晓明5矿1.80Mta新井设计【含CAD图纸+文档】
收藏
资源目录
压缩包内文档预览:
编号:22928200
类型:共享资源
大小:1.39MB
格式:ZIP
上传时间:2019-11-04
上传人:机****料
认证信息
个人认证
高**(实名认证)
河南
IP属地:河南
50
积分
- 关 键 词:
-
含CAD图纸+文档
晓明
1.80
Mta
设计
CAD
图纸
文档
- 资源描述:
-
晓明5矿1.80Mta新井设计【含CAD图纸+文档】,含CAD图纸+文档,晓明,1.80,Mta,设计,CAD,图纸,文档
- 内容简介:
-
中文题目:铁晓明5矿1.80Mt/a新井设计外文题目:THE NEW MINE DESIGN OF 晓明 NO.5 MINE WITH CAPABILITY OF 1.80MT/A毕业设计(论文)共 页(其中:外文文献及译文 页) 图纸共4张 完成日期 20xx年6月 答辩日期 20xx年6月附录A矿业工程师必备的能力框架 -矿山地震学南非共和国F. Essrich SiM 矿业顾问公司有限公司摘要:近十年来,献身于沙特矿业的矿业地震学家数量减少了。这就造就一批矿业工程师的需求。他们掌握了矿业地震学一定水平知识并能够替代先前矿业地震学家的位子。 同时,用于地震基本数据分析的软件的进步,已经通过提供机会给非专业人员完成多种形式的地震数据分析来增加这些必备条件。从事实来看,一个深层次的影响会产生。现在地震学服务与一些矿山脱节,把控制地震学合同(seismology contracts)和联系供应商的责任留给矿业工程部门。这在技术上已经有要求的领域里又给他们的角色增加了管理职能。这篇论文以矿业工程师的新角色在地震活跃的矿山调查,提出一些关于能够提供必要知识技巧的训练内容。笔者这里介绍训练课程和与那些略述的关于南非的矿业工程顾问和一些矿井的内容。 1. 简介1.1 南非的矿山地震学90年代初,数字地震系统的发展和在容易岩层突裂的矿山放置的装置引起了地震数据的增殖和雇佣矿山地震学领域特殊人员。1996年,南非金矿处理地震系统内有24名地震学家。他们分析地震数据,并给主要岩石工程师、生产人员和矿山管理人员提供相关信息。矿山地震学家有广泛的定义:不考虑背景和正规培训,任何能够专责管理地震系统和/或分析和评价来自采矿作业的地震数据的人。除去两个社团的矿山地震学家, 其他矿山地震学家受雇于矿山并被整合在矿山岩石结构部门。 考虑到岩石工程的地震学部分,这个机构已经从地震信息能够在部门里得到最佳运用以有利于矿山布线和支撑的设计。它忽视了这样一个事实, 地震学是地理学的一个组成部分。在美国,地震学被认为是地理学科的一部分。在德国和法国,它被认为是物理学的一部分。不是与岩石工程结合,矿山地震学家应该加入矿山勘查,然后必要时提供支持。这可能会提供更多的职业需求,在这一领域里挽留一些地震学家,并预防90年代后半期出现人员大批离去。 2001年中,AngloGold公司 (现 AngloGold-Ashanti) 已经失去了所有社团水平的矿山地震学家.离开的24名员工里,有 8人改变了工作领域,4人离开了这个国家。 Gold Fields公司保留了6名专家中的3 名和1名社团水平的员工。那些离开矿山的人里,6人加入现有的或者创立自己的顾问公司。所有人现今至三年后来在经营。2004年中, 以矿山为基础的和受雇的地震学家有4 名,其中只有1名现今没有这样供职。 由于Harmony GM公司的需求,最近,个人参加顾问工作的数目已增至10人。 一般来说, 在这个领域里,顾问已经占据了服务商(service providers)的位子,他们经营地震网络,处理搜集的数据,并且分析和评估最容易岩层突裂的的矿山。在这种环境下, 矿山雇佣岩石工程师成为主要的地震学工作者。 他们负责为服务商控制合同,而且运用专门的软件工具完成基本地震数据分析。这可以在地震数据说明期间近距离观察多种执行的功能。这些都需求资深的岩石工程人员,他们的责任包括与地震相关的任务。在这种环境下,岩石工程师必须进行四个显著的工作: 1)输入开矿计划:为防震建筑设计托架支柱;最佳的外观布置和采矿顺序;安置稳定柱的最佳位置和柱子规格。 2)支持系统的设计:评估岩层突裂信息,为动态负荷状态评估地面运动以推荐开掘支持模式 3) 风险识别: 地震的趋势和模式与其他学科的信息(地质、生产、发掘机械)关联,发现潜在危险的发展 4)合同管理:与供应商联系; 审查和审计; 质量控制和其他要求和地震服务商管理合同功能 第一、三点要求对矿山地震问题基本了解和运用这些知识的能力. 为建设安全开采环境,地震学提供了相关问题的解释。岩石工程师必须能够充分理解和正确回答的问题.最后一点,如果有充足的地震数据质量和基本分析方法方面的充足知识可以核查评估供应商服务的多个方面。以下的内容不仅是对本质的考虑,而且,介绍了一些目前普通使用者能够接受的工具。1.2矿山地震:用户容易掌握并使用的工具:一些在南非矿山使用的分析地震数据的第一代以MS-WINDOWS为基础的软件代码在1993和1998年间获得发展。 一组AngloGold(后Anglo American)专家为矿山的瓦尔河业务开发seisdbs 。其目的是为数据库管理和数据分析收集原始数据。SEISDBS使用的是从国际地震体系 (van derMerwe,1998)得来的数据。其他的一些以windows为平台的工具发源于为商业 PRISM体系操作的CSIR-Miningtek,为矿山开发的数字地震系统。和M&M系统一起,这些工具和ISS形成竞争。那时候这些工具的平台是Unix/Linux。 1998年地球科学委员会在比勒陀利亚发布了SeisHazMKijko et al, 1998。这是一个专门评估静态地震灾害的软件工具。这个软件能够和SIMRAC GAP517架构使用,可以在windows下运行。这个软件基于一个地区历史数据记录,能够计算最大期望量级(maximum expected magnitude)和在不同量级区域内发生地震的可能性。 2000年以来, HAMERKOP科学服务公司提供了一系列程序。这些程序可解决一些特殊类型的分析问题( Gutenberg-Richter分析,Energy-Moment分析和多种统计函数),并且可以对特定的网络布置(灵敏性,地址,精确性)建立运用模型。所有这些软件可在标准办公pc机上运行,系统要求比弹性岩体(elastic rock mass model ling packages)建设低 一般来说, ISS也可以为操作系统、数据处理和分析建立WINDOWS为基础的软件版本。目前的软件工具一般是用户界面友好的。因为这些软件只需中等程度的培训,便可用于标准办公计算机软件。程序的使用使得非地震专家便可获得有用的分析结果。配合一些地理技术信息便可为岩石工程服务。这提供了他们要求的知识基础,能够适应相应的训练要求。1.3 程序地震数据通译:作为一个过程,地震数据通译把输入的特定数据转化为特定的输出数据。形式上,数据资料就像是离析器,适用于图像1上指示的二者之间。图1.地震数据通译过程(据Oakland, 2003改写)输入端(左)和输出端(右),相关回馈功能。任何与通译相关的人员需要熟悉输入和输出通译内核功能的内容的细节。软件工具和数据分析方法,地震监测系统监测的原始数据,演示通译的技巧和知识是与输入端紧密相关的事项。在输出端,重点是要从原始数据提供信息给客户和南非矿山研究咨询委员会。手续必须保证良好的沟通,从需求出发和从原始信息得到足够的反馈。 客户需要有能力运用这些地震知识。 有一些教科书是关于矿山地震系统的软硬件内容,其中有名的的是Men decki(编辑,1997)。