the number of accidents, or at least the severity of damage. Safety statistics say that most of the deadly accidents in which a single car spins out (accounting for four percent of all deadly collisions) could be avoided using the new technology. The additional cost of the new systems are on the order of the increasingly popular antilock brake/traction control units now available for cars. Stability control systems will first appear in mid-1995 on some European S-Class models and will reach the U.S. market during the 1996 model year (November 1995 introduction). It will be available as a $750 option on Mercedes models with V8 engines, and the following year it will be a $2400 option on six-cylinder $1650 of the latter price is for the traction control system, a prerequisite for stability control. Bosch is not alone in developing such a safety system. ITT Automotive of Auburn Hills, Mich., introduced its Automotive Stability Management System (ASMS) in January at the 1995 North American International Auto Show in Detroit. ASMS is a quantum leap in the evolution of antilock brake systems, combining the best attributes of ABS and traction control into a total vehicle dynamics management system, said Timothy D. Leuliette, ITT Automotives president and chief executive officer. ASMS monitors what the vehicle controls indicate should be happening, compares that to what is actually happening, then works to compensate for the difference, said Johannes Graber, ASMS program manager at ITT Automotive Europe. ITTs system should begin appearing on vehicles worldwide near the end of the decade, according to Tom Mathues, director of engineering of Brake & Chassis Systems at ITT Automotive North America. Company engineers are now adapting the system to specific car models from six original equipment manufacturers. A less-sophisticated and less-effective Bosch stability control system already appears on the 1995 750iL and 850Ci V-12 models from Munich-based BMW AG. The BMW Dynamic Stability Control (DSC) system uses the same wheel-speed sensors as traction control and standard anti-lock brake (ABS) systems to recognize conditions that can destabilize a vehicle in curves and corners. To detect such potentially dangerous cornering situations, DSC measures differences in rotational speed between the two front wheels. The DSC system also adds a sensor for steering angle, Utilizes an existing one for vehicle velocity, and introduces its own software control elements in the allantilock-brake/traction-control/stability-control system. The new Bosch and ITT Automotive stability control systems benefit from advanced technology developed for the aerospace industry. Just as in a supersonic fighter, the automotive stability control units use a sensor-based computer system to mediate between the human controller and the environment - in this case, the interface between tire and road. In addition, the system is built around a gyroscopelike sensor design used for missile guidance. 2. Beyond ABS and traction control Stability control is the logical extension of ABS and traction control, according to a Society of Automotive Engineers paper written by van Zanten and Bosch colleagues Rainer Erhardt and Georg Pfaff. Whereas ABS intervenes when wheel lock is imminent during braking, and traction control prevents wheel slippage when accelerating, stability control operates independently of the drivers actions even when the car is free-rolling. Depending on the particular driving situation, the system may activate an individual wheel brake or any combination of the four and adjust engine torque, stabilizing the car and severely reducing the danger of an uncontrolled skid. The new systems control the motion not only during full braking but also during partial braking, coasting, acceleration, and engine drag on the driven wheels, circumstances well beyond what ABS and traction control can handle. The idea behind the three active safety systems is the same: One wheel locking or slipping significantly decreases directional stability or makes steering a vehicle more difficult. If a car must brake on a low-friction surface, locking its wheels should be avoided to maintain stability and steerability. Whereas ABS and traction control prevent undesired longitudinal slip, stability control reduces loss of lateral stability. If the lateral forces of a moving vehicle are no longer adequate at one or more wheels, the vehicle may lose stability, particularly in curves. What the drivefishtailing is primarily a turning or spinning around the vehicles axis. A separate sensor must recognize this spinning, because unlike ABS and traction control, a cars lateral movement cannot be calculated from its wheel speeds. 