一种周期循环波能发电装置结构设计

一种周期循环波能发电装置结构设计

收藏

压缩包内文档预览:

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

一种周期循环波能发电装置结构设计,一种,周期,循环,发电,装置,结构设计
编号:22890486    类型:共享资源    大小:218.83KB    格式:ZIP    上传时间:2019-11-03 上传人:机****料 IP属地:河南
30
积分
关 键 词:
一种 周期 循环 发电 装置 结构设计
资源描述:
一种周期循环波能发电装置结构设计,一种,周期,循环,发电,装置,结构设计
内容简介:
毕 业 设 计(论 文)任 务 书设计(论文)题目:一种周期循环波能发电装置结构设计 学生姓名:专业:所在学院:指导教师:职称:发任务书日期:年月日 任务书填写要求1毕业设计(论文)任务书由指导教师根据各课题的具体情况填写,经学生所在专业的负责人审查、系(院)领导签字后生效。此任务书应在毕业设计(论文)开始前一周内填好并发给学生。2任务书内容必须用黑墨水笔工整书写,不得涂改或潦草书写;或者按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,要求正文小4号宋体,1.5倍行距,禁止打印在其它纸上剪贴。3任务书内填写的内容,必须和学生毕业设计(论文)完成的情况相一致,若有变更,应当经过所在专业及系(院)主管领导审批后方可重新填写。4任务书内有关“学院”、“专业”等名称的填写,应写中文全称,不能写数字代码。学生的“学号”要写全号,不能只写最后2位或1位数字。 5任务书内“主要参考文献”的填写,应按照金陵科技学院本科毕业设计(论文)撰写规范的要求书写。6有关年月日等日期的填写,应当按照国标GB/T 740894数据元和交换格式、信息交换、日期和时间表示法规定的要求,一律用阿拉伯数字书写。如“2002年4月2日”或“2002-04-02”。毕 业 设 计(论 文)任 务 书1本毕业设计(论文)课题应达到的目的: 本课题属于教师自主命题,来源于工程实践。目的:1、通过本课题的设计研究,考察学生四年来在校所学的专业知识水平及运用专业知识解决设计项目的创新能力;2、通过本课题的研究使学生系统的熟悉机械设计分析及掌握相关的设计手法。 3、通过本课题使学生熟练掌握制图方法、规范设计图纸画法以及提高使用设计软件解决应用问题的能力。 2本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等): 内容:波浪能主要用于发电,为边远海域的国防及海域设施等提供清洁能源。此外,波浪能还可以用于抽水、供热、海水淡化以及制氢等。本文对一种循环螺旋桨推进器进行了机构设计,对转换器进行了传动系统动力学、水动力学和结构动力学分析,验证了循环推进器实现波浪能转换的可行性,并建立转换器的三维实体模型。本课题技术要求:1. 循环波浪能转换器结构设计与建模2. 发电机选择3. 叶轮结构设计4. 增速器设计5. 辅助部件设计 本课题研究的工作要求:1. 前期的市场调研,调研目前国内外波浪能的发展情况2. 阅读文献3. 原理分析画图建模 毕 业 设 计(论 文)任 务 书3对本毕业设计(论文)课题成果的要求包括图表、实物等硬件要求: 1、设计调研报告:前期的市场调研分析、图文结合、数据分析。2、设计图纸:设计机构的零件图和装配图并附上设计说明。3、完成毕业设计模型实物制作(暂定)与布展工作。4、按毕业设计要求完成全套设计方案及归档工作5、完成相关数据刻盘。6、说明书7、图纸:装配图(A0) 零件图(若干)4主要参考文献: 1. 王忠;王传崑.我国海洋能开发利用情况分析J.海洋环境科学.2006(04)2. 任建莉;钟英杰;张雪梅;徐璋.海洋波能发电的现状与前景J.浙江工业大学学报.2006(01)3. 邓隐北,熊雯.海洋能的开发与利用J.可再生能源.2004(03)4. 程阳;李英;陈柏全.波浪发电装置浮筒的动力特性及参数研究J.海洋技术学报.2015(01)5. 陈仁文;任龙;蒋小川;夏桦康;徐栋霞.海洋波浪能量采集技术研究进展与展望J.南京航空航天大学学报.2014(06)6. 姜静波;高丽;倪佐涛;陈永华.波浪能在海洋监测中的有效应用研究J.青岛大学学报(工程技术版).2014(02)7. 姜宽舒;郭建斌;王江.波浪能发电装置液固耦合流体增频特性研究J.人民长江.2014(04)8. 周鹏飞;白玉红.基于PCA和DEA的海上可再生能源开发综合评价J.可再生能源.2014(01)9. 张丽珍;羊晓晟;王世明;梁拥成.海洋波浪能发电装置的研究现状与发展前景J.湖北农业科学.2011(01)10. 任建莉;钟英杰;张雪梅;徐璋.海洋波能发电的现状与前景J.浙江工业大学学报.2006(01)11. 刘全根.世界海洋能开发利用状况及发展趋势J.能源工程.1999(02)12. 余志.海洋波浪能发电技术进展J.海洋工程.1993(01)13. 叶杭冶.大型并网风力发电机组控制算法研究D.浙江大学.200814. 郑艳娜.波浪与浮式结构物相互作用的研究D.大连理工大学.200615. 谷汉斌.波浪与建筑物作用的数学模型研究与应用D.天津大学.200516.J.T,Scruggs. R,Nie. (2015) Disturbance-adaptive stochastic optimal control of energy harvesters, with application to ocean wave energy conversion. A Annual Reviews in Control.Vol. 40, p102-115.17.T,Brner. M,Alam(2015)Real time hybrid modeling for ocean wave energy converters.ARenewable & Sustainable Energy Reviews.Vol. 43, p784-795.18.X,D,Xie. Q,Wang. N,Wu.(2014) Energy harvesting from transverse ocean waves by a piezoelectric plate.AInternational Journal of Engineering Science,. Vol. 81, p41-48.