Gibowicz & Kijko (1994)超越了一般非地震学家要求讨论了地震失效机理的理论概念,震源量和弹性波传播。对岩石工程师来说,比详细的技术知识更重要的是对地震数据评估的理解过程。例如,原始数据在软件和方法作用下便可变成有用的信息,这就可以帮助解决那些与岩石相关的难题。使用网络供应商和那些数据分析评估给收件人传输地震信息的合作对成功的地震冒险操作是必要的。客户回馈给在苏汝端口的负责核心过程和核心回馈信息的地震学家保证所有过程的持续更新和发展。岩石工程人员和生产人员需要按照信息形式和交流间隔明确表达他们的要求。 这个过程的内核需要能够阻止矿山信息输入(软件工具,方法,数据,技巧)以能够提供相应的信息。回馈能够持续的或者通过周期有计划的评价过程。苦湖占据最重要的地位,应该能够推动过程。2主要功能和职责介绍一个简化的模型来描述矿山地震领域的主要功能。我们集中一些能够对地震数据通译有帮助的特别的岩石工程文件,以一种对与合同管理和质量控制相关的管理责任描述得出结论。21奥斯卡 B jectives ystems OSCAR开头字母是OS-控制-分析-减缩。或者,更广意来讲:目标监测、地震系统设计安装、数据收集、分析数据,风险规避。这五条集中说明了规避地震相关风险持续改进的环节中的主要方面。风险规避,最后的一条因素, 通过评估风险成功和随后的调节监测目标联系上第一条。例如, 一旦余震能够成功测取,就没有必要详细监测这一地区。资源能够集中监测其他地震能量喷发地区。那些希望能够掌握所有矿山地震学的岩石工程师,虽然得到有限的信息,但能够使用OSCAR模型作为记忆帮助。这解释了主要的步骤和矿山地震学里的主要功能性。2.1.1监测目标需要明确的阐明和有规律的回顾为了明确对煤矿检测的理想的结果,. 三方面需要被访问目的:哪些方面必须要量化的地震,也就是参数和看看参数的 准确程度. 地区地震的经验,即是地震板块的分布和岩层断裂的情况? 如何达到目标的方法,可取的方法和实施监测计划的期限? 为了回答第一个问题,首先, 了解下面的知识很必要的:地震源类型*源参数*分析方法。第二个问题可以通过进行处理分析地震 发生区的地理分布解决。 除此别无他法。地震监测目的收集的数据分析可那些减少风险. 图2: OSCAR的循环周期:地震学应用发生的自然力量回答第三个问题通常是因为需求采矿作业的指令: 紧迫程度、客观的需求和预算限制扮演的角色. 目标的实现需要在考虑对财政和其他一些限制条件之后,然后设计和安装地震系统. 2.1.2地震系统是网络硬件和软件的结合,地震数据收集、数据处理的基本参数,并建立资料库。系统设计的是否合适和和监测的目的有直接的关系:各种各样的需求如空间范围、空间/时间分辨率,选择合适的传感器、各个方面的量化等目的使地震信息的传出都为达到这些目标. 选拔制度必然涉及系统供应商,但要对独立和见多识广的岩土工程师以下专题:*物理震动*坡度类型*震波的传播*界面*网络类型*传感器类型*方法数据传输*网络性能标准*产品成本*有了解。最后一个项目的限制方法涉及到限制手段实地记录的议案,以扭转源地震参数(位置在时间和空间上,地震能量释放, 地震的时候,当地的规模等),然后把身体解释这些参数,需要了解每一位参与遴选制度. 计算参数,如果地方来源是基于一般观念lised条件,也不会达到真正性质(特点、弹性教学及各向同性). 后来系统的设计,每个系统配置、系统环境结合,产生了具体的能力纪录、数据处理和贮存. 因此,必须设计和布局,制定适合当地需要的监测目标. 2.1.3数据收集系统安装成功之后就是收集数据, 这其中包括录音的收集、自动和人工两种方式处理得到源表示的收集,存储的收集. 这是一个特殊领域,需要技术投入,地震专家指导下的IT经营管理系统。岩土方面的工程师对这种网络管理的知识的了解不需要太多,一般要求网络运营等以外的主要指标,使其对它的功能进行审查: *系统运作*站时间*时间比例下降接受/拒绝事件*平均修复时间单位*准确位置*敏感让这些变数比较有效的实际绩效与制度预设目标,需要经过一段时间的监测. 准确确定位置的知识和方法,需要网络敏感性. 有时岩土工程师可以在地震网络的操作和煤矿工程的运作方面很方便地在进行交流和互动。例如,在地方一些私营的煤矿仅允许矿主雇佣的电工学家被授权使用电工电机工程的基础设施,以保证不间断供电地震台站. 附录BMine Seismology for Rock Engineers An Outline of Required Competencies F. Essrich SiM Mining Consultants (Pty) Ltd., Rep. of South AfricaABSTRACTA decline in the number of dedicated mine seismologists on SA mines over the past decade has created a need for Rock Engineers to acquire a level of competency in mine seismology that would allow them to fulfil a number of functions previously occupied by mine seismologists. The parallel development of user friendly software as a tool for basic seismic data analysis has added to these requirements by offering the non-specialist user an opportunity to carry out various forms of seismic data analysis. A further influence arises from the fact that seismology services are now outsourced on many mines, leaving rock engineering departments with the responsibility to control seismology contracts and liaise with suppliers, which adds managerial functions to their role in an already technically demanding field. This paper investigates the new role embraced by rock engineers on seismically active mines and suggests an outline of training contents that is able to provide the knowledge and skills required. The author has presented training courses with contents similar to those outlined here to rock engineering consultancies and mining houses in South Africa.1 .Introduction 1.1 Mine Seismologists in South Africa The development of digital seismic systems in the early 1990s and their installation on rock burst