05毕业设计论文.doc

汽油机活塞的热力耦合应力分析

收藏

压缩包内文档预览:(预览前20页/共25页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:22890035    类型:共享资源    大小:1.33MB    格式:ZIP    上传时间:2019-11-03 上传人:机****料 IP属地:河南
30
积分
关 键 词:
汽油机 活塞 热力 耦合 应力 分析
资源描述:
汽油机活塞的热力耦合应力分析,汽油机,活塞,热力,耦合,应力,分析
内容简介:
毕 业 设 计(论 文)任 务 书 设计(论文)题目:汽油机活塞的热力耦合应力分析 学生姓名:任务书填写要求1毕业设计(论文)任务书由指导教师根据各课题的具体情况填写,经学生所在专业的负责人审查、系(院)领导签字后生效。此任务书应在毕业设计(论文)开始前一周内填好并发给学生。2任务书内容必须用黑墨水笔工整书写,不得涂改或潦草书写;或者按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,要求正文小4号宋体,1.5倍行距,禁止打印在其它纸上剪贴。3任务书内填写的内容,必须和学生毕业设计(论文)完成的情况相一致,若有变更,应当经过所在专业及系(院)主管领导审批后方可重新填写。4任务书内有关“学院”、“专业”等名称的填写,应写中文全称,不能写数字代码。学生的“学号”要写全号,不能只写最后2位或1位数字。 5任务书内“主要参考文献”的填写,应按照金陵科技学院本科毕业设计(论文)撰写规范的要求书写。 6有关年月日等日期的填写,应当按照国标GB/T 740894数据元和交换格式、信息交换、日期和时间表示法规定的要求,一律用阿拉伯数字书写。如“2002年4月2日”或“2002-04-02”。毕 业 设 计(论 文)任 务 书1本毕业设计(论文)课题应达到的目的: 随着现代汽车工业迅速发展,对发动机的要求越来越高,增压、高功率、轻质量化等众多要求迫使发动机朝着更高强度发展,作为发动机中重要的零部件,活塞自然要有足够的强度来适应复杂的工作环境。活塞是发动机最关键的零部件之一,它的主要作用是承受气缸中的气体压力,并将此力通过活塞销传给连杆,推动曲轴旋转。它的工作情况直接影响到发动机整体的性能、可靠性和耐久性。 近年来,有限元的分析也日渐成熟,运用有限元软件能够有效地分析结构的性能,所以被广泛接受。本次毕业设计对汽油机活塞的工作环境进行热力学的有限元分析,旨在模拟稳态下活塞的温度场,以及燃气燃烧产生的气体压力、在缸内往复运动的惯性力、侧向力及摩擦力等,研究活塞在热负荷和综合应力下的变形和强度情况。这对改善活塞结构、提高工作可靠性和耐久性有重要意义。 2本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等): 本课题是基于有限元的发动机活塞热力学分析,对发动机活塞进行三维建模和热力学分析。并根据研究需要对活塞的振动模态及疲劳强度进行深入分析。活塞在内燃机工作系统中工作条件恶劣,周期性(进气、压缩、做功、排气四冲程)承受高温、高压与腐蚀,因此各冲程中的摩擦和热泄露损失之间交替出现。通过对基于有限元的发动机活塞热力学分析这一课题的研究深入了解活塞工作状况,并积极提出有效优化方案。 毕 业 设 计(论 文)任 务 书3对本毕业设计(论文)课题成果的要求包括图表、实物等硬件要求:1、 对汽车发动机活塞进行实体建模2 、在ANSYS软件中进行有限元模型的热力学分析3 、得出活塞工作状态下各种应力云图并进行优化设计4、毕业论文1万字左右(并附相关的分析数据)5、外文参考资料译文(附原文)3000字 4主要参考文献: 1杨世铭,陶文铨.热传学M北京:高等教育出版社,20062杨杰.DME发动机活塞温度场的三维有限元分析与实验研究D.武汉:华中科技大学, 20073鲁植雄.缸内直喷发动机结构原理与维修M南京:江苏科学技术出版社,20094苏玉萍,刘丽亚,孔晓霜.汽车强制性标准导读M.北京:国防工业出版社,20125程文虎.发动机活塞变形与盈利三维有限元分析D.合肥:合肥工业大学,20096夏飞.新型全钢活塞热负荷分析J.现代车用动力,2009,135(3)7杨波.活塞的热分析及底喷冷却研究D.大连:大连理工大学,20088詹友刚.Creo3.0模具设计实例精解M.北京:机械工业出版社,20149胡仁喜,康士廷.ANSYS14.0机械与结构分析有限元分析从入门到精通M.北京:机械工 业出版社,201210李彩霞,李云松.175FMI活塞热耦合分析J.机械,2010,37(6)11艾文达.汽车构造M.北京:清华大学出版社,200912鸠田幸夫.汽车设计制造指南M.北京:机械工业出版社,201113洪永福.汽车总体设计M.北京:机械工业出版社,201414刘世英.发动机活塞机械疲劳损伤与可靠性研究D.济南:山东大学,200715闫黄辉,高鲜萍.汽车发动机构造与原理M.北京:科学出版社,200916徐兆坤.汽车发动机原理M.北京:清华大学出版社,201017何屹.活塞在温度和机械载荷作用下的有限元分析D.大连:大连海事大学,2007毕 业 设 计(论 文)任 务 书5本毕业设计(论文)课题工作进度计划:2015.12.05-2016.01.15确定选题,填写审题表;指导教师下发任务书,学生查阅课题相关参考文献、资料,撰写开题报告。2016.01.16-2016.02.25提交开题报告、外文参考资料及译文、毕业设计(论文)大纲;开始毕业设计(论文)。2016.02.26-2016.04.15具体设计或研究方案实施,提交毕业设计(论文)草稿,填写中期检查表。2016.04.16-2016.05.05完成论文或设计说明书、图纸等材料,提交毕业设计(论文)定稿,指导老师审核。2016.05.06-2016.05.13提交毕业设计纸质文档,学生准备答辩;评阅教师评阅学生毕业设计(论文)。2016.05.13-2016.05.26根据学院统一安排,进行毕业设计(论文)答辩。所在专业审查意见: 通过 负责人: 2016 年 1 月 22 日毕 业 设 计(论 文)开 题 报 告 设计(论文)题目:汽油机活塞的热力耦合应力分析 学生姓名: 2016 年 1 月 8 日 开题报告填写要求 1开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效;2开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见;3“文献综述”应按论文的框架成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇(不包括辞典、手册);4有关年月日等日期的填写,应当按照国标GB/T 740894数据元和交换格式、信息交换、日期和时间表示法规定的要求,一律用阿拉伯数字书写。