平顶山四矿1.8Mta新井设计【含CAD图纸+文档】
收藏
资源目录
压缩包内文档预览:
编号:22928298
类型:共享资源
大小:3.08MB
格式:ZIP
上传时间:2019-11-04
上传人:机****料
认证信息
个人认证
高**(实名认证)
河南
IP属地:河南
50
积分
- 关 键 词:
-
含CAD图纸+文档
平顶山
1.8
Mta
设计
CAD
图纸
文档
- 资源描述:
-
平顶山四矿1.8Mta新井设计【含CAD图纸+文档】,含CAD图纸+文档,平顶山,1.8,Mta,设计,CAD,图纸,文档
- 内容简介:
-
沿空掘巷技术及其应用研究摘要:沿空掘巷是在上区段工作面回采引起的采动影响稳定以后沿采空区边缘掘进的巷道。无煤柱护巷或窄煤柱护巷是采煤技术的一项重大改革,它对提高煤炭资源回收率,改善巷道维护.降低巷道掘进率。消除因留煤柱和丢煤而引起的井下灾害有明显效果。随着无煤柱护巷技术的应用和发展,在采区巷道布置等方面产生了相应变化。沿空掘巷技术的关键在于选择合理的巷道布置位置,确定合理的煤柱宽度,选择合理的支护方法和支护参数。关键词:沿空掘巷;窄煤柱;矿压显现1 沿空掘巷巷道布置方式1.1 紧贴采空区的沿空掘巷1.1巷道断面及形状该布置方式可适用于走向长壁或倾斜长壁后退式采煤法,由于紧贴采空区掘进,部分地段可见采空区矸石,沿空掘巷期间巷道压力不大,整个巷道无明显变形,回采期间由于采动压力影响和其它原因支架变形较大,但基本能保证正常生产。1.2 留小煤柱的沿空掘巷沿空掘巷时,为了防止从采空区向巷道窜矸或采空区积水和有害气体进入巷道,在巷道与采空区之间留13m小煤柱,掘进过程中无明显压力,局部地段可能有采空区渗水,但不影响施工,工作面采动影响期间影响不严重,可能在风巷靠近采空侧出现部分底鼓、挤帮现象。回采期间除进行超前支护外,不需要进行大的维修。以上两种沿空掘巷方式,当区段按顺序接续开采时,难以避免下区段的掘进受上区段回采的影响,为了克服此缺点,可以采用跳采的方式。1.3 留临时大煤柱沿空掘巷在要求上.下区段按连续顺序接替回采,采区的条件又不适于应用间隔开采沿空掘巷时,为了避免下区段掘进工作受上区段采动影响,可采用留临时大煤柱的沿空掘巷方式。这种方案的实质是在掘进下区段的风巷时用尺寸较大的煤柱与上区段采空区隔离,以免巷道掘进受到上区段影响。本区段回采时又从采空区边界沿上区段采空区边缘与采面推进方向同向掘一条回风小平巷,以便回收临时大煤柱时构成通风回路。该小平巷超前距离只要稍大于联络眼的间距,并可随采随废。采用这种方式后不仅巷道压力小,维护条件大为改善,甚至可无须维护,几年内就减少煤炭损失达上百万吨。1.4 厚煤层沿空掘巷厚煤层沿空掘巷的原理与中厚煤层相同,但由于厚煤层常进行分层开采,加上厚煤层开采对防火防沼气往往有更高的要求,所以其巷道布置一般较薄及中厚煤层复杂。2 沿空掘巷围岩结构力学模型及矿压显现规律沿空掘巷围岩变形是由于顶板岩层的挠曲运动而引起支承压力重新分布所致。开采引起煤体上方顶板以一定的垮落角依次向采空区延伸,形成组合悬臂粱结构,悬露顶板及部分覆岩重量被转移到实体煤上,断裂岩梁在采空区内以冒落岩体为支点因此,由于覆岩悬臂岩梁平衡结构的保护,在工作面外侧一定范围内存在一个压力降低区,如果在这个区域沿空掘巷,巷道后期变形小,维护任务轻,即合理控制覆岩断裂线的位置,就可有效地避开支承压力峰值对巷道的影响。