张双楼煤矿1.2Mta新井设计【含CAD图纸+文档】
收藏
资源目录
压缩包内文档预览:
编号:22928163
类型:共享资源
大小:9.03MB
格式:ZIP
上传时间:2019-11-04
上传人:机****料
认证信息
个人认证
高**(实名认证)
河南
IP属地:河南
50
积分
- 关 键 词:
-
含CAD图纸+文档
张双楼
煤矿
1.2
Mta
设计
CAD
图纸
文档
- 资源描述:
-
张双楼煤矿1.2Mta新井设计【含CAD图纸+文档】,含CAD图纸+文档,张双楼,煤矿,1.2,Mta,设计,CAD,图纸,文档
- 内容简介:
-
专题部分特殊地段的煤巷支护技术摘要巷道布置改革的深化,支护技术的完善,使得煤矿井下巷道中煤巷所占比重日益增加,为高产高效矿井的实现起到推动作用。然而,煤层围岩条件差,地质构造复杂,采动影响,应力分布不均等特殊情况所带来的煤巷支护问题,制约着煤巷的发展。针对特殊地段的煤巷支护问题,分析特殊地段下围岩变形机理、应力分布规律以及巷道支护原理,确定合理的支护方式,进而保证煤巷围岩的稳定,矿井的生产安全。关键词煤巷 特殊地段 支护技术Abstract:with the deepening of roadway layout reform and the improvement of support technology, the roadways proportion in the coal mine increases, playing a role in promoting high yield and efficient mines achievement. However, roadway support issues caused by special circumstances such as poor coal rock, complex geological structure, mining influence, the uneven distribution of stress, restricting the development of roadway. In view of roadway special lots support issues, analysising mechanism of rock deformation, stress distribution and roadway support principle, determining reasonable support patterns, thus ensuring the stability of surrounding rock, production safety of coal mine.Keyword: roadway; special lot; support technology0引言随着采煤技术的推行,巷道布置改革的深化以及支护技术的完善,国内外矿井开拓系统的改进趋势是把大多数巷道布置在煤层中,即多掘煤巷少掘岩巷。在保证安全的情况下,煤巷代替岩巷,加快了施工速度,降低了掘进成本,有利于煤矿的可持续发展。据统计,半煤岩、煤巷掘进量占矿井掘进总量的93%左右。其中,全煤巷掘进量又可占生产矿井掘进总量的80%以上。因此,煤巷是矿井巷道的重要组成部分。煤巷支护方式复杂多样,与传统架棚支护相比,煤巷锚杆支护技术经济效果显著,故而煤巷锚杆支护技术近几年来在我国煤矿中得到长足的发展,成功研发并推广使用了煤巷锚杆支护技术,基本形成了适合我国煤矿具体条件的煤巷锚杆支护配套技术,为我国高产高效矿井建设提供了不可少的技术支撑,成为煤巷的主要支护方式。但在煤矿井下特殊条件下,单纯的锚杆支护并不能够适用。煤巷掘进时,经常会遇到一些特殊巷道,如特殊地质条件下的巷道、特殊地点巷道及特殊用途巷道。不合理的支护手段,使得支护效果大打折扣,甚至完全没有效果。不能保证巷道围岩稳定,无法满足煤矿正常生产和安全要求。例如,当开掘破碎顶板条件下的沿空煤巷时,仅靠锚杆支护并不能维护住破碎的顶板。针对高应力大松动圈软岩工程中存在的支护问题,分析破碎软岩巷道中锚喷网支护、锚注支护以及锚索支护技术原理,决定采用“三锚”支护技术,即锚杆支护技术、锚索加固技术和锚注支护技术,能很好地解决支护难题。大多数巷道开挖后需保存较长时间,在使用期间,不免会受到采动影响,围岩应力等作用。针对煤巷开挖前后的特殊条件,正确选择支护方式,可达到良好的支护效果,从而更好地促进矿井的安全与生产。近年来,随着综采生产技术的发展,百万吨综采工作面大量涌现且千万吨级全自动综采工作面也已出现,年消耗回采巷道量大幅度增加。然而,煤层的赋存条件因成煤环境不同而各异,巷道的围岩条件千差万别,地质构造复杂多变,采动影响下应力分布不均。针对特殊地段的煤层巷道,提供及时有效的支护,成为制约煤矿高效安全集约化生产的技术瓶颈,是煤炭工业急需解决的关键问题。1巷道支护体破坏的力学过程巷道支护体破坏的力学过程工程实践表明,巷道支护体破坏是一个过程,总是从一个或几个部位首先产生变形、损伤、破坏,进而导致整个支护体失稳。因此支护体破坏的根本原因,是巷道支护体的力学特性、围岩力学特性和岩体力学载荷性质的不耦合所造成的。其演变过程如图1所示。故而,分析研究特殊地段下围岩变形机理、应力分布规律以及巷道支护原理,确定合理的支护方式,是保证巷道围岩稳定极为必要的方法。图1巷道支护体破坏的演变过程2常见巷道支护方法2.1锚杆支护2.1.1锚杆支护原理(1)悬吊理论悬吊理论认为:锚杆支护的作用是用锚杆将较软弱岩层悬吊在上部稳定岩层上,以增强较软弱岩层的稳定性,如图2-1所示。在软弱围岩中,锚杆的作用是将直接顶板破碎岩石悬吊在其上部的自然平衡拱上。该理论直观简单,在不稳定岩层厚度容易确定的条件下应用较为方便。锚杆长度按2-1式确定。不稳定地层厚度根据地质调查或冒落拱高度确定,当其数值较难确定或厚度过大时,支护参数不易确定,此时悬吊理论的应用遇到困难。 L=KH+L1+L2 (2-1)式中: L锚杆长度; H软弱岩层厚度或冒落顶高度; K安全系数,一般K=2; L1锚杆锚入稳定岩层的深度,一般可按经验取0.3m ; L2锚杆在巷道中外露的长度。层状顶板中,较薄的顶板岩层容易发生离层开裂破坏,锚杆支护的组合梁作用是通过锚杆的锚固力把数层薄的岩层组合起来,增大了岩层间的摩擦力,同时锚杆本身也提供一定的抗剪力,阻止岩层层间的相对移动,从而形成类似锚钉加固的组合梁。图2-1锚杆支护的悬吊作用(2)组合梁理论组合梁中全部锚固层共同变形,提高了顶板岩层整体的抗弯能力,从而大大减少岩层的变形和弯张应力,其工作原理如图2-2和图2-3所示。这种观点形象的阐述了锚杆作用机理,在浅部工程中具有一定的指导意义,只适应于浅部层状顶板。深部工程中,围岩应力及变形量大,顶板岩层连续性遭受破坏,从而失去传递拉应力和弯矩的能力,层状顶板失去“梁”的应力及变形特征,组合梁观点不再适用。图2-2锚杆支护的组合梁原理图 图2-3板梁组合前后的挠曲应力对比(3)压缩拱理论该理论认为,在锚杆锚固力的作用下,每根锚杆周围形成一个两头带圆锥的筒状压缩区。各锚杆所形成的压缩区彼此联成一个有一定厚度的均匀压缩带,该带具有较大的承载能力,如图2-4。如果是拱形或圆形巷道,把锚杆以适当的间距沿拱形系统安装,就会在巷道周围形成连续的均匀压缩带,并起到拱的作用,如图2-5。图2-4锚固体的均匀压缩带 图2-5 锚杆支护的均匀压缩拱锚杆的长度与间距,决定了连续均匀压缩拱能否形成及形成后的厚薄。加固拱的厚度可按式2-2确定。由于均匀压缩拱内的径向及切向均受压,故这部分围岩强度得到了其承载能力也相应增大。 b= a-atan (2-2)式中 b加固拱厚度; a锚杆间距1锚杆长度;锚固体与锚杆的夹角,一般取45。(4)围岩强度强化理论锚杆与围岩相互作用,形成锚杆围岩的共同承载结构,改善锚固体力学性能,提高锚固体峰值强度和参与强度,特别是残余强度提高,有效提高围岩的自承能力,控制围岩塑性区、破碎区的发展,促使巷道围岩由不稳定状态向稳定状态转变。国内有些专家在用水泥砂浆试块模拟有、无锚杆和金属网约束的岩体进行试验时,发现锚固体具有“双峰”性质的应力应变特性曲线,如图 2-6所示。图中左侧第一个“峰”是普通岩石所普遍具有的特性,当它已经破裂而且处于残余强度时再加载,则发现无锚杆的岩块发生彻底碎裂破坏,而有锚、网的试块仍能继续承载,出现应力应变第二个“驼峰”。这充分说明锚、网对破碎岩体有强有力的支护作用。图2-6锚固体的应力应变曲线2.1.2 锚杆支护设计方法煤矿井下巷道(特别是回采巷道)突出特点就是承受采动支承压力,围岩破碎、变形量大。煤矿井下巷道锚杆支护设计,首先要对巷道所要经受采动影响过程及影响程度进行准确的评估,对巷道使用要求和设计目标要予以准确定位。