资源目录
压缩包内文档预览:
编号:22889766
类型:共享资源
大小:2.94MB
格式:ZIP
上传时间:2019-11-03
上传人:机****料
认证信息
个人认证
高**(实名认证)
河南
IP属地:河南
20
积分
- 关 键 词:
-
汽车发动机
电动
冷却
风扇
控制系统
设计
- 资源描述:
-
汽车发动机电动冷却风扇控制系统的设计,汽车发动机,电动,冷却,风扇,控制系统,设计
- 内容简介:
-
毕 业 设 计(论 文)任 务 书 设计(论文)题目:汽车发动机电动冷却风扇控制系统的设计 学生姓名:任务书填写要求1毕业设计(论文)任务书由指导教师根据各课题的具体情况填写,经学生所在专业的负责人审查、系(院)领导签字后生效。此任务书应在毕业设计(论文)开始前一周内填好并发给学生。2任务书内容必须用黑墨水笔工整书写,不得涂改或潦草书写;或者按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,要求正文小4号宋体,1.5倍行距,禁止打印在其它纸上剪贴。3任务书内填写的内容,必须和学生毕业设计(论文)完成的情况相一致,若有变更,应当经过所在专业及系(院)主管领导审批后方可重新填写。4任务书内有关“学院”、“专业”等名称的填写,应写中文全称,不能写数字代码。学生的“学号”要写全号,不能只写最后2位或1位数字。 5任务书内“主要参考文献”的填写,应按照金陵科技学院本科毕业设计(论文)撰写规范的要求书写。 6有关年月日等日期的填写,应当按照国标GB/T 740894数据元和交换格式、信息交换、日期和时间表示法规定的要求,一律用阿拉伯数字书写。如“2002年4月2日”或“2002-04-02”。毕 业 设 计(论 文)任 务 书1本毕业设计(论文)课题应达到的目的: 在完成毕业设计的过程中,任务承担学生能够综合运用所学的基础理论、专业知识和基本技能分析和解决实际问题,从而具备初步科学研究的能力。培养学生具备独立的根据课题内容进行调查研究的能力,能够在大量的中外文献进行检索有用的与课题相关的文献,为今后的工作奠定坚实的能够进行独立研究的能力。 2本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等): 1、熟悉发动机冷却系统的结构和工作原理。2、完成相关的能量转换的理论研究。3、根据队友设计的电动风扇冷却系统,设计出完善的控制系统。4、运用合适的软件对电动风扇冷却控制系统进行控制仿真。毕 业 设 计(论 文)任 务 书3对本毕业设计(论文)课题成果的要求包括图表、实物等硬件要求:1. 熟练使用电气画图软件,提交电动风扇冷却控制系统的电气装配图和控制软件的程序。2撰写符合要求的毕业设计论文或设计说明书。4主要参考文献: 1 刘达立,蔡斌.大中型客车电动风扇冷却系统J.客车技术与研究,2011,(4)2 郭新民,邢娟,袁燕利等. 汽车发动机自控电动冷却风扇的发展与研究J.内燃机工程.1999,(3)3 莫伟标.发动机环形冷却风扇结构与参数对其性能影响的研究D.广州:华南理工大学,20154 李浩. 发动机机体有限元分析及其冷却风扇CFD仿真优化研究D.合肥:合肥工业大学,20135 万星荣. 发动机冷却风扇气动性能的CFD分析与仿真流程优化D.广州:华南理工大学,20136 上官文斌,吴敏,王益有等. 发动机冷却风扇气动性能的计算方法J.汽车工程,2010,(9)7 吴敏.发动机冷却风扇性能计算方法的研究D.广州:华南理工大学,20108 唐钊.发动机冷却风扇叶片参数的研究与优化D.广州:华南理工大学,20129 钟守山.发动机冷却风扇造型设计与性能计算方法的研究D.广州:华南理工大学,201110 张红辉.发动机轴流冷却风扇低噪声气动性能分析与控制研究D.重庆:重庆大学,200211 王振.豪华大客车后置发动机冷却风扇驱动系统的研究开发D.武汉理工大学,200712 赵要珍.轿车发动机冷却风扇的CFD分析与低噪声优化设计D.吉林大学,200613 郭新民,邢娟,袁燕利等. 汽车发动机电动冷却风扇控制系统的研究J.世界汽车,1996,(6)14 何奇. 汽车发动机冷却风扇计算机辅助设计研究D.南京:南京航空航天大学,200915 郭新民. 汽车发动机自控电动冷却风扇的研究J.技能技术,1994,(1)毕 业 设 计(论 文)任 务 书5本毕业设计(论文)课题工作进度计划:2015.12.05-2016.01.15确定选题,填写审题表;指导教师下发任务书,学生查阅课题相关参考文献、资料,撰写开题报告。2016.01.16-2016.02.25提交开题报告、外文参考资料及译文、毕业设计(论文)大纲;开始毕业设计(论文)。2016.02.26-2016.04.15具体设计或研究方案实施,提交毕业设计(论文)草稿,填写中期检查表。2016.04.16-2016.05.05完成论文或设计说明书、图纸等材料,提交毕业设计(论文)定稿,指导老师审核。2016.05.06-2016.05.13提交毕业设计纸质文档,学生准备答辩;评阅教师评阅学生毕业设计(论文)。2016.05.13-2016.05.26根据学院统一安排,进行毕业设计(论文)答辩。所在专业审查意见: 通过 负责人: 2016 年 1 月 22 日毕 业 设 计(论 文)开 题 报 告 设计(论文)题目:汽车发动机电动冷却风扇控制系统的设计 学生姓名:开题报告填写要求 1开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效;2开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见;3“文献综述”应按论文的框架成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇(不包括辞典、手册);4有关年月日等日期的填写,应当按照国标GB/T 740894数据元和交换格式、信息交换、日期和时间表示法规定的要求,一律用阿拉伯数字书写。如“2004年4月26日”或“2004-04-26”。5、开题报告(文献综述)字体请按宋体、小四号书写,行间距1.5倍。 毕 业 设 计(论文) 开 题 报 告 1结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写不少于1000字左右的文献综述: 一、前言汽车发动机在高温工作环境下,需要保持在适宜的温度下工作,才能满足发动机良好的工作性能、耐久性和废气排放的要求。