如“2004年4月26日”或“2004-04-26”。5、开题报告(文献综述)字体请按宋体、小四号书写,行间距1.5倍。 毕 业 设 计(论文) 开 题 报 告 1结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写不少于1000字左右的文献综述: 一、选题的目的和意义 作为发动机中重要的零部件,活塞自然要有足够的强度来适应复杂的工作环境。它的主要作用是承受气缸中的气体压力,并将此力通过活塞销传给连杆,推动曲轴旋转。它的工作情况直接影响到发动机整体的性能、可靠性和耐久性。 近年来,有限元的分析也日渐成熟,运用有限元软件能够有效地分析结构的性能,所以被广泛接受。本次课题对汽油机活塞的工作环境进行热力学的有限元分析,旨在模拟稳态下活塞的温度场,以及燃气燃烧产生的气体压力、在缸内往复运动的惯性力、侧向力及摩擦力等,研究活塞在热负荷和综合应力下的变形和强度情况。这对改善活塞结构、提高工作可靠性和耐久性有重要意义。二、课题研究领域的研究现状、发展趋势 近年来,在内燃机的主要零部件设计和强度分析中,有限元法已成为一种十分有效的方法。对于承受机械负荷和热负荷严重的活塞而言,像ansys这种有限元分析软件是必不可少的工具。 目前对活塞的温度场计算、热应力应变分析、机械应力应变分析已日趋成熟,已有大量的成果的论文报道。应用有限元软件时,确定边界条件是最为关键的一步。活塞传热是一个复杂过程,边界条件很难精确确定,通常活塞热边界有三种确定方法:(1)第一类边界条件,即已知活塞边界上的温度;(2)第二类边界条件,即已知活塞边界上的热流密度;第三类边界条件,即已知与活塞相接触的流体介质的温度和热交换系数。由于测定活塞表面全部温度节点很不方便,因此在工程计算中较多的采用第三类边界条件,对于第三类边界条件的边界热系数a和环境温度T0通常采用试算法确定。先由经验公式估算活塞各边界与燃气、汽缸套、冷却油腔内机油以及曲轴箱内油雾之间的放热系数和相应的介质温度,计算活塞温度场然后将某些特点上的温度计算值与预先通过实测的温度值进行校验。这样通过多次修正,直至某些特征点上的计算温度值与实测值基本吻合为止。对于活塞应力与应变有限元分析方面,国内对其的研究也是持续不断的。但是在计算机还没发展成熟的时候,对于活塞的应力应变分析也仅局限于二维和轴对称的。九十年代以后,活塞研究渐渐趋向三维多向的了。山东活塞厂11研究了活塞在热载荷和机械载荷作用下的强度;华北工学院周西安辉和吉林工业大学方华对活塞进行热变形、热应力、机械变形、机械应力、耦合变形耦合应力有限元分析,发现了活塞在热负荷和机械负荷的作用下其变形是不均匀的;华北工学院董小瑞【13】对汽油机活塞在热力耦合作用下应力与应变及其强度进行了有限元分析,发现活塞整体的应力分布比较均匀,活塞销孔上侧面的等效应力较大;山东大学苗伟驰【15】对活塞温度-应力场耦合计算,得到活塞变形量最大的位置仍在活塞顶面和第一环岸的交界面,最大应力出现在活塞销座边缘处与裙部的交界处。三、总结 汽油机活塞是设计和优化受到制造工艺和使用性能的限制,限制条件很多,如应力约束,质量约束、变形约束、温度约束、疲劳安全系数约束等。但是对于活塞的研究直接影响到了发动机性能,所以对活塞的热力学研究是很有必要的。 参考文献:1杨世铭,陶文铨.热传学M北京:高等教育出版社,20062杨杰.DME发动机活塞温度场的三维有限元分析与实验研究D.武汉:华中科技大学, 20073鲁植雄.缸内直喷发动机结构原理与维修M南京:江苏科学技术出版社,20094苏玉萍,刘丽亚,孔晓霜.汽车强制性标准导读M.北京:国防工业出版社,20125程文虎.发动机活塞变形与盈利三维有限元分析D.合肥:合肥工业大学,20096夏飞.新型全钢活塞热负荷分析J.现代车用动力,2009,135(3)7杨波.活塞的热分析及底喷冷却研究D.大连:大连理工大学,20088詹友刚.Creo3.0模具设计实例精解M.北京:机械工业出版社,20149胡仁喜,康士廷.ANSYS14.0机械与结构分析有限元分析从入门到精通M.北京:机械工 业出版社,201210李彩霞,李云松.175FMI活塞热耦合分析J.机械,2010,37(6)11郑永刚,马学军.活塞强度有限元分析J.山东内燃机,1999,59(1)12鸠田幸夫.汽车设计制造指南M.北京:机械工业出版社,201113董小瑞,张翼.高速汽油机活塞有限元分析J.内燃机,2004(5)14刘世英.发动机活塞机械疲劳损伤与可靠性研究D.济南:山东大学,200715苗伟驰.活塞结构强度有限元分析D.山东:山东大学,201216徐兆坤.汽车发动机原理M.北京:清华大学出版社,201017何屹.活塞在温度和机械载荷作用下的有限元分析D.大连:大连海事大学,2007毕 业 设 计(论文) 开 题 报 告 2本课题要研究或解决的问题和拟采用的研究手段(途径): 一、要研究或解决的问题: 本课题是基于有限元的发动机活塞热力学分析,对发动机活塞进行三维建模和热力学分析。并根据研究需要对活塞的振动模态及疲劳强度进行深入分析。活塞在内燃机工作系统中工作条件恶劣,周期性(进气、压缩、做功、排气四冲程)承受高温、高压与腐蚀,因此各冲程中的摩擦和热泄露损失之间交替出现。通过对基于有限元的发动机活塞热力学分析这一课题的研究深入了解活塞工作状况,并积极提出有效优化方案。二、拟采用的研究手段: (1)做好理论基础的准备,如有限元软件和活塞的受力受热情况;(2)查阅大量有关书籍和论文,学习关于课题领域的研究方法;(3)制定出项目预定目标和研究步骤并实施;(4)加强与指导老师和专业人员的交流,探讨解决遇到的疑难问题。毕 业 设 计(论文) 开 题 报 告 指导教师意见:1对“文献综述”的评语:能针对课题所涉及的问题广泛阅读文献,并能对课题研究领域的现状、动态和发展前景等进行综合分析和评述,符合文献综述要求。 2对本课题的深度、广度及工作量的意见和对设计(论文)结果的预测:对课题所涉及的研究内容在现有相关专业知识的基础上,进一步深入学习相关软件,应当能够如期完成本次毕业设计。 3.是否同意开题: 同意 不同意 指导教师: 2016 年 03 月 09 日所在专业审查意见:同意 负责人: 2016 年 04 月 07 日毕 业 设 计(论 文)外 文 参 考 资 料 及 译 文 译文题目: Hybrid Electric Vehicles 混合动力汽车 学生姓名:专业:所在学院:指导教师:职称:说明:要求学生结合毕业设计(论文)课题参阅一篇以上的外文资料,并翻译至少一万印刷符(或译出3千汉字)以上的译文。