3.Spin handlers The new systems measure any tendency toward understeer (when a car responds slowly to steering changes), or over-steer (when the rear wheels try to swing around). If a car understeers and swerves off course when driven in a curve, the stability control system will correct the error by braking the inner (with respect to the curve) rear wheel. This enables the driver, as in the case of ABS, to approach the locking limit of the road-tire interface without losing control of the vehicle. The stability control system may reduce the vehicles drive momentum by throttling back the engine and/or by braking on individual wheels. Conversely, if the hteral stabilizing force on the rear axle is insufficient, the danger of oversteering may result in rear-end breakaway or spin-out. Here, the system acts as a stabilizer by applying the outer-front wheel brake. The influence of side slip angle on maneuverability, the Bosch researchers explained, shows that the sensitivity of the yaw moment on the vehicle, with respect to changes in the steering angle, decreases rapidly as the slip angle of the vehicle increases. Once the slip angle grows beyond a certain limit, the driver has a much harder time recovering by steering. On dry surfaces, maneuverability is lost at slip-angle values larger than approximately 10 degrees, and on packed snow at approximately 4 degrees. Most drivers have little experience recovering from skids. They arent aware of the coefficient of friction between the tires and the road and have no idea of their vehicles lateral stability margin. Wusually caught by surprise and very often reacts in the wrong way, steering too much. Oversteering, ITTs Graber explained, causes the car to fishtail, throwing the vehicle even further out of control. ASMS sensors, he said, can quickly detect the beginning of a skid and momentarily activate the brakes at individual wheels to help return the vehicle to a stable line. It is important that stability control systems be user-friendly at the limit of adhesion that is, to act predictably in a way similar to normal driving. The biggest advantage of stability control is its speed - it can respond immediately not only to skids but also to shifting vehicle conditions (such as changes in weight or tire wear) and road quality. Thus, the systems achieve optimum driving stability by changing the lateral stabilizing forces. For a stability control system to recognize the difference between what the driver wants (desired course) and the actual movement of the vehicle (actual course), current cars require an efficient set of sensors and a greater computer capacity for processing information. The Bosch VDC/ESP electronic control unit contains a conventional circuit board with two partly redundant microcontrollers using 48 kilobytes of ROM each. The 48-kB memory capacity is representative of the large amount of intelligence required to perform the design task, van Zanten said. ABS alone, he wrote in the SAE paper, would require one-quarter of this capacity, while ABS and traction control together require only one half of this software capacity. In addition to ABS and traction control systems and related sensors, VDC/ESP uses sensors for yaw rate, lateral acceleration, steering angle, and braking pressure as well as information on whether the car is accelerating, freely rolling, or braking. It obtains the necessary information on the current load condition of the engine from the engine controller. The steering-wheel angle sensor is based on a set of LED and photodiodes mounted in the steering wheel. A silicon-micromachine pressure sensor indicates the master cylinders braking pressure by measuring the brake fluid pressure in the brake circuit of the front wheels (and, therefore, the brake pressure induced by the driver). Determining the actual course of the vehicle is a more complicated task. Wheel speed signals, which are provided for antilock brakes/traction control by inductive wheel speed sensors, are required to derive longitudinal slip. For an exact analysis of possible movement, however, variables describing lateral motion are needed, so the system must be expanded with two additional sensors - yaw rate sensors and lateral acceleration sensors. A lateral accelerometer monitors the forces occurring in curves. This analog sensor operates according to a damped spring-mass mechanism, by which a linear Hall generator transforms the spring displacement into an electrical signal. The sensor must be very sensitive, with an operating range of plus or minus 1.4 g.4. Yaw rate gyro At the heart of the latest stability control system type is the yaw rate sensor, which is similar in function to a gyroscope. The sensor measures the speed at which the car rotates about its vertical axis. This measuring principle originated in the hen the limit of adhesion is reached, the driver is