工程设计之前,对围岩的地质条件、岩体强度、松动圈、采动影响程度、矿压显现规律等因素要进行深入的调查分析,必要时对原岩应力大小和方向进行测试,为支护设计提供可靠基础数据资料,这是取得良好设计效果的重要保证。目前,我国煤巷锚杆支护参数设计方法,主要有工程类比法和理论计算法。工程类比方法占较大比重。理论计算方法往往用来检验工程类比法的可靠性程度。工程类比法,是在现有理论基础上,参照已有大量工程实践的经验参数,通过工程相似条件下的类比,直接确定新开工程支护参数的一种方法。理论计算方法是在测得岩体和支护材料力学参数前提下,根据围岩力学特征建立数学模型,然后利用相应锚杆支护作用机理和相关支护理论确定锚杆支护参数的方法。工程类比法的应用,核心在十评价新开工程与已往成功工程的相似与差别之处,工程的类似性、体现在以下几个方面:(1)岩层的强度与工程地质条件岩层强度是影响围岩稳定性最主要的因素,它不仅是指岩块的强度,更主要的是包含节理因素的岩体强度、岩石的遇水软化膨胀性等。岩层的地质赋存状况、节理发育程度、水文地质条件等对岩体强度的影响很大,这些指标是否相当,对工程类比的可靠性影响很大。(2)地应力地应力是影响围岩稳定性的两个最重要的因素之一,相似模型试验证明,其影响仅次于岩体强度。大量实测表明,一些矿区水平主应力往往大十垂直主应力,在浅部、中深部硬岩工程中这一现象比较突出,具有一定的普遍性。如果单独根据巷道理论深度作为类比的条件,有时会产生比较大的失误。因此,在工程设计之前应首先对原岩应力特征进行调查评估,对十重要的工程,进行实测原岩应力大小与方向为好。(3)采动影响采动影响事实上是围岩中应力升高的过程,巷道受采动影响的程度与巷道和工作面的空间关系有关,对此要综合评价。(4)巷道特征与使用条件巷道特征包括跨度、断面形状、巷道轴向等。跨度与断面形状的不同,支护结构稳定性、围岩破坏变形规律不同,类比时要加以区分。原岩应力的测试结果表明,水平主应力有最大和最小两个分量,二者数值相差1-2倍。因此,巷道方向的不同,支护效果也会具有明显的方向性差异。巷道使用条件包括服务年限、使用要求、采动影响程度等因素。在相似同类巷道类推,能够消除如断面形状、采动等因素的影响,使支护参数更趋于合理。2.2锚喷支护2.2.1锚喷支护机理锚喷支护是指联合使用锚杆和喷混凝土或喷浆的支护。通过加固围岩强度,提高围岩自撑能力来达到维护的目的。深井巷道锚喷支护能加固围岩,通过加提高围岩强度,减小破裂区厚度。这就是深井巷道锚喷支护机理,它是由深井巷道开挖后围岩普通处于破裂状态、而破裂区的形成要经历较长的时间过程和锚杆的作用决定的。喷射混凝土,是将混凝土的混合料以高速喷射到巷道围岩表面而形成的支架结构。其支护作用主要体现在:(1)加固作用巷道掘进后及时喷上混凝土,封闭围岩暴露面,防止风化;在有张开型裂隙的围岩中,喷射混凝土充填到裂隙中起到粘结用,从而提高了裂隙性围岩的程度。(2)改善围岩应力状态由于喷射混凝土层与围岩全面紧密接触,缓解了围岩凸凹表面的应力集中程度;围岩与喷层形成协调的力学系统,围岩表面由支护前的双向应力状态,转为二向应力状态,提高了围岩的稳定程度。2.2.2锚喷支护特点锚喷支护能大量节约原材料,且简单、易行、易机械化施工,施工速度快,其主要特点有:(1)支护及时迅速,在松软岩层或松散破碎的岩层中,能较好的提供支护抗力,有效地防止围岩松动、失稳。(2)保证支护结构与围岩相互作用,共同承载,改善载荷分布,防止围岩松动、恶化。(3)锚喷支护可以增加支护结构的柔性和抗力,有利十控制围岩的变形和压力。(4)锚喷支护可以及时封闭围岩,有利于防水,防风化,也可以填塞裂缝,从而减小应力集中,增强岩体强度。2.3锚索支护2.3.1锚索支护方法锚索支护是指在巷道围岩钻孔中安设锚索,并给锚索预加拉力的一种支护方法。预应力锚索,施工简便,可以和多种支护措施相结合,如锚索支护,锚索梁支护,锚索金属网支护,锚索金属网喷浆支护等,其工期短、费用低,尤其对破损巷道加固,比其它方法更安全可靠,简便快捷。近年来锚索支护迅速发展,在隧道施工以及矿山井巷支护已经得到广泛应用。在英国、澳大利亚,锚索支护的应用已十分普遍,我国的矿山井巷工程中,围岩较差的巷道,大铜室、交岔点、开切眼,停采线附近等地方都成功地使用了锚索支护技术,并取得了很好的经济效益。在顶板岩石比较松软时,单一的锚杆往往不能有效的支护,容易造成锚杆的整体垮落,带来严重的后果。锚索具有锚固深度大、承载能力高、可施加较大的预紧力等特点,如果在锚杆支护的同时配以少量的锚索,就可以将锚固体悬吊于稳定坚硬的老顶上,避免其离层及出现巷道顶板整体下沉或垮落。因此,在软岩巷道中应用锚索支护,对于确保安全生产具有重大的意义。由此可见,锚索支护在软岩巷道中具有更大的发展前途。2.3.2锚索支护作用机理锚索支护的作用机理是:单体锚索是通过固定在岩体内的内锚头和锁定的外锚头对锚索施加预应力,锚索产生拉张弹性变形。当围岩有变形时,锚索的预拉力通过内、外锚头以压力方式作用在围岩上,平衡围岩的变形力,来维护巷道的稳定。在煤矿巷道,锚杆、锚索大都是配合使用。当锚杆、锚索及时支护之后,形成锚杆、预应力锚索的加固群体。这样,相邻的锚杆、锚索的作用力相互叠加,组合成一个“承载层”(承载拱),这个新的承载层厚度比单用锚杆成倍增加,能使围岩发挥出更大的承载作用。如图3-15所示。2.3.3锚索支护特点在煤矿巷道支护工程中采用预应力锚索,有如下六个特点:(1)锚索的锚固深度大,承载能力强,支护效果好。(2)锚索的补强作用,在复合顶板、大断面铜室、交岔点处的支护中更明显,尤其在顶板来压大,层理发育的采准巷道中使用效果更佳。此种支护适用范围非常广。(3)支护材料重量轻,体积小,工人劳动强度低。(4)锚索支护可大大减少巷道维修量,节约维护费用。(5)从安全生产角度及有利于顶板维护等方面来看,经济上合理,技术上可行,具有较好的推广价值。(6)锚索施工工艺灵活简单,操作方便,安全可靠,可提高掘进速度。图2-7 锚索锚杆群联合加固作用2.4锚网支护2.4.1锚网支护对围岩稳定作用金属网的主要作用:(1)能够有效控制锚杆之间非锚固岩层的变形,托住挤入巷道的岩石,防止碎裂岩体垮落;(2)将锚杆之间非锚固岩层载荷传递给锚杆;(3)金属网托住已碎裂的岩石,虽然巷道周边围岩已破裂,由于碎石的碎胀作用和传递力的媒介作用,使巷道深部岩仍保持二向应力状态,大大提高岩体的残余强度。总之,锚网支护能及时加固与阻止围岩风化,改善围岩应力状态,提高了喷层的整体性,改善了抗拉性能,有效地阻止围岩位移,如图2-8。图2-8锚网支护对围岩稳定2.4.2锚网支护的优点(1)锚网支护技术先进,解决了压力大,无法支护的难题。(2)在木材紧缺,钢材、木材大幅涨价,煤矿资金紧张的情况下,锚网支护及时地解决了这个问题。(3)减轻了职工的劳动强度,减少了辅助运输环节,减少了采煤的回撤工作量,节省了人力物力。(4)减少了支护对通风的阻力,减少了瓦斯积聚。(5)减少了空顶,减少了顶板浮煤堆积,减少了巷道的发火。(6)减少了巷道维修量。(7)减少了巷道的物料堆积,有利于生产整洁。2.5普通支架支护2.5.1梯形金属支架梯形金属支架用18-24 kg/m钢轨、16-20号工字钢或矿用工字钢制作,由两腿一梁构成,其两腿连接形式如图2-9。这种支架通常用于回采巷道,在断面较大,地压较严重的其他巷道也可使用。 图2-9梯形金属支架2.5.2拱形可缩性金属支架拱形可缩性金属支架用特殊型钢制作,其结构如图2-10所示。每架棚子由三个基本构件构成:弧形顶梁和两根柱腿。拱形可缩性金属支架适用于地压大、围岩变形量大的巷道。图2-10拱形可缩性金属支架2.6组合支护(1)锚梁网支护使用单体锚杆不能有效控制围岩时,常采用组合锚杆支护。将锚杆与掩护网、托梁联合使用,组成一个以锚杆为主的整体承载机构。锚杆一般为树脂锚杆,金属菱形网、金属经纬网、塑料网、钢筋网匀可用作掩护网。(2)锚网喷支护锚网喷支护突破了传统旧的支护形式和支护理论,不是消极的支护已松动的围岩,而是主动的保持围岩的完整性、稳定性,控制围岩变形,位移及裂隙发展,充分发挥围岩自身的支承作用。即以护为主,支为辅,是加固松动圈而不是支护松动圈的一种较为合理且适用断层破碎带不稳定岩石的一种支护形式。采用锚网喷联合支护,使得这锚杆支护、喷射混凝土支护和金属网支护有机地结合在一体,形成强有力的组合拱,与围岩共同承载的优点,大大地提高了围岩自身支承能力和喷层的外部支承能力,达到一次成巷。(3)其他支护如锚注支护、锚网梁索支护等联合支护技术。3 特殊地段的煤巷支护特殊地段的煤巷围岩一般比较松软破碎、地应力大、受采动影响强烈,因而巷道变形速度快,变形量很大,维护困难。3.1过断层煤巷在煤矿生产中,大至井田,小至回采工作面,多数是以断层为界进行划分的,断层破碎带的存在,使矿井生产受到很大限制,特别是地质构造复杂的矿区尤为突出。因此,正确地认识断层破碎带围岩压力分布规律,对矿井安全生产与巷道的布置与施工是非常重要的。3.1.1断层破碎带围岩压力分布规律断层破碎带围岩压力的分布与其产状是密切相关的。