prone mines led to a proliferation of seismic data and the employment of specialised personnel in the field of mine seismology. Around 1996 the gold mining sector in South Africa had 24 mine seismologists to manage seismic systems, analyse and evaluate data and supply relevant information to mainly rock engineers, production personnel and mine management. Mine seismologist can be broadly defined as follows: Any person, irrespective of background and formal training, whose sole responsibility is the management of seismic systems and / or the analysis and evaluation of seismic data originating from mining operations. Mine seismologists were, with the exception of two corporate seismologists, employed by the mine and integrated into the mines rock mechanics departments. This setup - considering seismology part of rock engineering - has developed from the perception that seismic information is best utilised in the department responsible for mine layout and support design. It ignores the fact that, academically, seismology forms part of geophysics, which is in some countries considered part of the geology discipline (USA) and in others part of the science of physics (Germany and France). Instead of being integrated with rock engineering, mine seismologists could have joined the prospecting divisions of mining houses and then be seconded to mines as the need arises. This would have opened up more career prospects and may have retained some of the seismologists in the field, preventing the exodus that took place in the second half of the 1990s. By mid 2001 AngloGoldLtd. (now AngloGold-Ashanti) had lost all of its mine seismologists bar one on corporate level. Out of the original 24, eight changed their working field and four left the country. Gold Fields Ltd. retained three of its six experts, plus one on corporate level. Of those leaving the mines, six individuals joined existing or opened up their own consultancies, all of which are still in business today, three years later. By mid 2004, the number of mine-based and employed seismologists stood at four, only one of which is on a mine not previously served in this way. The number of individuals in consultancies has recently increased to ten due to demand by Harmony GM Co. Ltd. Generally speaking, consultancies have taken over the role of service providers in the field, operating seismic networks, managing the gathered data and analy sing and evaluating data for most rock burst prone mines. In this environment mine employed rock engineers become primary customers of seismology services. They are in charge of controlling the contracts with service providers, but also carrying out basic analysis of seismic data with specialized software tools that are A closer look at the various functions executed during seismic data interpretation reveals requirements for senior rock engineering personnel whose responsibilities include seismology related tasks. There are four discernible task groups that rock engineers have to cover in such an environment: 1) Input into mine planning: Design bracket pillars for seismically active structures; optimal face layout and mining sequence, production rate and face configuration to minimise seismic energy emission; optimal placement of stability pillar and their dimensions. 