毕 业 设 计(论 文)任 务 书5本毕业设计(论文)课题工作进度计划:15.11.20-15.12.2015.12.20-16.01.1516.01.15-16.03.1816.03.18-16.04.0816.04.08-16.04.3016.05.01-16.05.1016.05.10-16.05.15学生明确选题学生完成开题报告学生完成设计草图阶段,明确设计方案学生完善设计正稿, 撰写毕业设计论文初稿学生毕业设计完成阶段,提交毕业论文正稿,完成期中检查学生提交毕业设计论文,布置毕业设计展布展、毕业答辩准备所在专业审查意见:通过负责人: 2015 年 12 月23 日 毕 业 设 计(论 文)开 题 报 告设计(论文)题目:一种周期循环波能发电装置结构设计 学生姓名:专业:所在学院:指导教师:职称:年 月日 开题报告填写要求1开题报告(含“文献综述”)作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及所在专业审查后生效;2开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见;3“文献综述”应按论文的框架成文,并直接书写(或打印)在本开题报告第一栏目内,学生写文献综述的参考文献应不少于15篇(不包括辞典、手册);4有关年月日等日期的填写,应当按照国标GB/T 740894数据元和交换格式、信息交换、日期和时间表示法规定的要求,一律用阿拉伯数字书写。如“2004年4月26日”或“2004-04-26”。5、开题报告(文献综述)字体请按宋体、小四号书写,行间距1.5倍。毕 业 设 计(论文) 开 题 报 告 1结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写不少于1000字左右的文献综述: 周期循环波能发电装置结构设计的文献综述一、概述 1.波浪能概念定义 波浪能是指海洋表面波浪所具有的动能和势能。波浪的能量与波高的平方、波浪的运动周期以及迎波面的宽度成正比。波浪能是海洋能源中能量最不稳定的一种能源。波浪能是由风把能量传递给海洋而产生的,它实质上是吸收了风能而形成的。能量传递速率和风速有关,也和风与水相互作用的距离有关。波浪可以用波高、波长和波周期等特征来描述。 2.波浪能优势 海洋能源是地球上最大的能源,并且是可再生清洁能源。波浪能在海中无处不在,受时间地点限制较小,能流密度大,社会效益好。 3.波浪能技术突破难点 波浪能能量分散不集中,开发成本高,总体转换效率低,被转换的二次能不稳定,装置运行的稳定性和可靠性差,发电功率小且质量差等。二、发电机选择的研究 根据国际上最新的分类方式,波浪能技术分为:振荡水柱技术、振荡浮子技术和越浪技术。 振荡水柱技术利用波浪驱动气室内水柱往复运动,再通过水柱驱动气室内的空气,进而由空气驱动叶轮,得到旋转机械能,进一步驱动发电装置,得到电能,技术可靠性高但是效率低。 振荡浮子技术利用波浪的运动推动装置的活动部分产生往复运动,驱动机械系统或油、水等中间介质的液压系统,再推动发电装置发电。 越浪技术是利用水道将波浪引入高位水库形成水位差,利用水头直接驱动水轮发电机组发电。 三、叶轮结构设计的研究 为解决水平轴潮流能发电系统在低流速下叶轮能量捕获效率低的问题,运用最大功率跟踪控制理论及叶轮与变量泵传动轴力矩平衡方程,建立了变量泵反力矩参考值模型,设计了包含恒压控制子系统的间接速度控制的压力反馈加转矩控制的叶轮最大功率控制系统。该系统在未知潮流流速的情况下,用恒压控制子系统稳定液压传动系统的压力,以变量泵反力矩及液压传动系统压力为反馈值,在使用主控制器调节变量泵排量之前,先给变量泵排量调节装置以排量的初值。因此无论叶轮的转速如何变化,变量泵排量的初始值会使其按匹配的方式工作于需要的转矩附近。在此基础上,系统加入直接转矩闭环控制,再由主控制器给出变量泵排量的补偿值。最终,控制系统通过小范围的调节变量泵排量,使变量泵反力矩跟踪其目标值变化,从而使叶轮转速跟踪其目标转速变化,以保证叶轮以最佳叶尖速比运行,进而实现对叶轮的最大功率控制。整个系统的性能在Automation Studio软件中进行了仿真试验,并在此基础上搭建了叶轮捕获功率为8Kw的液压型水平轴潮流能发电机组的海上试验装置,进行了海上试验。仿真和海上试验结果显示,该控制系统工作稳定性好,仿真和海试时叶轮的捕获功率系数分别在0.35和0.33附近波动。叶轮的捕获功率系数相比不加控制,分别增加了约0.03和0.05,提高了叶轮捕获效率,验证了系统的有效性和可靠性。四、总结 波浪能是一种密度低、不稳定、无污染、可再生、储量大、分布广、利用难的能源。目前波浪能利用地点大都局限在海岸附近,因此还容易受海洋性灾害气候的影响。开发成本高,规模小,社会效益好但是经济效益不够理想,投资回收期相对较长,这些都在一定程度上束缚了波浪能的大规模商业化开发利用和发展,但随着理论和实践方面的不断发展成熟,波浪能开发利用的前景会十分广阔。 参考文献 1. 王忠;王传崑.我国海洋能开发利用情况分析J.海洋环境科学.2006(04) 2. 任建莉;钟英杰;张雪梅;徐璋.海洋波能发电的现状与前景J.浙江工业大学学报.2006(01) 3. 邓隐北,熊雯.海洋能的开发与利用J.可再生能源.2004(03) 4. 程阳;李英;陈柏全.波浪发电装置浮筒的动力特性及参数研究J.海洋技术学报.2015(01) 5. 陈仁文;任龙;蒋小川;夏桦康;徐栋霞.海洋波浪能量采集技术研究进展与展望J.南京航空航天大学学报.2014(06) 6. 姜静波;高丽;倪佐涛;陈永华.波浪能在海洋监测中的有效应用研究J.青岛大学学报(工程技术版).2014(02) 7. 姜宽舒;郭建斌;王江.波浪能发电装置液固耦合流体增频特性研究J.人民长江.2014(04) 8. 周鹏飞;白玉红.基于PCA和DEA的海上可再生能源开发综合评价J.可再生能源.2014(01) 9. 张丽珍;羊晓晟;王世明;梁拥成.海洋波浪能发电装置的研究现状与发展前景J.湖北农业科学.2011(01) 10. 任建莉;钟英杰;张雪梅;徐璋.海洋波能发电的现状与前景J.浙江工业大学学报.2006(01) 11. 刘全根.世界海洋能开发利用状况及发展趋势J.能源工程.1999(02) 12. 余志.海洋波浪能发电技术进展J.海洋工程.1993(01) 13. 叶杭冶.大型并网风力发电机组控制算法研究D.浙江大学.2008 14. 郑艳娜.波浪与浮式结构物相互作用的研究D.大连理工大学.2006 15. 谷汉斌.波浪与建筑物作用的数学模型研究与应用D.天津大学.2005 16.J.T,Scruggs. R,Nie. (2015) Disturbance-adaptive stochastic optimal control of energy harvesters, with application to ocean wave energy conversion. A Annual Reviews in Control.Vol. 40, p102-115. 