发动机冷却系统在此起着关键作用。而汽车发动机冷却系统的控制技术,主要就是汽车发动机冷却风扇的控制技术。如何以最低的成本、最低的功耗,最好地完成发动机冷却系统的冷却任务,冷却风扇控制技术值得深入的研究分析。二、课题研究背景汽车发动机是将热能转变为机械能的机器。然而发动机只利用了热能的1/3,被废气带走的热量占1/3,剩余的则被发动机零部件吸收,这些吸热零部件需要通过冷却来保证持续可靠的工作。发动机要在适宜的温度内工作。发动机工作时,气缸内气体温度高达2200k2800k,这使得发动机的零部件温度升高,特别是直接与高温气体接触的机件(如汽缸壁、缸盖、气门、活塞等),如果不采取适当的冷却措施,难以保证发动机正常工作。过高的温度将使金属材料的强度显著下降,运动件可能因热膨胀而破坏正常的配合间隙,润滑油膜也将因高温变质或粘度下降,使发动机零件之间不能保持正常的油膜,从而导致零件卡死或者加剧磨损。因此发动机必需冷却。但如果冷却过度,则由于散热损失增多,热效率下降,不仅浪费了能量,而且还会引起一些不良的后果,如:由于缸壁温度过低会使可燃混合气不能很好的形成或燃烧,使点火困难或燃烧迟缓,导致发动机功率下降,燃油消耗量增加;由于混合气和冷却缸壁接触,使其中原来已经气态化得燃油又凝结并流至曲轴箱,冲刷、稀释零件(汽缸壁、活塞、活塞环等)表面的油膜,使零件磨损加剧;润滑油在低温时粘度增高,零件运动的阻力增加,输出功率下降。因此,对发动机冷却不可过度。此外,在冷态下起动发动机,冷却系统还要迅速升温发动机,尽快达到正常工作温度。总之,通过冷却系统,应使发动机在适宜温度内工作。在燃烧过程中,燃烧室内温度会高达4500(2468).当发动机怠速或中速运转时,燃烧室内的平均温度是2000(1080).缸内的如此高温足以使铝制的活塞熔化,使汽缸壁发生扭曲,使气缸盖发生翘曲,使机油变质。冷却液在缸体和缸盖的水套中循坏时,不断吸收热量,使零部件的温度降低到容许的工作温度范围内。此外,在发动机冷却系统内,热量可以通过传到。对流或者辐射的方式进行传递。然而,大部分热量是通过传导的方式由炙热的零部件向低温的冷却液传递的。冷却液温度也会影响发动机燃烧室内的燃烧过程和发动机效率。微机控制系统的一些输入传感器也需要依靠冷却液的正确温度来产生适当信号。 三、课题研究领域的现状、动态及发展方向1981年3月的美国专利(US4257554)文件中出现了最早期的电动冷却风扇,此专利提出了用电动冷却风扇来替代传统的皮带驱动的冷却风扇,并且根据不同的汽车发动机的温度和负荷情况来实现风扇的运转,从而避免了传统发动机冷却风扇的功率损失,缩短发动机的起动预热时间,减少热能的损失。由于此项专利使用护风罩使风机的容积效率下降,导致了风机总效率的降低,仅能在热负荷较小的轿车散热器上得到运用。1985年德国大众在中国申请的专利(CN851095/A)在汽车散热器的前方设置了空气吸入口和辅助通口,使加散热器的冷却速度大大增加,降低了电动风扇的电能消耗。由于辅助通风口自下往上吸入冷却空气,将道路中的灰尘、杂物等吸入,导致散热器污染和堵塞,降低了散热器的散热效率。现代汽车公司生产的SONATA牌轿车采用了两个相互关联且有具有一定独立性的冷却风扇散热器冷却风扇和冷凝器冷却风扇,根据冷却液温度和车载空调的工作状态合理的调节冷却能力,降低了发动机在低温情况下的传热损失、功率损失以及过度磨损,并且控制了发动机过热情况的发生,使燃油消耗率下降。冷却风扇也由传统的皮带驱动转变为现在的智能化控制,冷却风扇的冷却能力根据发动机实际的散热需求来准确的调整,大大提到了发动机预热起动的速度,让发动机自始至终的处于最佳的工作温度环境下,减少了冷却风扇的功率消耗约80%,燃油消耗降低约10%,从而避免了大量能源的浪费。汽车发动机的冷却系统有空气冷却和液体冷却2种形式。目前最常用的是液体冷却。即用于冷却的液体经过循环系统,再通过散热器散热来使发动机降温,冷却风扇用来给散热器通过风速强制补风,以满足发动机适度冷却的需要。从冷却风扇工作形式来看,冷却风扇的控制方式有3种:一是适用于大型车辆和重型车辆的机械驱动控制方式;二是与发动机ECU无关、环境参数独自监控的自控电动控制方式;三是综合发动机、空调、压缩机、车速等多种参数信息的综合型智能控制方式。前者主要是利用机械传动原理,或用发动机曲轴直接带动,或由发动机皮带带动冷却风扇;后两者才体现了真正意义上的发动机冷却风扇控制技术。 从冷却风扇驱动控制模块来看,冷却风扇的控制技术可分为两大类,一是集中于发动机动力系统控制模块控制的集中式控制;二是独立于发动机外或与发动机有通讯联系的分体式控制。集中式控制,即指冷却风扇的控制由兼有发动机的喷油、点火、排放、空调、冷却风扇等多种控制功能的发动机动力总成控制模块执行。由它统一协调调度,来保障发动机良好的动力性、经济性、排放性。分体式控制,即指脱离了发动机,由外部的电子控制模块来完成驱动风扇,以达到冷却系统使发动机适度冷却的目的。这个外部的电子控制模块就是我们所谓发动机冷却风扇控制器。各种风扇控制类型、控制技术各有特点。大汽车厂商根据不同情况各取所需,因而目前各种控制技术种类并存。三、结语课题需对现有的发动机冷却风扇技术进行全方面的了解学习,查阅大量资料。不仅需对发动机冷却系统电动风扇进行硬件上的学习,更是对学生的自主学习能力的提高。需对发动机风扇冷却系统进行模拟验证。 参考文献:1郭新民,郭清南,丁健鲁,高平.车用发动机冷却风扇驱动方式的探讨.J.车用发动机1991.08.292李珍珍.基于模型的电动汽车驱动系冷却控制系统设计.J武汉理工大学2014.05.013查兵.车载冷却风扇智能控制系统设计J.工矿自动化2013.03.064郭新民,邢娟,袁燕利.减少汽车发动机电动冷却风扇能耗的控制系统J.节能技术1997.05.255翟丽,齐自成,王新源.汽车发动机冷却系统的单片机控制J.农机化研究2001.05.206李强.现代汽车冷却系统控制原理概述J.汽车维修技师2012.12.017聂永涛.冬季汽车冷却系统的保养与维护J.工程师2010.12.258卢广峰,郭新民,孙运柱.汽车发动机冷却系统的发展与现状J.农机化研究2002.05.209张翔,王佳,杨建中.应用Kuli软件设计发动机冷却系统J.北京汽车2009.4.2510郭新民,高平,孙世民.自控电动冷却风扇在汽车发动机上的应用J.内燃机工程1993.04.0211郭新民.汽车发动机自控电动冷却风扇的发展与研究J.内燃机工程1999.08.1512郭新民.汽车发动机电动冷却风扇控制系统的研究J.汽车电器1996.10.3013肖成永,李健,张建武.