2) Support systems design, Evaluate rock burst information and peak ground motion estimates to recommend excavation support patterns for dynamic oading conditions. 3) Hazard identification, Correlate trends and patterns in seismicity with information from other disciplines (geology, production, rockmechanics) for detection of potentially hazardous developments. 4) Contract management, Liaison with suppliers; reviews and audits, quality control and other functions required to administer contracts with seismic service suppliers. . The first three points require a basic appreciation of mine seismology issues and an ability to apply such knowledge. Where it can contribute to safer mining environments seismology provides meaningful answers to relevant questions. Rock engineers need to be able to ask the right questions and fully comprehend the answers. The last point assumes sufficient knowledge of seismic data quality and basic analysis methods to on duct audits and evaluate various aspects of supplier service delivery. The following outlines not only essential considerations, but also explains some of the tools that are currently available for lay users. 1.2 Mine Seismology: User-Friendly Tools Some of the first MS-WINDOWS based software codes for seismic data analysis on South African mines were developed between 1993 and 1998, A group of AngloGold (then Anglo American) specialists serving mines in its Vaal River Operations developed SEISDBS, which was intended for data base administration and data analysis of previously collected raw data. SEISDBS used data exported from ISS International seismic systems (van derMerwe, 1998). The other WIN-based package originated from CSIR-Miningtek for operation of their commercial PRISM system, a digital seismic system for mines developed together with M&M Systems and in competition to ISS International, whose main platform at that time was Unix/Linux. In 1998, the Council for Geoscience in Pretoria released SeisHazM Kijko etal, 1998, a specialised tool for static seismic hazard assessment. This 1software was the main deliverable of SIMRAC project GAP517 and ran under WIN. It allowed users to calculate estimates of maximum expected magnitude and probability of occurrence of seismic events in different magnitude ranges, based on historic data sets recorded in an area. Since 2000, HAMERKOP Scientific Services offers a suite of programs that can perform pecialised types of analyses (Gutenberg-Richteranalysis, Energy-Moment analysis, various statistical functions) as well as network performance modelling for a given network layout (sensitivity, location accuracy). All of these run on standard office PCs with system requirements lower than those needed for elastic rock mass model ling packages. Following the general trend, ISS International also created WIN based versions of its software for system operation, data processing and data analysis. Tools currently available are considered user-friendly as they only require moderate amounts of training and can be operated on standard office computer hardware. Programs allow even non-seismologists to obtain useful analysis results that can be combined with other geotechnical information to contribute to rock engineering solutions. The opportunity for rock engineering personnel to carry out seismological analysis on an elementary level and the availability of suitable tools partly determines the skill profile of rock engineers. It adds to their required knowledge base and should be accommodated with corresponding training needs. 