17.T,Brner. M,Alam(2015)Real time hybrid modeling for ocean wave energy converters.ARenewable & Sustainable Energy Reviews.Vol. 43, p784-795. 18.X,D,Xie. Q,Wang. N,Wu.(2014) Energy harvesting from transverse ocean waves by a piezoelectric plate.AInternational Journal of Engineering Science,. Vol. 81, p41-48. 毕 业 设 计(论文) 开 题 报 告 2本课题要研究或解决的问题和拟采用的研究手段(途径): 1、研究(设计)的基本内容: 波浪能主要用于发电,为边远海域的国防及海域设施等提供清洁能源。此外,波浪能还可以用于抽水、供热、海水淡化以及制氢等。本文对一种循环螺旋桨推进器进行了机构设计,对转换器进行了传动系统动力学、水动力学和结构动力学分析,验证了循环推进器实现波浪能转换的可行性,并建立转换器的三维实体模型。 2、研究(设计)的基本途径: 1、1.通过仔细阅读指导老师给定的设计任务书,分析本次设计的总体步骤,做好充分的准备; 2.通过自己已学的课程以及查阅循环螺旋桨推进器相关的资料,参照给定的设计要求完成毕业设计。 毕 业 设 计(论文) 开 题 报 告 指导教师意见:1对“文献综述”的评语:该生通过大量搜集和查阅文献资料,对与板坯结晶器内钢液流场/连铸中间包控流装置相关的国内外前人工作较好地进行了综合分析和归纳整理,并针对某一学者具体的研究工作进行了比较专门的、全面的、深入的和系统的描述与评价,语言简洁,层次清楚。达到了学校“文献综述要求”。该生通过大量搜集和查阅文献资料,对与板坯结晶器内钢液流场/连铸中间包控流装置相关的国内外前人工作较好地进行了综合分析和归纳整理,并针对某一学者具体的研究工作进行了比较专门的、全面的、深入的和系统的描述与评价,语言简洁,层次清楚。达到了学校“文献综述要求”该生通过大量搜集和查阅文献资料,对本课题相关的国内外前人工作较好地进行了综合分析和归纳整理,并针对某一学者具体的研究工作进行了比较专门的、全面的、深入的和系统的描述与评价,语言简洁,层次清楚。达到了学校“文献综述要求”。2对本课题的深度、广度及工作量的意见和对设计(论文)结果的预测:预期可以完成3.是否同意开题: 同意 不同意 指导教师: 2016 年 03 月 08 日所在专业审查意见:同意 负责人: 2016 年 03 月 09 日毕 业 设 计(论 文)外 文 参 考 资 料 及 译 文 译文题目: Wave energy and intertidal productivity 波浪能和潮间带生产力 学生姓名:专业:所在学院:指导教师:职称:Wave energy and intertidal productivityABSTRACTIn the northeastern Pacific, intertidal zones of the most wave-beaten shores receive more energy from breaking waves than from the sun. Despite severe mortality from winter storms, communities at some wave-beaten sites produce an extraordinary quantity of dry matter per unit area of shore pier year. At wave-beaten sites of Tatoosh Island, WA, sea palms, Postelsia palmaeformis can produce 10 kg of dry matter, or 1.5 x 108 J, per m2 in a good year. Extraordinarily productive organisms such as Postelsia are restricted to wave- beaten sites. Intertidal organisms cannot transform wave energy into chemical energy, as photosynthetic plants transform solar energy, nor can intertidal organisms harness wave energy. Nonetheless, wave energy enhances the productivity of intertidal organisms. On exposed shores, waves increase the capacity of resident algae to acquire nutrients and use sunlight, augment the competitive ability of productive organisms, and protect intertidal residents by knocking away their enemies or preventing them from feeding.Anyone who has felt the force of a large wave breaking on an ocean beach knows that it dissipates a large amount of energy when it crashes against the shore. Can intertidal organisms put this energy to use?Water motion does enhance the growth of aquatic organisms. In general, productivity of marine and freshwater plants is higher in moving than in still water. It has long been known that coral reef growth is most vigorous on those margins of the reef where waves