发动机冷却系统的建模与仿真J.计算机仿真2003.09.3014郭新民.汽车发动机自控电动冷却风扇的研究J.节能技术1994.01.2515王天利,海超,张波.汽车发动机冷却风扇仿真方法对比J.计算机辅助工程2014.04.3016曾令贤,李海雄.发动机冷却系统风扇及其驱动装置_汽车节能减排的重要零部件J.新技术新工艺2012.04.2517黄坚.浅谈发动机冷却系统的优化J.南宁职业技术学院学报2013.06.2718何春鸣.汽车发动机冷却风扇控制技术评析J.上海汽车2009.07.10毕 业 设 计(论文) 开 题 报 告 2本课题要研究或解决的问题和拟采用的研究手段(途径): 一、研究问题 本课题讨论的是一款发动机冷却风扇的电控系统,本系统的冷却风扇可以根据冷却液温度的变化来改变从而使发动机始终工作在合理温度环境下,对发动机冷却风扇获得一个更直观的认识。本课题运用了电子控制技术,通过温度传感器采集到的冷却液温度信息交由微处理器进行处理,再有微处理器发出信号来调节冷却风扇的速度从而获得不同的冷却能力,实现冷却风扇根据发动机不同温度下的需求自行调节的目的。 二、研究方法 (1)查阅发动机冷却风扇电控系统的资料,深入了解发动机冷却系统。 (2)熟悉了解发动机冷却系统的工作原理。 (3)查阅相关期刊、论文了解新的设计、分析方法。 (4)在掌握充分资料的基础上制定毕业设计实施计划。 (5)遇到问题及时与指导老师交流、请教。毕 业 设 计(论文) 开 题 报 告 指导教师意见:1对“文献综述”的评语:收集了与设计课题相关文献资料的基础上撰写了文献综述,条理清晰、格式规范,符合文献综述的特点与要求。 2对本课题的深度、广度及工作量的意见和对设计(论文)结果的预测:本课题深度广度适中,工作量符合毕业设计要求;经过认真充分的准备工作,能够如期完成毕业设计工作。 3.是否同意开题: 同意 不同意 指导教师: 2016 年 04 月 14 日所在专业审查意见:同意开题 负责人: 2016 年 04 月 14 日毕 业 设 计(论 文)外 文 参 考 资 料 及 译 文译文题目:Drive force control of a parallel-series hybrid system 混合动力系统驱动力的串并联控制 学生姓名:专业:所在学院:指导教师:职称:Drive force control of a parallel-series hybrid systemAbstractSince each component of a hybrid system has its own limit of performance, the vehicle power depends on the weakest component. So it is necessary to design the balance of the components. The vehicle must be controlled to operate within the performance range of all the components. We designed the specifications of each component backward from the required drive force. In this paper we describe a control method for the motor torque to avoid damage to the battery, when the battery is at a low state of charge. Society of Automotive Engineers of Japan, Inc. and Elsevier Science B.V. All rights reserved.1. IntroductionIn recent years, vehicles with internal combustion engines have increasingly played an important role as a means of transportation, and are contributing much to the development of society. However, vehicle emissions contribute to air pollution and possibly even global warming, which require effective countermeasures. Various developments are being made to reduce these emissions, but no further large improvements can be expected from merely improving the current engines and transmissions. Thus, great expectations are being placed on the development of electric, hybrid and natural gas-driven vehicles. Judging from currently applicable technologies, and the currently installed infrastructure of gasoline stations, inspection and service facilities, the hybrid vehicle, driven by the combination of gasoline engine and electric motor, is considered to be one of the most realistic solutions. Generally speaking, hybrid systems are classified as series or parallel systems. At Toyota, we have developed the Toyota Hybrid System (hereinafter referred to as the THS) by combining the advantages of both systems. In