2.1沿空掘巷围岩结构力学模型采煤工作面关键层结构分析主要考虑结构块之间的作用力、冒落矸石的支撑力及上覆软岩层和关键层的自重,考虑结构自身的平衡;而沿空掘巷的关键层结构还要受到下方煤体(小煤柱)的支撑。沿空掘巷一侧为未开采的实体煤,另一侧为上区段采空区,上区段工作面顶板在实体煤侧为固支边,对沿空掘巷围岩稳定性影响最大的关键层主要是顶板,因此,在承压小煤柱的支撑作用下,研究工作面端头顶板断裂线的不同位置对沿空掘巷围岩稳定性的影响是研究问题的关键。根据顶板的破断、运动特征,对小煤柱沿空掘巷围岩结构进行简化,建立沿空掘巷围岩结构力学模型模型选取采煤工作面上覆岩层为顶板,简化为梁结构(如图2-1)。为顶板上覆岩层引起的载荷,0D段为工作面上覆岩层,OA段为采空区,AB段为预留的支撑小煤柱,BC段为沿空巷道,CD段为未开采实体煤层结构模型中,挠度取竖直向下为正方向,粱的抗弯强度EI为常数。图2-1 沿空掘巷围岩结构力学模型煤柱与未开采煤层对梁(直接顶)的作用按弹性地基处理,即,(1), (2)式中:,为Winkler地基系数,与粱下垫层的厚度及力学性质有关, 为煤体弹性模量,为梁下地基垫层厚度。设梁OD是均质、各项同性的线弹性材料,则其挠曲线方程为, (3)其中,载荷边界条件为 (4)连续性条件:A,B,C 3处,挠度、转角、弯矩及剪力都相等。在边界条件和连续性条件下,方程(3)通解为式中:常数,为待求参数,由边界条件及A,B,C处连续性条件决定;,。通过MATLAB编程,可得到,关于变量,的16个关系方程。此处, 均为采场实际情况的观测量,是根据AB段承压小煤柱的注浆加固支护程度测得的相应数值,因此每一个值都将对应一组,数值,即对应一组关键岩梁OD的弯矩值因此,通过对承压小煤柱进行分阶段两次注浆加固,可以改变顶板断裂线的分布位置,从而对巷道围岩变形进行控制。2.2 沿空掘巷矿压显现规律2.2.1 支撑压力沿煤层倾斜的显现规律通过我国大量矿压观测和有关研究表明,沿煤层倾斜方向的支承压力一般分布形式(见图2-2)。图2-2 支承压力一般分布形式图煤体边缘低压区;ab强烈显现区;峰值位置;L影响总范围根据统计资料表明,沿倾斜支承压力显现的有关参数变化很大,时,而。研究表明,支承压力峰值距煤体边缘的距离(即塑性区宽度)与煤层坚固性系数、顶板单向抗压强度、煤层采高、煤层倾角、采深等因素有关,可根据实测资料得到回归公式进行近似计算。2.2.2 沿空掘巷与留煤柱护巷矿压显现对比沿空掘巷与留煤柱护巷矿压显现对比由于煤体边缘存在低压区.该处布置巷道显然会有利于减轻巷道受压.因而使沿空巷道较易维护.顶底移近量比留煤柱护巷要小。2.2.3 回采工作对沿空掘巷的影响规律根据对回采引起的煤层上方岩石运动全过程的观测.采动影响从发展、剧烈到缓和、平稳,在巷道中的一般显现规律(图2-3),超前于回采工作面开始呈现出明显的采动影响,在工作面后方范围内采动影响最为强烈,顶、底板移近量可达,至后方处采动影响趋于缓和, 处围岩移动达到稳定.这时顶(底板移近量已降到以下,此时进行沿空掘进才能使掘出的巷道不受采动影响,容易维护。