pound hardest: indeed, wave-beaten reef platforms produce four times as much calcium carbonate per square meter per year as do those in protected lagoons. Increased exposure to waves does not always increase productivity. Along the southern coast of Chile, the subtidal kelp Macrocystis appears to grow best at intermediate levels of water motion: at the most exposed sites, storm waves tear these kelps away . On the rocky shore of Nova Scotia, Laminaria longicruris grow less rapidly,and stands of this kelp are less productive at a site fully exposed to ocean waves than at a more sheltered locale . In the northeastern Pacific, however, intertidal kelps do grow better in wave-beaten places, even though waves select stringently for small size , because winter storms shred the fronds of most kelps, and tear away many kelps and mussels . On Tatoosh Island, WA, the stipeless kelp Hedophyl- lum recovers from removal experiments within a year , whereas on the mote sheltered shores of the San Juan Islands, recovery is less than half complete after 3 years . In general, intertidal zones of the northeastern Pacific are more completely covered by plants and animals the more expoised they are to wave action.In this report, we first calculate the energy supplied by waves to exposed shores of the northeastern Pacific. Next,we estimate standing crop and productivity in different zones of exposed and sheltered rocky shores of Tatoosh Island (48 19124。40 W), showirlg that intertidal productivity is much higher in wave-beaten settings. Finally, we consider the various roles waves may play in enhancing the productivity of intertidal organisms.METHODSThe Power Supplied by Breaking Waves. Calculating the power carried by waves in the open ocean. Waves generated anywhere in the ocean dissipate most of their energy against some shore as surf. To calculate the energy transported by waves in the open ocean, we assume that an indefinite train of sinusoidal waves transports an amount P = (pG2/4tt)VT of energy per second per centimeter width of wave crest, across an imaginary plane perpendicular to the direction of motion of the waves: here, p is water density, assumed to be 1 g/cm3; G is gravitational acceleration, assumed to be 103 cm/sec2; V is variance in water level, in cm2; and T is wave period, in seconds (ref. 14, section 3.4). For a superposition of sine waves all moving in the same direction, T is the average of the various wave periods, weighted according to the contribution to V of the waves in question.We have calculated P9 which we call wave power, for three sites: Grays Harbor, WA (46 47 N, 124 50 W), a wave buoy 5 km seaward of Tofino, British Columbia (49 9 N, 129。54, W), and Cobb Seamount (46。45, N, 130。