在断层破碎带中,其充填物为松散、破碎或完整性差的碎块岩体和泥岩组成,可用松散岩体力学理论进行地压计算,即:q =H式中: q-作用在巷道或硐室上的垂直地层压力;-断层破碎带充填物容重;H-巷道或硐室浅埋时为埋深,深埋时为压力拱高度。式中q是断层破碎带产生的垂直地层压力,实际上断层与巷道夹角不同,对围岩压力分布影响很大。沿断层面q可分解为:垂直压力q1=Hcos及平行压力q2=Hsin,其中为断层破碎带与巷道的夹角。由此可以看出夹角越大,断层对巷道围岩的影响越小,支护越容易;夹角越小,对巷道围岩影响越大,支护越困难。因此,在煤巷过断层掘进中,增大断层和巷道的夹角,能够有效减小断层对巷道的影响范围。增大巷道顶板的支撑能力,有利于巷道的支护和维护。3.1.2断层破碎带煤巷支护针对断层破碎带断层落差大、构造应力高、围岩岩性差和破碎易垮落的特点,从提高巷道围岩强度和支护结构稳定性角度分析该地质状况下控制巷道变形的关键问题,提出断层破碎带巷道耦合支护技术,并得到成功应用。平顶山一矿31060工作面工程实例:巷道采用锚梁网支护,在断层影响的范围内,进行加强支护。巷道断面为梯形,巷道上、下宽均4200 mm、中点高2600 mm。巷道顶板采用全螺纹钢筋等强树脂锚杆和锚索支护,锚杆20 mm,长度2000 mm。锚杆孔径为28 mm,每孔使用3卷直径20 mm的ZK2335型树脂锚固剂。两帮采用直径为41 mm管缝锚杆,长度1800 mm。顶、帮均铺金属菱形网,并压直径为12 mm圆钢自制加工而成的梯梁钢带。锚杆设计密度为间距700 mm、排距600 mm。锚索为双行布置,位于巷道正中,锚索间距2000 mm,排距5000 mm,长度60008000 mm。锚杆托板为1501508 mm的鼓形托板。3.2“三软”煤巷“三软”煤巷,巷道施工中地应力显现较为严重,巷道变形量大。巷道稳定性较差,不仅影响着巷道的施工速度及施工安全,同时对回采时巷道的安全使用也影响极大。因此认真对目前巷道矿压规律的研究对该矿改革巷道支护方式,加快巷道施工速度,控制巷道支护成本意义重大。3.2.1软岩巷道围岩变形规律(1) 软岩巷道围岩变形具有明显的时间效应。表现为初始变形速度很大,变形趋向稳定后仍以较大速度产生流变,持续时间很长。如不采取有效的支护措施,由于围岩变形急剧增大,势必导致巷道失稳破坏。(2) 软岩巷道多表现为环向受压,且为非对称性。“三软”煤巷不仅顶板变形易冒落,底板也产生强烈底鼓,并引发两帮破坏顶板坍塌。(3) 软岩巷道围岩变形随埋深增加而增大,存在一个软化临界深度,超过临界深度变形量急剧增加。(4) 软岩巷道围岩变形在不同的应力作用下,具有明显的方向性。巷道自稳能力差,自稳时间短。3.2.2软岩巷道支护软岩巷道支护原则目前软岩巷道支护原则,诸如“先让后抗,先柔后刚、适当释放围岩周边位移、采用封闭型支护、提高围岩自承能力”等都是根据工程实践和经验总结出来的。系统的阐述软岩巷道支护原则可以概括为四条:(1)支护与围岩共同作用原则岩层具有一定的自承及承载能力,采用及时有效的支护手段以保证回采巷道围岩的整体性,使支护和围岩结合起来,形成一个承载整体结构,共同支承围岩载荷,在提高巷道围岩稳定性的同时,将使支护费用明显减少。 (2)为充分发挥巷道围岩的支承能力,应允许巷道围岩产生一定量的位移和变形。但是,围岩过度的位移和变形将导致其自身结构的破坏,使巷道周边的围岩丧失自承能力,以至在巷道围岩强度降低的同时,给巷道支护又增加了因围岩松动而产生的松动载荷。因此,回采巷道支护必须将其围岩的位移和变形控制在一定限度内,保持围岩完整,这就要求及时支护,并且支护要具有一定柔度和较高的初撑力。 (3)过程原则软岩巷道支护是一个过程,不可能一蹦而就。究其本质原因,软岩巷道变形特性为塑性变形,其主要的变形破坏特点为初期来压快,变形量大,持续时间长,要对软岩巷道稳定实行有效控制,必须有一个从“单一型”向“复合型”的转化过程。 (4)塑性圈原则和硬岩巷道支护的指导思想不同,软岩巷道支护必须允许出现塑性圈。硬岩巷道支护是控制塑性区的产生,最大限度地发挥围岩的自承能力;软岩巷道是力求有控制地产生一个合理厚度的塑性圈,最大限度地释放围岩变形能。这是由软岩的成因历史、成岩环境、成分结构及其岩石力学特性所决定的。II最佳支护时间最佳支护时间 ,是可以使(PR+PD)同时达到最大的支护时间 ,其意义如图3-1所示。图中 ,可以看出 ,最佳支护时间就是(PR+PD) t曲线的峰值点所对应的时间Ts。实践证明,该点与PD t曲线和 PRt 曲线的交点所对应的时间基本相同。此时,支护体使PD在优化意义上充分达到最大,同时又保护巷道围岩强度,使其强度损失在优化意义上达到充分小,亦即其本身自承力 PR 达到充分大。图3-1 最佳支护时间Ts的确定III最佳支护时间段的确定最佳支护时间点的确定 ,在工程实践中是很难办到的 ,所以就提出了最佳支护时间段的概念 ,最佳支护时间段的概念如图3-2所示。在工程实践中 ,只要保证能在 Ts时刻附近进行永久支护的话 ,基本上可以达到使 PD 和 PR 同时达到优化意义上的最大。这样(PR+PD)MAX, PsMIN也就自动满足。图3-2最佳支护时段的涵义3.2.3软岩巷道常用支护形式(1)锚喷网支护锚喷网支护系列是目前软岩巷道有效、实用的支护形式。喷射混凝土能及时封闭围岩和隔离水。网不仅可以支承锚杆之间的围岩,并将单个锚杆连结成整个锚杆群,和混凝土形成有一定柔性的薄壁钢筋混凝土支护圈。锚喷网支护允许围岩由一定的变形,支护性能符合对软岩一次支护的要求。根据围岩条件,也可不喷射混凝土,仅选用锚网、桁架锚网、钢筋梯锚网、钢带锚网支护,也可二次喷射混凝土支护。(2)可缩性金属支架U型钢可缩性金属支架具有可缩量和承载能力在结构上的可调性,通过构件间可缩和弹性变形调节围岩应力。在支架变形和收缩过程中,保持对围岩的支护阻力,促进围岩应力趋于平衡状态。根据现场经验,“三软”煤巷常采用了三种联合支护手段,即锚网梁喷联合支护、锚网梁索喷联合支护以及拱形钢拱架加混凝土暄联合支护。3.3复合软顶煤巷在煤矿回采巷道顶板围岩控制中,复合顶板控制技术一直是人们研究的热点,尤其是组合梁等理论的提出,不仅为锚杆支护提供了可靠的理论依据,而且也使人们对该类顶板的性质有了一个更充分的认识。从总体上看,在顶板围岩条件相对较好的条件下锚杆支护达到了其应有的效果,而在复合软顶条件下,由于缺乏对该类顶板特性的深入了解,使锚杆支护效果不尽人意。所谓复合软顶板,是指在构成顶板岩层的各分层内部,隐含有数目多、厚度小(最小在10 mm以下)的超薄子分层的复合顶板。3.3.1复合软顶板移动变形规律相对完整状态无支护条件下,其移动破坏过程可分为层间错动、层间离层、失稳冒落三个阶段。层间错动阶段:巷道掘出后,在原岩应力及掘巷引起的集中应力作用下,当层面处的内应力达到极限应力时,层状岩体沿层面发生剪切破坏,相邻分层沿层面相对错动,层面强度降低,随之分层相对滑动区域可能发展到整个巷道跨度内的直接顶岩层。层间离层阶段:随着顶板分层相对错动区域的增大,以及纵向弯曲位移的增大,分层内将产生垂直层面的裂隙。由于下分层下沉速度大于上分层,分层间发生离层,离层分层数及范围逐渐增加。失稳冒落阶段:当岩层分层悬空挠度达到极限跨距时,将发生弯曲张拉破坏。由于各分层力学性质的差异,强度小、分层厚度小的分层易首先失去平衡而发生破坏,进而对其相邻下位岩层分层产生附加载荷,而顶板整体直观冒落顺序是从巷道顶板裸露在外的第一分层开始,向上逐渐弯曲垮落,形成类似梯形断面的冒落空洞。3.3.2复合软顶板支护结合以上对该类顶板力学响应特性的分析,对于复合软顶板进行有效的锚杆支护控制,从根本上来讲应从时间和空间上进行控制。在时间上减小空顶时间,进行及时支护,即在顶板组成分层之间发生离层之前进行支护,消除时间上的支持。在空间上一方面通过提高锚杆的预紧力,增加层间结合力、阻止层间错动、减小垂直层面方向上的变形移动,另一方面通过减小空顶循环进尺和循环次数来减小空顶距离,从而减小水平方向上的空顶变形空间,以此来削弱在立体空间上的支持。3.4高应力地段煤巷3.4.1深井煤巷深井巷道矿压控制的难点是采准巷道,特别是不得不布置在煤层中的回采巷道,在深部开采条件下当受到数倍于原岩应力的支承压力作用时将变得很难维护。深井巷道矿压控制总的原则是:采取一切可能的措施,减小巷道围岩的破裂范围。这是由深井巷道围岩状态的特点决定的。减小巷道围岩破裂范围可以采取多方面的技术措施,如图3-3所示。这些技术措施归根结底是通过降低应力和保证巷道围岩有较高的强度或提高岩体强度,从而达到减小巷道围岩破裂范围、提高巷道稳定性的目的。图3-3巷道保护方式1无煤柱;2小煤柱;3大煤柱I破裂区;II塑性区;III弹性(应力升高)区;IV原岩应力区3.4.2采动影响煤巷煤层开采过程破坏原岩应力场的平衡状态,引起应力重新分布。