this sense the THS could be classified as a parallel-series type of system. Since the THS constantly optimizes engine operation, emissions are cleaner and better fuel economy can be achieved. During braking, Kinetic energy is recovered by the motor, thereby reducing fuel consumption and subsequent CO2 emissions. Emissions and fuel economy are greatly improved by using the THS for the power train system. However, the THS incorporates engine, motor, battery and other components, each of which has its own particular capability. In other words, the driving force must be generated within the limits of each respective component. In particular, since the battery output varies greatly depending on its level of charge, the driving force has to be controlled with this in mind.This report clarifies the performance required of the respective THS components based on the driving force necessary for a vehicle. The method of controlling the driving force, both when the battery has high and low charge, is also described.2. Toyota hybrid system (THS) 1,2As Fig. 1 shows, the THS is made up of a hybrid transmission, engine and battery.2.1. Hybrid transmissionThe transmission consists of motor, generator, power split device and reduction gear. The power split device is a planetary gear. Sun gear, ring gear and planetary carrier are directly connected to generator, motor and engine, respectively. The ring gear is also connected to the reduction gear. Thus, engine power is split into the generator and the driving wheels. With this type of mechanism, the revolutions of each of the respective axes are related as follows. Here, the gear ratio between the sun gear and theFig. 1. Schematic of Toyota hybrid system (THS).ring gear is :where Ne is the engine speed, Ng the generator speed and Nm the motor speed. Torque transferred to the motor and the generator axes from the engine is obtained as follows:where Te is the engine torque.The drive shaft is connected to the ring gear via a reduction gear. Consequently, motor speed and vehicle speed are proportional. If the reduction gear ratio is, the axle torque is obtained as follows:where Tm is the motor torque.As shown above, the axle torque is proportional to the total torque of the engine and the motor on the motor axis. Accordingly, we will refer to motor axis torque instead of axle torque.2.2. EngineA gasoline engine having a displacement of 1.5 l specially designed for the THS is adopted 3. This engine has high expansion ratio cycle, variable valve timing system and other mechanisms in order to improve engine efficiency and realize cleaner emissions. In particular, a large reduction in friction is achieved by setting the maximum speed at 4000 rpm (=Ne max).2.3. BatteryAs sealed nickel metal hydride battery is