50, W), 500 km west Of Grays Harbor. The calculations for Grays Harbor are based on daily records of V, called 4wave energy, and of the proportions of this wave energy contributed by waves of different periods, provided by the Nearshore Research Group, Institute of Marine Sciences, Scripps Institution of Oceanography, La Jolla, CA. The calculations for Tofino are based on monthly tables (15) of significant wave height, 4V1/2, as distributed over various wave periods. Larsen and Fenton (16) provide daily records of root- mean-square wave height, (8 V)1/2, and wave period, for Cobb Seamount.We compute wave power as if all waves are moving in the same direction, toward the coast. As we shall see (Table 1), the wave power calculated for the two nearshore stations is comparable to that calculated for Cobb Seamount, as if most of this power is directed eastward or northeastward toward the shores of Washington state and Vancouver Island.The power delivered by waves to the intertidal zone. On steep shores, such as the western shore of Tatoosh Island, waves break in the intertidal zone, dissipating most of their energy there. Some wave energy may be reflected back out to sea (18), but organisms on the reflecting surface presumably could benefit from this energy. To calculate the energy that waves deliver to the intertidal zone (including the energy reflected as well as that which is dissipated), we assume that the ocean waves offshore are all moving directly shoreward and that their power is delivered to an “intertidal zone” extending from the upper limit of barnacle settlement down to mean lower low water (MLLW). MLLW is the average of observed water levels at times listed in National Oceanographic and Atmospheric Administration tide tables for the lower of the two daily low tides. On the most exposed shores at Tatoosh, this intertidal zone is roughly 5 m deep (Table 2). Finally, we assume that the shore is inclined at an average of 30 to the horizontal, so that the intertidal zone is a strip 10 m wide and that wave power is distributed evenly over this strip.These calculations are clearly very crude. Not all of the energy in ocean waves reaches the shore. Moreover, power is not distributed evenly over the intertidal zone. On the southwest side of Tatoosh, wave force is strongest just above the mussel zone (18), 2.75 m above MLLW. Finally, during storms, much of the wave power is dissipated above the intertidal zone. Our crude calculations, however, give some idea of the power supplied by breaking waves.Relationship Between Productivity and Wave Power. To explore the relationship between wave power and intertidal productivity, we assessed zonation at various sites on Tatoosh, exposed and sheltered. At these sites we also measured standing crop, as dry matter and as combustible energy, per square meter of substratum; the frond area index (FAI) one-sided frond area per unit area of substratum; and the annual production of dry