aviation industry and was further developed by Bosch for large-scale vehicle production. The existing gyro market offers two widely different categories of devices: $6000 units for aerospace and navigation systems (supplied by firms such as GEC Marconi Avionics Ltd., of Rochester, Kent, U.K.) and $160 units for videocameras. Bosch chose a vibrating cylinder design that provides the highest performance at the lowest cost, according to the SAE paper. A large investment was necessary to develop this sensor so that it could withstand the extreme environmental conditions of automotive use. At the same time, the cost for the yaw rate sensor had to be reduced so that it would be sufficiently affordable for vehicle use. The yaw rate sensor has a complex internal structure centered around a small hollow steel cylinder that serves as the measuring element. The thin wall of the cylinder is excited with piezoelectric elements that vibrate at a frequency of 15 kilohertz. Four pairs of these piezo elements are arranged on the circumference of the cylinder, with paired elements positioned opposite each other. One of these pairs brings the open cylinder into resonance vibration by applying a sinusoidal voltage at its natural frequency to the transducers; another pair, which is displaced by 90 degrees, stabilizes the vibration. At both element pairs in between, so-called vibration nodes shift slightly depending on the rotation of the car about its vertical axis. If there is no yaw input, the vibration forms a standing wave. With a rate input, the positions of the nodes and antinodes move around the cylinder wall in the opposite direction to the direction of rotation (Coriolis acceleration). This slight shift serves as a measure for the yaw rate (angular velocity) of the car. Several drivers who have had hands-on experience with the new systems in slippery cornering conditions speak of their cars being suddenly nudged back onto the right track just before it seems that their back ends might break away. Some observers warn that stability controls might lure some drivers into overconfidence in low-friction driving situations, though they are in the minority. It may, however, be necessary to instruct drivers as to how to use the new capability properly. Recall that drivers had to learn not to pump antilock brake systems. Although little detail has been reported regarding next-generation active safety systems for future cars (beyond various types of costly radar proximity scanners and other similar systems), it is clear that accident-avoidance is the theme for automotive safety engineers. The most survivable accident is the one that never happens, said ITTs Graber. Stability control technology dovetails nicely with the tremendous strides that have been made to the physical structure and overall capabilities of the automobile. The next such safety system is expected to do the same. 汽车的转向控制摘要 控制系统稳定性是针对提高驾驶安全性提出的一系列措施中最新的一个。这个系统能够在40毫秒内实现从制动开始到制动恢复的过程,这个时间是人的反应时间得七倍。他们通过调整汽车扭矩或者通过应用汽车左侧或右侧制动,如果需要甚至两者兼用,来实现准确的行车路线。这个系统已被应用于奔驰S600了。关键词:稳定调节系统 牵引控制 转向操作 偏航比率回转仪 稳定的机械自动系统能够在制动时发现肇端,并且在驾驶人员发现能够反应以前实现车辆的减速。 安全玻璃,安全带,撞击缓冲区,安全气囊,ABS系统,牵引力控制系统还有现在的稳定调节系统。汽车安全系统的连续升级,已经产生了一种为保护汽车所有者安全的设计模式。稳定调节系统帮助驾驶员从不可控制的曲线制动中解脱出来,从而避免了汽车的摆动滑行和交通事故。1.稳定调节系统 利用计算机和一系列传感器,稳定调节系统能够检测到制动轮的打滑并且比人更快的恢复对汽车的方向控制。系统每百万分之一秒作出一次快速捕捉,以及断断汽车是否在按照驾驶员的路线行驶。如果检测到汽车行驶路线和驾驶员驾驶路线存在一个微小的偏差 ,系统会在瞬间纠正发动机扭矩或者应用汽车左右制动。过程的标准反应时间是40毫秒人的平均反应时间的七分之一。 一个稳定的控制系统能够感觉到驾驶员想要运动的方向,通过控制转向角度,油门踏板的位置,制动板的状态来确定汽车实际运动路线的偏航比率(汽车偏离方向轴的角度)和横向加速度。项目负责人阿明马勒领导着范桑特的工作小组和奔驰汽车公司的工程师发明了第一个完全有效的稳定调节系统,该系统由发动机扭矩控制系统,制动系统,牵引控制系统组成以实现理想与现实运动之间的最小差距。 汽车安全专家相信稳定调节系统能够减少交通事故的发生,至少是在伤亡严重的事故方面。安全统计表明,多数的单车撞击事故伤亡(占伤亡事故发生的4%),事故能够通过应用这项新技术避免。这项新系统的额外费用主要用于一系列目前汽车日益普遍应用的制动/牵引控制锁组件。 稳定调节系统将在1995年中应用于欧洲S系列产品上,随后会在1996年进入美国市场(1995年11月产品)。用户可以选择750美元的系统,就像应用于梅赛德斯的试验用的V8发动机上的,也可以选择价格为2400美元的应用于六缸发动机汽车的系统。后者的系统中差不多有1650美元是用于牵引控制系统,该系统是稳定性系统的先决条件。 并不是只有博世公司一家在开发这样的安全系统,美国密歇根州的ITT(美国国际电信公司)汽车公司的奥伯恩希尔,在1995年1月底特律北美国际汽车展览会上展示了管理系统(ASMS),“车辆控制器应该像空对地导弹的控制器那样,比较而言,事实上那已经实现了,不同的是两者的费用不同”,美国国际电信公司驻欧洲空对地导弹控制工程负责人约翰尼斯格雷得说。北美ITT公司“汽车制动和底盘工程”主管汤姆麦兹指出,在未来十年美国国际电信公司的系统要首先出现在车辆上。很多工程师正在六辆特殊制造的精密车辆模型上调试这种系统。 一个比较简单和较低效率的博世的稳定调节系统也在1995年出现在慕尼黑宝马公司的AG系列750iL和850Ci V-12两款车上。宝马公司的稳定调节系统(DSC)运用的车轮速度传感器同牵引控制系统和标准ABS防抱死系统一样能够识别外部情况,使车辆更容易实现曲线行驶和转弯。为了检测出车辆转弯时潜在的危险,DSC系统检测的是两前轮在转弯时的速度差,DSC系统添加了一个更高级的角度传感器利用现有的一个车辆速度,并且引入了它自身带有的关于完全抱死系统,牵引控制系统,稳定调节系统软件控制原理。 新的博世和ITT自动稳定调节系统得益于航空工业高级技术的发展,就像超音速发动机,汽车的稳定调节单元运用一个基于计算机系统的传感器来调和人与系统之间的,还有轮胎与地面之间差异。另外,系统采用了用于导弹制导系统的回旋传感器。2. 优于ABS防抱死系统和牵引控制系统之处 根据范桑特和博世公司的瑞娜伊哈德,杰瑞帕夫在汽车工程师杂志所提到的,稳定调节系统是ABS防抱死系统和牵引控制系统的合理扩展。但是ABS系统的作用发生在制动时车轮转向将被锁死时,牵引控制是预防加速时的车轮滑动,稳定系统是当汽车自由转向时能独立于驾
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:客车车架轻量化的研究与设计
链接地址:https://www.renrendoc.com/p-22889457.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!