对于受到采动影响的巷道,它的维护状况除了受巷道所处位置的自然因素影响以外,主要取决于采动影响。煤层开采以后,采空区上部岩层重量将向采空区周围新的支承点转移,从而在采空区四周形成支承压力带,如图3-4。 图 3-4 采空区应力重新分布概貌1工作面前方超前支承压力 2、3工作面倾斜、仰斜方向残余支承压力4工作面后方采空区支承压力采动影响巷道围岩变形规律巷道受上区段工作面(A)的回采影响后,在回采引起的超前移动支承压力作用下,巷道围岩应力再次重新分布,塑性区显著扩大,围岩变形急剧增长。在工作面(A)后方附近,由巷道上方和采空区一侧顶板弯曲下沉和显著运动使得支承压力和巷道围岩变形速度都达到最大值。巷道围岩性质、护巷煤柱宽度或巷旁支护方式、工作面顶板岩层结构对该时期围岩变形量影响很大,如图 3-5所示。图3-5区段平巷围岩变形3.4.3交岔点井下巷道相交或分岔的部分叫巷道交岔点,分为简易交岔点和碹岔式交岔点。简易交岔点常采用棚式支架或料石墙加钢梁支护,多用于围岩条件好、服务年限短的采区巷道。碹岔式交岔点以往采用料石、混凝土砌筑,现在多采用锚喷支护,多用于服务年限较长的各种巷道交岔点。3.4.4高应力条件下支护技术对于高应力条件下的巷道围岩,不可避免要形成大松动圈,造成巷道维护十分困难。单纯采用锚杆支护时,因锚固力小而无法有效控制围岩变形,巷道难以维护,即使使用锚索也无法抵抗强大的碎胀变形压力,最终导致巷道围岩的破坏。在高应力特殊条件下的煤巷掘进施工中,主动支护和被动支护相结合的锚网柱棚支护方式较其它支护方式是最为有效的,它充分发挥了锚网支护的主动支护效果和单体支柱被动支护的弹性支护特性,既充分发挥了岩体自身的承载能力,又让矿山压力得到有效的释放,巷道围岩稳定后,再进行有效的加固支护。这样能够在施工过程中让矿山压力得到有效的释放,是保证巷道支护安全的重要理念,单纯的一种支护方式不能够有效的满足巷道支护要求。高应力特殊条件下煤巷支护应优先考虑主动支护,在有效的主动支护下采用被动支护进行加固是特殊施工地点有效的支护方式,完全的被动支护是不可取的。4总结总之,特殊地质条件下煤巷锚杆的支护,要根据不同的地质条件和在施工中随时出现的实际情况,充分把握煤巷地质特征和对煤巷中可能出现的问题的充分理论论证,认识分析成因,充分运用理论和实际结合的原则,从而确定一个合理的支护措施,打造一个安全的工作环境。参考文献1钱鸣高,石平五.矿山压力与岩层控制.徐州:XXX大学出版社,20032刘刚.井巷工程.徐州:XXX大学出版社,20053王作棠,周华强,谢耀社.矿山岩体力学.徐州:XXX大学出版社,20074陈坤福,韩立军,周怀锋.高应力破碎顶板煤巷控顶卸压和三锚支护技术.矿山压力与顶板管理,2003 5郭军杰,韩春晓,涂兴子.煤巷掘进过断层方法.矿山压力与顶板管理,20046张国华,李凤仪复合软顶移动规律及其控制.矿山压力与顶板管理,2004 7薛顺勋,聂光国等.软岩巷道支护技术指南.北京:煤炭工业出版社,20018陈坤福,韩立军,周怀锋.高应力破碎顶板煤巷控顶卸压和三锚支护技术.矿山压力与顶板管理,20039赵建军,赵保新特殊巷道支护方式探讨.中州煤炭,200510胡兰田,刘中,张伟合.高应力区复杂条件下煤巷的施工与支护方式的选择.煤,2008任务书学院 矿业工程学院 专业年级 采矿工程 学生姓名 任务下达日期: 年 月 日毕业论文日期: 年 月 日至 年 月 日毕业论文题目: 张双楼煤矿1.2 Mt/a新井设计毕业论文专题题目: 特殊地段的煤巷支护技术毕业论文主要内容和要求:按照采矿工程专业毕业设计大纲要求,完成一般部分张双楼煤矿1.2Mt/a新井设计和专题部分特殊地段的煤巷支护技术,英译汉中文字数3000以上。院长签字: 指导教师签字:翻译部分英文原文The optimal support intensity for coal mine roadway tunnels in soft rocksC. Wang*Mining Engineering Program, Western Australian School of Mines, PMB 22, Kalgoorlie WA6430, Australia1. IntroductionThe essence of underground roadway support is to provide the surrounding rocks of an underground roadway with assistance to help them achieve stress and strain equilibrium and ultimately stability of deformation.The approaches to this goal are either to reinforce the rock mass by rock bolting or injection(internal rock stabilization) or to provide the surrounding rocks with a support resistance with a magnitude being described as the support intensity (external rock stabilization).When an underground roadway is located in soft rocks which are too soft to be reinforced by bolting and/or unsuitable for rock injection because of restraints imposed by either the rock mass impermeability or rock mass deterioration when water is encountered, external rock support, such as steel sets, therefore becomes the only option for the stability control of the roadway. Under this circumstance, the support intensity means a support force acting per unit surface area of the surrounding rocks of the roadway. In soft rock engineering practice, the design of a support pattern for a roadway in underground coal mining is normally based on rules of thumb. In most cases, heavy support measures are adopted to secure a successful roadway.Fig. 1(a) demonstrates the excellent condition of a sub-level roadway within soft rocks at an underground coal mine in north China, where an excessive capital cost was applied for the achievement of roadway stability. In some cases, such as a service roadway driven in soft rocks at the same mine (Fig. 1(b), insufficient support intensity was specified as a result of a lack of relevant experience and design codes. Consequently, failure of the roadway stability was inevitable and an extra cost was incurred when the subsequent roadway repair or rehabilitation was undertaken.The critical issue in both cases lies in the determination of an optimal support intensity which is the function of the geometry and dimension of a roadway and its geotechnical