matter and energy per unit area.Since, for a given tidal regime, the vertical extent of the intertidal zone is greater the more exposed that zone is to the waves (19), we measured the degree of exposure to ocean waves by the vertical extent of the intertidal zonethat is, the height from MLLW to the top of the Balanus glandula zone (the upper limit of perennial sessile animals).RESULTS AND DISCUSSIONWaves apparently enhance algal productivity by allowing algae to use light more efficiently. In broadleaf forest, each layer of leaves takes up roughly half the remaining light. In the rain forest at Pasoh, for example, 8 m2 of leaves per m2 of ground take up 99.5% of the incident light (27). If each layer is equally efficient, as figure 24.5 of ref. 27 appears to suggest, then each layer of leaves allows (0.005)1/8, or 51.5%, of the remaining light to pass. Thus, while canopy leaves are receiving far more light than they can use (47), the herbs of the forest floor are receiving just enough light for their photosynthesis to earn them a meager profit (48). Similarly, a layer of Macrocystis fronds takes up two-thirds of the light reaching it (49). For various algae, the light level at which photosynthesis just balances respiration appears to be between 2 and 5 microeinsteins (/xE) per square meter per second (50), compared to 4-10 jnE/m2 per sec for herbs on the floor of rain forest in Malaysia. Thus, if a kelp forest is to maintain a frond area per unit ground area much higher than that of a rain forest, as Postelsia and Lessoniopsis so clearly do, light must somehow be divided more evenly among their fronds than among the leaves of a forest. We believe that waves stir their fronds, ensuring that no frond is either always in the sun or always shaded. As photosynthesis of a leaf (and presumably that of a frond) in light fluctuating with a period between 0.01 and 100 sec is the same as that of a leaf subject to constant light of the same average intensity, stirring of the fronds by waves must cause light to be shared more evenly among the fronds, thus allowing the development of greater frond area. The influence of waves is particularly important because, especially in cold water, the photosynthesis of kelp blades and other algal fronds saturates at low light levels, achieving its maximum rate at 50-200 /tE/m2 per sec, 5-20% of full sunlight, although photosynthesis does not decline with a further increase of light (50, 52-54). Thus, a frond wastes light if it is exposed to the sun 5-20 sec of every 100. Leaves cannot possibly share the light so evenly in a rain forest, where a sunleaf of a canopy tree spends most of its time in full sunlight, while a forest floor herb receives sunflecks for only a few minutes per day. On the other hand, the shapes of the long, narrow, flexible fronds of Postelsia and Lessoniopsis, and