adopted. The advantages of this type of battery are high power density and long life. this battery achieves more than three times the power density of those developed for conventional electric vehicles 4.3. Required driving force and performanceThe THS offers excellent fuel economy and emissions reduction. But it must have the ability to output enough driving force for a vehicle. This section discusses the running performance required of the vehicle and the essential items required of the respective components. Road conditions such as slopes, speed limits and the required speed to pass other vehicles determine the power performance required by the vehicle. Table 1 indicates the power performance needed in Japan.3.1. Planetary gear ratioThe planetary gear ratio () has almost no effect on fuel economy and/or emissions. This is because the required engine power (i.e. engine condition) depends on vehicle speed, driving force and battery condition, and not on the planetary gear ratio. Conversely, it is largely limited by the degree of installability in the vehicle and manufacturing aspects, leaving little room for design. In the currently developed THS, =0.385.3.2. Maximum engine powerSince the battery cannot be used for cruising due to its limited power storage capacity, most driving is reliant on engine power only. Fig. 2 shows the power required by a vehicle equipped with the THS, based on its driving resistance. Accordingly, the power that is required for cruising on a level road at 140 km/h or climbing a 5% slope at 105 km/h will be 32 kW. If the transmission loss is taken into account, the engine requires 40 kW (=Pe max) of power. The THS uses an engine with maximum power of 43 kW in order to get good vehicle performance while maintaining good fuel economy. 3.3. Maximum generator torqueAs described in Section 2, the maximum engine speed is 4000 rpm (=Ne max). To attain maximum torque at this speed, maximum engine torque is obtained as follows:From Eq. (3), the maximum torque on the generator axis will be as follows:This is the torque at which the generator can operate without being driven to over speed. Actually, higher torque is required because of acceleration/deceleration of generator speed and dispersion of engine and/or generator torque. By adding 40% torque margin to the generator, the necessary torque is calculated as follows:3.4. Maximum motor torqueFrom Fig. 3, it can be seen that the motor axis needs to have a torque of 304 Nm to acquire the 30% slope climbing performance. This torque merely balances the vehicle on the slope. To obtain enough starting and accelerating performance, it is necessary to have additional torque of about 70 Nm, or about 370 Nm in total.From Eq. (2), the transmitted torque from the engine is obtained