conditions including rock mass properties, stress conditions and hydrological status.Physical modelling using simulated materials based on the theory of similarity provides a direct perceptional methodology for mining geomechanics study 1-6.Using simulated materials of the same composition to construct a roadway and its soft surrounding rocks, applying a certain magnitude of simulated support intensity to the surface of a roadway under simulated stress conditions, the three-dimensional physical modelling method depicted in this Note emonstrates a quantitative solution for strategic design of roadway support concerned with soft rocks. A relation between the support intensity and deformation of the surrounding rocks of a roadway has been established after a series of simulation tests had been conducted. A discussion on the optimal support intensity for a roadway in soft rocks is also given. Fig. 1. Examples of successful and unsuccessful support of underground roadways within soft rocks: (a) Good condition of a sublevel roadway, (b) Unsuccessful support of a service roadway.2. Features of the three-dimensional physical modellingA physical modelling study of the interaction between support intensity and roadway deformation was carried out using the three dimension physical modelling system (see Fig. 2) at the Central Laboratory of Rock Mechanics and Ground Control, China University of Mining and Technology. Features of this system are described in the following sub-sections. Fig. 2.Three-dimensional loaded physical modelling system at the Central Laboratory of Rock Mechanics and Ground Control, China University of Mining and Technology.2.1. Size of the physical modelThe effective size of a physical model is 1000 mm wide, 1000 mm high and 200 mm thick.2.2. Three dimensional active loading capabilitySix flatjacks are used to apply loads to the six sides of the physical model in the form of a rectangular prism. Each flatjack was designed to cover the full area of one of the six sides and be capable of applying a pressure of up to 10 MPa on to the surface of the simulated rock mass. This means that the flatjacks are capable of applying an active load of up to 1000 tonnes and 200 tonnes simultaneously on the front and back facets, the top and bottom, and the two side facets of a model, respectively.2.3. Long-term continuous loading capabilityA high-pressure, nitrogen-operated, hydraulic pressure stabilising unit was employed to maintain a consistent magnitude of load applied to the model so that the physical modelling test is able to last continuously for weeks, months or even years without interruption. This feature ensures that the study of the long-term rheological behaviour of soft rocks can be carried out.3. Physical modelling testsPhysical modelling of an underground roadway/ tunnel within soft rocks with a hydrostatic stress condition was carried out. The same simulated materials were repeatedly used six times to construct six physical models. Each roadway model was provided with a different magnitude of support intensity.3.1. Geotechnical conditions for the prototype and the modelling scaleA specified underground roadway within soft rocks was assumed to be the prototype for the modelling study. Detailed geotechnical conditions of the roadway and its surrounding rocks are:circular roadway with a diameter (D) of 4.5 m and cross-sectional area of 16 m2; UCS (Rc ) of the surrounding rock was 20 MPa; bulk density of the surrounding rock was 2500 kg/m3;depth of the roadway location was 500 m below surface;rock mass stress (s0 ) was 12.5 MPa in all directions;support intensity(pa) to be applied to the roadway was 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 MPa, respectively.The geotechnical modelling