译文原则上要求打印(如手写,一律用400字方格稿纸书写),连同学校提供的统一封面及英文原文装订,于毕业设计(论文)工作开始后2周内完成,作为成绩考核的一部分。Hybrid Electric VehiclesAbstractConventional vehicles with IC engines provide good performance and long operating range by utilizing the high-energy-density advantages of petroleum fuels. However, conventional IC engine vehicles have the dis- advantages of poor fuel economy and environmental pollution. The main reasons for their poor fuel economy are (1) mismatch of engine fuel efficiency characteristics with the real operation requirement (refer to Figures 2.34 and 2.35); (2) dissipation of vehicle kinetic energy during braking, especially while operating in urban areas; and (3) low efficiency of hydraulic transmission in current automobiles in stop-and-go driving patterns (refer to Figure 2.21). Battery-powered EVs, on the other hand, possess some advantages over conventional IC engine vehicles, such as high-energy efficiency and zero environmental pollution. However, the performance, especially the operation range per battery charge, is far less competitive than IC engine vehicles, due to the much lower energy density of the batteries than that of gasoline. HEVs, which use two power sources(a primary power source and a secondary power source), have the advantages of both IC engine vehicles and EVs and over- come their disadvantages.1,2 In this chapter, the basic concept and operation principles of HEV power trains are discussed.5.1 Concept of Hybrid Electric Drive TrainsBasically, any vehicle power train is required to (1) develop sufficient power to meet the demands of vehicle performance, (2) carry sufficient energy on- board to support the vehicle driving a sufficient range, (3) demonstrate high efficiency, and (4) emit few environmental pollutants. Broadly, a vehicle may have more than one power train. Here, the power train is defined as the combination of the energy source and the energy converter or power source, such as the gasoline (or diesel)heat engine system, the hydrogenfuel cell electric motor system, the chemical batteryelectric motor system, and so on. A vehicle that has two or more power trains is called a hybrid vehicle. A hybrid vehicle with an electrical power train is called an HEV. The drive train of a vehicle is defined as the aggregation of all the power trains.A hybrid vehicle drive train usually consists of no more than two power trains. More than two power trains will make the drive train very complicated. For the purpose of recapturing braking energy that is dissipated in the form of heat in conventional IC engine vehicles, a hybrid drive train usually has a power train that allows energy to flow bidirectionally. The other one is either bidirectional or unidirectional. Figure 5.1 shows the concept of a hybrid drive train and