as follows: Consequently, a motor torque of 300 Nm (=Tm max) is necessary.3.5. Maximum battery powerAs Fig. 2 shows, driving power of 49 kW is needed for climbing on a 5%slope at 130 km/h. Thus, the necessary battery power is obtained by subtracting the engine-generated power from this. As already discussed, if an engine having the minimum required power is installed, it can only provide 32 kW of power, so the required battery power will be 17 kW. If the possible loss that occurs when the battery supplies power to the motor is taken into account, battery power of 20 kW will be needed. Thus, it is necessary to determine the battery capacity by targeting this output on an actual slope. Table 2 lists the required battery specifications.Table 3 summarizes the specifications actually adopted by the THS and the requirements determined by the above discussion. The required items represent an example when minimum engine power is selected. In other words, if the engine is changed, each of the items have to be changed accordingly.4. Driving force controlThe THS requires controls not necessary for conventional or electric vehicles in order to control the engine, motor and generator cooperatively. Fig. 4 outlines the control system.Fig. 4. Control diagram of the THS.Inputs of control system are accelerator position, vehicle speed (motor speed), generator speed and available battery power. Outputs are the engine-required power, generator torque and motor torque.First, drive torque demanded by the driver (converted to the motor axis) is calculated from the accelerator position and the vehicle speed. The necessary drive power is calculated from this torque and the motor speed. Required power for the system is the total of the required drive power, the required power to charge the battery and the power loss in the system. If this total required power exceeds the prescribed value, it becomes required engine power. If it is below the prescribed value, the vehicle runs on the battery without using the engine power. Next, the most efficient engine speed for generating engine power is calculated; this is the engine target speed. The target speed for the generator is calculated using Eq. (1) with engine target speed and motor speed. The generator torque is determined by PID control. Engine torque can be calculated in reverse by using Eq. (3) and the torque transferred from the engine to the motor axis can be calculated from (2). The motor torque is obtained by subtracting this torque from the initially calculated drive torque. Since it is not possible to produce a torque whereby the motor consumption power exceeds the total of the generator-generated power and the power supplied by the battery, it is necessary to control the motor power (torque) within