scale (Cl ) determined was 1 : 25. The bulk density (gm ) of the simulated rock mass materials was 1600 kg/m3.Therefore, all the related simulation constants are:similarity constant for bulk density: Cg 1600/2500=0.64;similarity constant for strength: Cs ClCg 0:256; similarity constant for load: CF CgC1 4:096 105 ;similarity constant for time: Ct C l:5 0:2: Geotechnical conditions of the simulated rock mass and roadway were derived from those of the prototype rock mass as presented below:strength of the simulated rock mass: Rm=RcCs=0.512;diameter of the simulated roadway: Dm=DCl=180 mm;load intensity on the facets of the model: pm=s0Cs=0.32 MPa;Simulated support intensity: pam=paCs=0.00256, 0.00516, 0.00768, 0.01024, 0.0128 and 0.01536 MPa; respectively.3.2. Realization of support intensity in physical modellingDue to the restraints of the small dimensions of the model roadway on the simulation of support structure, the support pattern and structure were unable to be simulated. Instead, an equivalent support intensity was simulated and applied to the surface of the surroundingrock of the model roadway. A Static Water Support and Deformation Measurement System (SWSDMS) was designed specially. Fig. 3 illustrates the SWSDMS being installed in the model roadway. The mechanism of SWSDMS is to use 4 separate water capsules to apply a support intensity to the surface of the roadway roof, two side walls and floor. Four rubber tubes, each of which was linked to a water capsule and filled with water, were used to generate a water pressure at the capsule/rock interface and measure it through the water level reading. A certain constant simulated support intensity was achieved by applying a certain height of static water pressure. A change to support intensity could be made by changing the water height in the rubber tube. The volume change of each of the four water capsules was measured at the due time by collecting and weighing the water overflow. The volume of water coming from each of the four water capsules was used to calculate the radial deformation of roadway surrounding rock, i.e., roof subsidence, wall-to-wall closure and floor heave. The proposed simulated support intensities, i.e., Pam 0:00256, 0.00516, 0.00768, 0.01024, 0.0128 and 0.01536 MPa, were achieved by adjusting the static water level to 256, 516, 768, 1024, 1280 and 1536 mm high, respectively.Fig. 3. Static Water Support and Deformation Measurement System (SWSDMS) being accommodated in a roadway model in the real 3-D loaded physical modelling system. 3.3. Construction of physical modelThe compositions and properties of materials to be used for the construction of physical models were studied prior to the physical model construction. Given the significant rheological deformation of roadways excavated in soft rock, sand and paraffin wax were chosen for the simulated soft rock. The properties of a series of sand/paraffin wax mixtures were studied in laboratory and are presented in Table 1. Table 1 Compositions and properties of sand/paraffin wax mixturesAccording to the geotechnical conditions of the prototype rock mass and the model scale, a mixture of sand/paraffin wax of 100 : 3 was selected to construct the rock mass model. The procedures involved in the model construction include cold mixing of the sand and paraffin wax, oven heating the sand/wax mixture and constructing the physical model using the hot sand/wax mixture.3.4. Process of physical modelling The real process of an underground roadway excavation, support installation and deformation of the surrounding rocks with time was simulated in the laboratory physical modelling. After the model had cooled down, prestressing the model, excavation of the roadway under pressure, installation