the possible different power flow routes.A hybrid drive train can supply its power to the load by a selective power train. There are many available patterns of operating two power trains to meet the load requirement:1. Power train 1 alone delivers its power to the load.2. Power train 2 alone delivers its power to the load.3. Both power train 1 and power train 2 deliver their power to the load simultaneously.4. Power train 2 obtains power from the load (regenerative braking).5. Power train 2 obtains power from power train 1.6. Power train 2 obtains power from power train 1 and the load simultaneously.7. Power train 1 delivers power to the load and to power train 2 simultaneously.8. Power train 1 delivers its power to power train 2, and power train 2 delivers its power to the load.9. Power train 1 delivers its power to the load, and the load delivers the power to power train 2. FIGURE 5.1 Conceptual illustration of a hybrid electric drive train.In the case of hybridization with a gasoline (diesel)IC engine (power train1) and a batteryelectric machine (power train 2), pattern (1) is the engine- alone propelling mode. This may be used when the batteries are almost completely depleted and the engine has no remaining power to charge the batteries, or when the batteries have been fully charged and the engine is able to supply sufficient power to meet the power demands of the vehicle. Pattern (2) is the pure electric propelling mode, in which the engine is shut off. This pattern may be used for situations where the engine cannot operate effectively, such as very low speed, or in areas where emissions are strictly prohibited. Pattern (3) is the hybrid traction mode and may be used when large power is needed, such as during sharp accelerating or steep hill climbing. Pattern (4) is the regenerative braking mode, by which the kinetic or potential energy of the vehicle is recovered through the electric motor functioning as a generator. The recovered energy is then stored in the batteries and reused later on. Pattern (5) is the mode in which the engine charges the batteries while the vehicle is at a standstill, coasting, or descending a slight grade, in which no power goes into or comes from the load. Pattern (6) is the mode in which both regenerating braking and the IC engine charge the batteries simultaneously. Pattern (7) is the mode in which the engine propels the vehicle and charges the batteries simultaneously. Pattern (8) is the mode in which the engine charges the batteries, and the batteries supply power to the load. Pattern (9) is the mode in which the power flows into the batteries from the heat engine through the vehicle mass. The typical configuration of this mode is that the two power trains are separately mounted on the front and rear axles of the vehicle, which will be discussed in