their arrangement on the plant,make it possible for any of a plants fronds to be temporarily shaded or overtopped by nearly any other, and to be temporarily exposed to full sunlight soon thereafter, as long as the waves supply enough turbulent force to knock their fronds about. On Tatoosh, the restriction of algae with very high frond areas to wave-beaten sites suggests that waves do make it possible for these plants to maintain many fronds.Waves enable some of the shored more productive inhabitants to displace their competitors. Waves permit the stiff-stiped kelp Lessoniopsis to flay or whiplash its competitors within a distance of roughly half a meter. Where mussels have settled around the kelps, the kelps are shredded against the sharp edges of the mussels, or crushed between them. Postelsia lets the waves compete on its behalf, occupying gaps that waves clear from mussel beds.CONCLUDING REMARKSIn sum, shorelines exposed to ocean waves benefit from wave energy generated by winds anywhere in that ocean. As a result, the intertidal zones of rocky weather coasts receive far more energy from the waves than from the sun. Wave power enables the inhabitants of the weather coast of Tatoosh to maintain exceptionally high productivity, rather as the power that oil provides American farmers increases agricultural productivity by allowing crops to be fertilized and protected from pests and competing weeds, and by permitting feed to be concentrated so that great numbers of animals can grow and reproduce in one place.中文翻译波浪能和潮间带生产力摘要在太平洋东北部的潮间带,最受海浪拍打的海岸获得更多来自太阳破碎波的能量。尽管冬季风暴严重的死亡率,在某些接受波浪击打的地点产生的单位面积的干物质每年数量非凡。在华盛顿塔图许岛的Postelsia palmaeformis 可生产大于10公斤的干物质,或在好年景的时候每平方米J的产量。Postelsia是一种极其富有成效的生物仅限于在这些接受波浪击打的地点。潮间生物体不能转换波能量为化学能,作为光合作用的植物转化太阳能,也不能潮间生物体线束波浪能量。尽管如此,波浪能提高潮间带生物的生产率。在暴露的岸边,波浪增加居民藻类的容量从而获得养分并且利用阳光,增强生产生物的竞争力,并通过敲击他们的敌人或阻止他们觅食进而保护潮间带的居民。任何人都知道当巨大波浪拍打沙滩,摔打着岸边,需要消耗大量的能量。那么这个能量可以供给潮间带生物使用吗?水运动的确增强了水生生物的生长。在一般情况下,海洋和淡水植物生产力比静水植物的更高。人们早就知道,珊瑚礁生长最旺盛的珊瑚礁的边缘,其中波浪最汹涌。的确,每年波浪击打的平台上所产生的每平方米碳酸钙的数量是那些受保护泻湖的四倍多。增加波能曝光量并不总是能够提高生产率。沿着智利南部海岸,长势最好的出现在潮下海带Macrocystis的中等水平水运动地点:在最暴露的部位,风浪冲刷着这些海带。在新斯科舍省的岩岸,laminaria longicruris越来越少,从这种种类的海带性质上看在完全暴露的海浪中比在更隐蔽区域的地点生产力较低。但是,在东北地区,潮间带的海带在受波浪击打的地方生长得更好,即使海浪严格选择小尺寸,因为冬季的暴风雪撕碎了大部分海带的藻体,并撕掉许多海带和蚌。在华盛顿的塔图许岛,在一年内,无菌海带Hedophyl- LUM离开实验并恢复自由,而在圣胡安群岛的庇护海岸,回收不到3年就恢复了一半的数量。在一般情况下,东北地区的潮间带覆盖的的植物和动物能够充分展示它们对波浪作用。在这份报告中,我们首先计算在东北太平洋沿岸,由波浪提供的能量。接着,我们估计,在塔图许岛(4819124.40W),暴露的和庇护的不同区域的岩岸的现存量和生产力,显示出潮间生产率在受波浪击打的地点生产率要高得多。最后,我们研究波浪可能在提高潮间带生物的生产力发挥的不同作用。方法由波浪击打提供能量支持。在开阔的海域通过波浪计算能量。无论在海洋中任何地方产生的海浪,都将其大部分能量消耗于对岸上的冲浪。为了计算在开阔海域中波浪输送的能量,我们假设无限期的正弦声波传输一个P =(pG2/4tt)VT能量每秒每厘米波峰的宽度,在一个假想的平面垂直于波浪的运动的方向:在这里,P是水的密度,假定为1g/;g是重力加速度,假定为103cm/ ;V是水位
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:一种周期循环波能发电装置结构设计
链接地址:https://www.renrendoc.com/p-22890486.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!