of the SWSDMS device and measurement of the roadway deformation were carried out step by step. The whole process of modelling was strictly conducted according to the time similarity constant. Each physical modelling step lasted for 10-25 days in the laboratory, which were equivalent to a real time period of 50-125 days approximately.4. Relations between support intensity and roadway deformation Comparable results of the six physical modelling tests conducted with the identical materials and geotechnical conditions revealed the significance of the support intensity in underground roadway/tunnel support.4.1. Effect of support intensity on the deformation characteristics of a roadwayThe deformation characteristics of an identical roadway with different support intensity is graphically presented in Fig. 4(a) and (b). It can be seen that the influence of support intensity on the deformation characteristics is significant. With a support intensity of 0.1 MPa, the roadway experienced a large eformation for a period of 118 days after the roadway excavation and the provision of support intensity. During this period, an average of 828 mm deformation was accumulated. Following this period, the wall-to-wall closure and roof-to-floor convergence stayed steady at a level of 4.4 mm/day. By contrast, when a support intensity of 0.6 MPa was provided to the identical roadway, its post-excavation deformation merely lasted for 36 days with an accumulative closure/convergence of 40 mm, followed by a rheological deformation of 0.08 mm/day, which was continuously reducing with time. The comparison shows that the deformation magnitude of the latter was only 4.8% that of the former.A negative exponential relation between the deformation rate and support intensity can also be deduced from the curve of deformation rate vs. support intensity presented in Fig. 5 and be mathematically expressed as: v 0:023pa2:4 :where v is the rheological deformation rate of the surrounding rock of a roadway in mm/day, pa is the support intensity in MPa provided to the surrounding rock.Fig. 4. Deformation of roadway with a series of support intensities:(a) Deformation of roadway with time, (b) Deformation rate of roadway with time.Fig.5 Relations between rheological deformation rate and support intensity of a roadway in soft rocks.4.2. Optimal support intensity for a roadway in soft rocksRequirements on the control of roadway deformation depend on the usage and service life of the roadway. It is known that a zero deformation rate is impossible practically to target in supporting a roadway in soft rocks. A wise approach is to exercise a design principle that the roadway deformation is allowed to take place to a degree within an acceptable limit. Physical modelling results indicated that an increase of support intensity from 0.1 to 0.5 MPa can markedly reduce the deformation rate of the surrounding rocks. A further increase of support intensity from 0.5 to 0.6 MPa, however, did not bring about as much reduction of deformation rate as that created by the support intensity increase of from 0.1 to 0.2 MPa or from 0.3 to 0.4 MPa. This means that a reasonable range of support intensity exists and an increase of support intensity can be rewarded with a significant reduction of roadway deformation if the actual support intensity is within this range.Further increases of support intensity can only cause less reduction of roadway deformation. Therefore, if both technical and economical considerations are taken into account, a support intensity of from 0.3 to 0.5 MPa would be appropriate for most temporary tunnels such as roadways in underground coal mining. With this support intensity, the rheological deformation rate of the surrounding rocks