the following sections.The abundant operation modes in a hybrid vehicle create much more flexi- bility over a single power train vehicle. With proper configuration and control, applying a specific mode for a special operating condition can potentially optimize the overall performance, efficiency, and emissions. However, in a practical design, deciding which mode should be implemented depends on many factors, such as the physical configuration of the drive train, power train efficiency characteristics, load characteristics, and so on.Operating each power train in its optimal efficiency region is essential for the overall efficiency of the vehicle. An IC engine generally has the best efficiency operating region with a wide throttle opening. Operating away from this region will cause low operating efficiency (refer to Figures 2.30, 2.32, 2.34, 2.35, and 3.6). On the other hand, efficiency suffering in an electric motor is not as detrimental when compared to an IC engine that operates away from its optimal region (refer to Figure 4.14).FIGURE 5.2 A load power is decomposed into steady and dynamic components.The load power of a vehicle varies randomly in real operation due to frequent acceleration, deceleration, and climbing up and down grades, as shown in Figure 5.2. Actually, the load power is composed of two components: one is steady (average) power, which has a constant value, and the other is dynamic power, which has a zero average. In designing the control strategy of a hybrid vehicle, one power train that favors steady-state operation, such as an IC engine and fuel cell, may be used to supply the average power. On the other hand, another power train, such as an electric motor, may be used to supply the dynamic power. The total energy output from the dynamic power train will be zero in a whole driving cycle. This implies that the energy source of the dynamic power train does not lose energy capacity at the end of the driving cycle. It functions only as a power damper.In a hybrid vehicle, steady power may be provided by an IC engine, a Stirling engine, a fuel cell, and so on. The IC engine or the fuel cell can be much smaller than that in a single power train design because the dynamic power is taken by the dynamic power source, and then can operate steadily in its most efficient region. The dynamic power may be provided by an electric motor powered by batteries, ultracapacitors, flywheels (mechanical batteries), and their combinations.1,35.2 Architectures of Hybrid Electric Drive TrainsThe architecture of a hybrid vehicle is loosely defined as the connection between the components that define the energy flow routes and control ports. Traditionally, HEVs were classified into two basic types: series and parallel. It is interesting to note that, in 2000, some newly introduced HEVs could not