1.3 The Process,Seismic Data Interpretation Seismic data interpretation, as a process, transforms specific inputs into specific outputs. Formally, interpretation of data is the separator situated between the two as shown in Figure 1. Any person involved with the task of interpretation needs to be familiar with the specifics of the elements entering and leaving the core function of interpretation. The tools and methods of data analysis, the raw data that has been collected with seismic monitoring systems, and the skills and knowledge of those performing the interpretation are most relevant on the input side. On the output side, emphasis rests on the information type supplied to customers and the 1Safety in Mines Research Advisory Committee, S. Africa application of knowledge gained from data. Procedures need to ensure good communication, compliance with requirements and adequate response to the information received. Customers need to be competent in the use of seismic information. There are comprehensive text books that deal with the hard- and software components of mine based seismic systems, most notably Men decki (editor, 1997).Gibowicz & Kijko (1994) discuss theoretical concepts of seismic failure mechanisms, source quantification and elastic wave propagation, on a level that exceeds the requirements for non-seismologists. Fig.1 Seismic data interpretation process (adapted from Oakland, 2003): Inputs (left) and out puts (right); relevant feedback functionsMore important for rock engineers than detailed technical knowledge is the understanding of seismic data evaluation as a process, i.e. the transformation of raw data with the help of tools and methods into useful seismic information that can be applied to solve rock related problems. The co-operation of recipients of seismic information with network suppliers and those conducting data analysis and evaluation is essential for a successful management of seismic risks. Customer feedback to seismologists in charge of the core process and the cores feedback to the input side ensure continued exchange and improvement of the overall process (Figure 1). Rock engineering practitioners and production personnel need to formulate their requirements in terms of information type and communication intervals; and the process core needs to be able to deter mine inputs (tools, methods, data, skills etc.) to enable provision of the required information. Feedback can be continuous or through a periodic, scheduled review process. Customers occupy the most important role and should be the ones to drive there view process. 2 Main Functions and Responsibilities A simplified model is introduced to describe main functions in the field of mine seismology. Then we focus on specific rock engineering issues that can be addressed with the aide of seismic data interpretation. We conclude with a description of administrative duties related to contract management and quality control. 