can be controlled within a range of from 0.1 to 0.4 mm/day, with which an ordinary temporary roadway can be maintained safely for years to one decade.5. Conclusions The three-dimensional physical modelling method provides a conceptual approach to quantitative designof roadway support associated with soft rocks. With lack of knowledge of the constitutive relations, especially for the rheological mechanisms, in rock engineering practice, the modelling results could serve as a foundation on which a scientific design of underground roadway/tunnel support is developed, particularly when a large amount of rock mass deformation is concerned. The experimental study conducted with a series of support intensities revealed that a reasonable support intensity exists. Its value depends on the geotechnical and geometric conditions of the underground roadway/tunnel concerned and the requirements applied by the roadway/tunnel safe use specifications and the roadway/tunnel service life span. The results indicate that a support intensity of 0.3 to 0.5 MPa can securely control the closure rate for the conditions tested within a magnitude of 0.1 to 0.4 mm/day for a medium size underground roadway/tunnel driven in soft rocks of around 20 MPa at a depth of about 500 m below surface.AcknowledgementsThe author would like to thank his colleagues at the Central Laboratory of Rock Mechanics and Ground Control, China University of Mining and Technology, for their generous assistance and help in the physical modelling study.References1 Internal Research Report. Study on the technology of large deformation control for roadways within soft rocks. China University of Mining and Technology, 1995 in Chinese. 2 Wang C. Study on the supporting mechanism and technology for roadways in soft rocks. PhD thesis, China University of Mining and Technology, 1995 in Chinese.3 Internal reference (1993). Properties of simulated materials for physical geomechanical modelling. The Central Laboratory of Rock Mechanics and Ground Control, China University of Mining and Technology in Chinese.4 Lin Y. Simulated materials and simulation for physical modelling. Publishing House of China Metallurgy Industry, Beijing, China, 1986 in Chinese.5 Durove J, Hatala J, Maras M, Hroncova E. Supports design based on physical modelling. Proceedings of the International Conference of Geotechnical Engineering of Hard Soils Soft Rocks. Rotterdam: Balkema, 1993.6 Singh R, Singh TN. Investigation into the behaviour of a support system and roof strata during sub-level caving of a thick coal seam. Int J Geotech Geol. Engng. 1999;17:21-35. 中文译文煤矿软岩巷道支护强度优化C. Wang采矿工程专业,西澳矿业学校,港口及航运局22卡尔古利WA6430,澳大利亚1引言地下巷道支护的实质是给巷道围岩提供支撑以实现应力应变平衡,并最终使变形稳定。为达到这一目标,需通过锚杆支护加固岩体或注浆(内部岩石稳定)或为围岩提供被描述为支撑强度的具有有一定数量级的支撑阻力(外部岩石稳定)。当地下巷道处于松软岩石中,岩石过于松软以致锚杆加固或不适合注浆加固。这是因为遇到水时岩体渗透性或岩体恶化施加的限制。因此,外部岩石支护如钢棚支护,成为了巷道稳定控制的唯一选择。在这种情况下,支护强度是指单位巷道围岩表面积的支撑力。在软岩工程实践中,地下煤矿巷道支护模式设计通常是基于经验法则。在大多数情况下,采用支护强度大的支护措施,确保巷道稳定。图1(a)展示了在中国北方一煤矿为实现巷道稳定投入过多资金成本的煤矿井下软岩分段巷道的良好条件。在某些情况下,例如在同一煤矿软岩中开掘的服务巷道(如图1(b),支撑力不足被指定为缺乏相关经验和设计规范所致。因此,巷道失稳是必然的。在随后进行巷道维修或重建时,又需支出额外的费用。这两种情况的关键问题在于最佳的支护强度,与巷道的断面形状和岩土工程条件,包括岩性,应力条件和水文状况呈函数关系。基于相似理论的相似材料的物理模拟为矿山地质力学研究提供了直接感知的方法。1-6利用组成相同的相似材料来模拟巷道及周围软岩,模拟应力条件下施加一定的支护强度到巷道表面。在这份说明中描述的三维实体建模方法,展示了软岩巷道支护战略设计方面定量计算的方案。通过一系列相似实验的结果,支护强度和巷道围岩变形间的关系建立。关于软岩巷道最佳支护强度的讨论也由此展开。图1 地下软岩巷道支护成功和失败的例子:a分段巷道的良好条件 b服务巷道支护失效2.三维实体模型的特征在XXX大学岩土力学与地面控制中心实验室进行的关于支护强度和巷道围岩变形间关系的物理模拟研究采用了三维实体模型系统(见图2)。该系统的特征描述如下:图2 XXX大学岩土力学与地面控制中心实验室三维加载实体模型系统2.1实体模型尺寸物理模型的有效尺寸为1000毫米宽,1000毫米高,200毫米厚。2.2三维实时加载能力六个千斤顶用于向长方体形式的物理模型的六个面加载。六个千斤顶设计能够各自覆盖一个面,并能够向模拟岩石表面施加10MPa的压力。这意味着千斤顶能够同时在前后上下左右六个面动态施加1000 t到2000 t的力。2.3长期连续加载能力高压氮气操作的液压稳定单元是用来保持相同负载应用到模型上,使物理模型试验能够持续数周,数月甚至数年连续无间断。此功
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。