be classified into these kinds.4 Hence, HEVs are presently classified into four kindsseries hybrid, parallel hybrid, seriesparallel hybrid, and complex hybridthat are functionally shown in Figure 5.3.5 Scientifically, the classifications above are not very clear and may cause confusion. Actually, in an HEV, there are two kinds of energy flowing in the drive train: one is mechanical energy and the other is electrical energy. Adding two powers together or splitting one power into two at the power merging point always occurs with the same power type, that is, electrical or mechanical,FIGURE 5.3 Classifications of hybrid EVs. (a) Series (electrically coupling), (b) parallel (mechanical coupling), (c) seriesparallel (mechanical and electrical coupling), and (d) complex (mechanical and electrical coupling).not electrical and mechanical. So perhaps a more accurate definition for HEV architecture may be to take the power coupling or decoupling features such as an electrical coupling drive train, a mechanical coupling drive train, and a mechanicalelectrical coupling drive train.Figure 5.3a functionally shows the architecture that is traditionally called a series hybrid drive train. The key feature of this configuration is that two electrical powers are added together in the power converter, which functions as an electric power coupler to control the power flows from the batteries and generator to the electric motor, or in the reverse direction, from the electric motor to the batteries. The fuel tank, the IC engine, and the generator constitute the primary energy supply and the batteries function as the energy bumper.Figure 5.3b is the configuration that is traditionally called a parallel hybrid drive train. The key of this configuration is that two mechanical powers are added together in a mechanical coupler. The IC engine is the primary power plant, and the batteries and electric motor drive constitute the energy bumper. The power flows can be controlled only by the power plantsthe engine and electric motor.Figure 5.3c shows the configuration that is traditionally called a series parallel hybrid drive train. The distinguished feature of this configuration is the employment of two power couplersmechanical and electrical. Actually, this configuration is the combination of series and parallel structures,possessing the major features of both and more plentiful operation modes than those of the series or parallel structure alone. On the other hand, it is relatively more complicated and may be of higher cost.Figure 5.3d shows a configuration of the so-called complex hybrid, which has a similar structure to the seriesparallel one. The only difference is that the electric coupling function is moved from the power converter to the batteries and one more power converter is added between the motor/generator