2.1 OSCAR B jectives ystems The acronym OSCAR stands for O S Collection Analysis Reduction; or in an expanded form: Monitoring objectives, seismic systems designand installation, data collection, data analysis, risk reduction. These are keywords representing five major elements in a loop of continuous improvement aimed at reducing the most pressing seismicity related risks (Figure 2). Risk reduction, the last element, is linked to the first by evaluating the success of risk treatment campaigns and subsequently adjusting monitoring objectives. For instance, once a seismically active remnant has been successfully extracted, there is no longer a need for detailed coverage of this area. Resources can rather be spent on monitoring other sources of seismic energy emission. Rock engineers who wish to familiarise themselves with the full scope of mine seismology, albeit with limited detail, could use the OSCAR model as a memory aid Itexplains the main steps and the functionality of major elements of applied mine seismology. 2.1.1 Monitoring objectives Monitoring objectives need to be formulated and regularly reviewed to define the desired outcomes of seismic monitoring on a mine. Three areas need to be visited to derive such objectives: Need What aspect of seismicity needs to be quantified, i.e. which source parameters and at what level of accuracy? Location Where are the areas that experience seismicity, i.e. what is the geographical distribution of seismicity and rock bursts? Method How are objectives to be met, i.e. which resources are available and what is the time frame for implementing the monitoring program? In order to answer the first question, knowledge of the following is required: * Seismic source types * Source parameters* Methods of analysis The second question could be approached by conducting an analysis of geographical distribution of seismicity incidents for which no specialised skills are required. Objectives of Monitoring Seismic Collection of data Analysis & interpretation Risk Reduction Fig. 2 The OSCAR cycle: The major elements of applied mine seismology. The answer to question three is usually dictated by the needs of the larger mining operation: Degree of urgency, legal requirements and budgetary constraints may play a role. The formulation of objectives under consideration of financial and other constraints is then followed by seismic system design and installation. 2.1.2 Seismic system A seismic system consists of a combination of network hardware and software that allows the collection of seismic data, data processing for basic event parameters, and the creation of data bases from his data. The design of a suitable system is there for edirectly linked to the aims of monitoring: Requirements such as spatial coverage, spatial/temporal resolution, choice of suitable sensors, and the quantification of various aspects of seismicity must enable the generation of seismic information to meet these objectives. Selection of the system will naturally involve system suppliers, but an understanding of the following topic sensures an independent and informed decision by the advising rock engineer: * Physics of oscillation * Wave types * Wave propagation * Interfaces * Ne
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。