this total power. Fig. 5 shows the control method. The sum of the power form the generator and the available battery power become the power that can be used by the motor. The available motor torque can be obtained by dividing this combined power by the motor speed. When the motor speed is low, if the calculated motor torque exceeds the motor specification of torque the motor torque is determined by the specification. By controlling the motor torque requirement with this limited torque, the motor consumption power can be controlled to within the available power. If the available battery power is large enough, the available motor torque hardly limits the motor torque. Conversely, when the charge is low, the motor torque is frequently limited.Fig. 6 shows the respective maximum drive torque of the battery, the engine, and the engine plus the battery while running based on the controls above, when the THS has the components as specified in Section 3.5. ConclusionsThis paper discussed the control of drive power in the Toyota Hybrid System. The following conclusions were obtained:lThe performance required for each component can be determined by reversely calculating power performance required for a vehicle.lThe available battery power varies according to its state of charge. However, by limiting the motor torque, the battery power can be controlled to within the batterys available power.混合动力系统驱动力的串并联控制摘要由于混合动力系统的每个部分都有自己的极限性能,所以汽车动力取决于最脆弱的哪一个组成部分。因此,有必要对各个部件进行平衡设计。因为车辆必须在所有部件的控制范围内从事经营活动,所以我们根据所要求的驱动力反过来进行各部件的设计。在本文中,我们描述一种扭矩控制方法,以避免在低电量时损坏电池。日本B.V.科技公司的汽车工程协会保留所有版权。1.简介近年来,内燃机车辆作为一种交通工具发挥了越来越重要的作用,为社会的发展做出了很多贡献。然而,车辆排放的废气使空气遭到污染,甚至使全球气候变暖,这就需要有效地对策去解决。在减少废气的排放方面正在取得各种各样的进展,但是,仅仅从提高引擎和传动装置已不再有很大希望得到改善。因此,发展电力、混合动力和天然气驱动的车辆是目前的最大期望。从当前使用的技术和汽油站检测服务设施,结合当前已安装的基础设施,以汽油发动机和电动机驱动的混合动力汽车是最现实的解决方案之一。总的来说,混合动力系统分为串联和并联系统。在丰田,我们通过将这两个系统的优点结合起来,开发了丰田混合动力系统(以下简称THS)。在某种意义上THS可以称作串并联控制系统。由于丰田混合动力系统对发动机操作和排放的不断优化,因此可以取得更好的燃油经济性。在制动的过程中,动能被电动机重新回收,从而减少燃油消耗和随后的CO2排放量。通过使用丰田混合动力系统作为动力驱动系统,废弃的排放量和燃油经济性得到大大提高。然而,丰田混合动力系统采用了发动机、电动机、电池和其他组件,每个组件都有自己的特殊能力。换句话说,每个组件必须在自己的能力限制范围内生成驱动力。特别是由于电池的输出很大水平上取决于其充电量,因此要时刻铭记驱动力必须被限制。这份报告澄清了基于车辆必须的驱动力对与丰田混合动力系统各组件的性能要求。驱动力在电池高低压时的控制方法也作了先关描述。2.丰田混合动力系统如图.1所示,丰田混合动力系统由混合动力传动装置、发动机和电池组成。 2.1. 混合动力传动系统混合动力传动系统由发动机、发电机、动力分配装置和减速器组成。动力分配装置是一个行星齿轮机构。太阳轮、齿圈和行星架分别直接连接到发电机、电动机和发动机,齿圈也直接连接到减速器。因此,发动机的动力被分配到发电机和驱动轮。使用这种机械装置,各轴的转速有以下关系。在这里,太阳轮和齿圈之间的传动比是:这里,Ne是发动机的转速,Ng是发电机的转速,Nm是电动机的转速。传递到电动机的转矩和发电机从发动机获得的转矩如下:这里,Te是发动机的输出转矩。驱动轴通过减速器连接到齿圈,因此,车连行驶速度与电机转速成正比。如果减速器的减速比为,则驱动轴获得的扭矩如下式:这里Tm为电动机速出扭矩。如上式所示,驱动轴获得的扭矩与发动机和电动机轴上输出的总扭矩成正比。因此,我们会参考电动机轴输出扭矩而不是驱动轴上获得的扭矩。2.2. 发动机丰田混合动力系统采用专门设计的排量为1.5L的汽油发动机。为了提高发动机的效率、实现情节的排放,这台发动机采用了高膨胀率循环、可变相位配气系统以及其他机构。特别是实现了转速为4000r/min(最高转速)时最大限度的减少了摩擦力。2.3电池电池
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。