and the batteries.We will concentrate more on the first three configurationsseries, parallel, and seriesparallel.5.2.1Series Hybrid Electric Drive Trains (Electrical Coupling)A series hybrid drive train is a drive train in which two electrical power sources feed a single electrical power plant (electric motor) that propels the vehicle. The configuration that is most often used is the one shown in Figure 5.4. The unidirectional energy source is a fuel tank and the unidirectional energy converter (power plant) is an IC engine coupled to an electric generator. The output of the electric generator is connected to a power DC bus through a controllable electronic converter (rectifier). The bidirectional energy source is a battery pack connected to the power DC bus by means of a controllable, bidirectional power electronic converter (DC/DC converter). The power bus is also connected to the controller of the electric motor. The traction motor can be controlled as either a motor or a generator, and in forward or reverse motion. This drive train may need a battery charger to charge the batteries by wall plug-in from a power grid. The series hybrid drive trainoriginally came from an EV on which an additional enginegenerator is added to extend the operating range that is limited by the poor energy density of the batteries.FIGURE 5.4 Configuration of a series hybrid electric drive train.混 合 动 力 汽 车摘要传统内燃机汽车通过利用石油燃料高热值高密度的优点,提供给其良好的性能和较好的续航能力。但同时又不可避免的有燃油经济性差和环境污染的缺点。下面是其燃油经济性差的主要原因:(1)发动机燃油效率特性与实际运行工况不匹配(如图2.34和图2.35);(2)制动过程中的动能损失,尤其是在城市运行的时候;(3)当前汽车在走走停停的驾驶模式下液力传动装置的效率低下(如图2.21)。纯电动汽车,在一方面,相比传统内燃机汽车有一些优势,如高效能和零污染。然而,在性能方面,特别是每次充电所能行驶的里程要远少于内燃机汽车,原因在于电池的能量密度远低于汽油。混合动力汽车有两个动力源(一个主要的和一个辅助的),它拥有内燃机汽车和纯电动汽车的各自优点并且同时避免了它们的不足。在这一章里,我们将就混合动力汽车动力驱动装置的基本概念和操作准则进行讨论。5.1混合动力驱动系统的概念基本上,任何汽车动力驱动系统都需要(1)提供充足动力来满足汽车性能需求;(2)携带足够的能量以支持行驶足够的里程;(3)具有高效能;(4)排放较少的环境污染物。一般来说,一辆汽车可能拥有不止一个动力驱动系统。在这里,这个动力系统被定义成能量源和能量转换装置的结合或者动力源,比如汽油(或柴油)-热机系统, 氢燃料电池电动系统,化学电池-电机系统等等。一个拥有两个或两个以上动力系统的汽车称为混合动力车。一个具有电动动力系统的混合动力车称为电动混合动力车。车辆的驱动系统将所有的动力系统聚集起来。通常混合动力车的驱动系不会多于两个动力系统。多于两个动力的驱动系非常的复杂。为了回收传统内燃机车辆制动过程中变成热消耗掉的能量,混合动力驱动系通常有一个动力系统允许能量双向流动。另外一个可能是双向的也可能不是。图5.1表示的是混合动力驱动系的概念和可能的能量流动路线。混合动力驱动系可以将动力通过可选择的路线传递给负载。两个动力系统满足负载的有效方式有很多种:1、 动力系统1单独传递动力到负载。2、 动力系统2单独传递动力到负载。3、 动力系统1和2同时传递动力到负载。4、 动力系统2从负载获得能量(再生制动)。5、 动力系统2从动力系统1获得能量。6、 动力系统2同时从动力系统1和负载获得能量。7、 动力系统1同时将动力传递给动力系统2和负载。 图5.1 混合汽车驱动系统的概念说明8、动力系统1将能量传递给动力系统2,动力系统2将能量传递给负载。9、动力系统1将动力传递给负载,负载将动力传递给动力系统2。汽油机(柴油机)-内燃机(动力系统1)和电动动力系统(动力系统2)组合的情况下,方式(1)是发动机单独驱动模式。通常是电池几乎完全用尽并且发动机没有剩余动力给电池充电,或者是电池已经完全充满而发动机能够提供足够的动力来满足车辆的负载需求。方式(2) 是纯电动模式,发动机关闭。这种方式是在发动机不能有效地运行的场合,比如速度非常低,或者某些严禁排放的区域。方式(3)是混合驱动模式,可能在需要大功率的情况下运用,比如急加速或者爬陡坡。方式(4)是再
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:汽油机活塞的热力耦合应力分析
链接地址:https://www.renrendoc.com/p-22890035.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!