图2-3 巷道规律显现示意图2.2.4 沿空掘巷时巷道内矿压显现规律统计资料表明:沿空掘巷时顶底总移近量并不大.一般在300mm以下,但巷道两侧顶底移近量明显不同,一般是靠采空侧大于靠煤体侧,其比值约为。此外沿空巷两帮向巷道内的水平移动也较明显。多数巷道的两侧顶压也不同,一般是靠采空侧顶压大而靠煤体侧小,其比值约为,此外巷道两帮侧压也不同,多数情况下是煤体侧大于采空侧,表现为靠煤体侧的棚腿折损率大于靠采空侧。3 沿空掘巷的最佳位置通常,在研究支承压力分布及其显现随上覆岩层运动而变化的规律的基础上,通过实测确定具体采场的支承压力分布特征,特别是低应力区的范围和稳定时间,然后确定巷道开掘的合理位置,使其避开高应力区和高应力作用期,最大限度地减轻支承压力集中区的影响。在存在内应力场的条件下,可能的掘巷位置有3种(见图3-1)。由煤体上方支承压力分布规律可以看出,在位置2掘进巷道,正处于支承压力高峰区,巷道不易维护;在位置3掘进巷道,虽然巷道比较容易维护,但煤柱损失比较大,故这两种位置都不可取。因此沿空掘巷的最佳位置为位置1所示的小煤柱掘巷,最佳煤柱尺寸应是满足煤柱不发生裂隙向采空区漏风、不诱发自燃的最小煤柱尺寸。图3-1 巷道掘进位置1小煤柱沿空掘巷 2外应力场中的煤柱护巷 3原始应力区的大煤柱护巷4 沿空掘巷窄煤柱合理宽度设计4.1 空掘巷窄煤柱的留设原则沿空掘巷的围岩力学环境与其它类型的回采巷道相比,一般具有以下三个显著的特点:巷道处于应力降低区;掘巷期间巷道围岩的应力集中程度小;回采期间巷道围岩的应力集中程度很大。基于上述特点确定沿空掘巷窄煤柱宽度应该遵循的原则:1)巷道位于应力降低区,根据采空区侧向应力分布规律,要求煤柱尽量窄。当巷道位于应力降低区时,窄煤柱及巷道的稳定性均较好。2)有利于巷道稳定。煤柱过窄,不但煤柱破碎,顶板及实体煤帮也比较破碎,巷道围岩整体性差、承载能力小。3)有利于锚杆锚固。煤柱过窄时,窄煤柱破碎,不利于窄煤柱帮锚杆锚固,影响巷道支护效果。4)采出率高。煤柱越小,采出率越高,在满足巷道岩稳定的前提下,尽可能减小窄煤柱宽度。5)煤柱不能过宽。煤柱过宽,既不利于减小煤炭损失,又容易形成应力集中影响巷道围岩的稳定。4.2 煤柱合理宽度的理论计算4.2.1 试验巷道地质概况某矿09113工作面开采8号和9号煤层,中间含薄层夹矸,采高36m,工作面长度187m,煤层平均埋深300m,平均倾角8,赋存状况稳定。091 13工作面运输顺槽为矩形断面,宽高为45mx36m。试验巷道采掘平面图如图4-1所示。图4-1 试验巷道采掘工程试验图4.2.2 理论计算窄煤柱的宽度极限平衡理论研究认为,窄煤柱合理的最小宽度B为: (5)式中,为上区段工作面回采在下区段沿空掘巷窄煤柱中产生的破碎区的宽度,可以按照式(2)计算: (6)式中 沿空掘巷窄煤柱一帮锚杆的有效长度,再增加15%的富裕系数,m; 考虑煤层厚度较大而增加的煤柱稳定性系数,按计算; m上下区段平巷高度,m; 坝4压系数,A; 煤层的内摩擦角,(); 谋层的粘聚力,MPa; k应力集中系数,一般取3左右; y岩层的平均容重,MPa;H巷道的埋藏深度,m;只对煤帮的支护阻力,如上区段采空区侧支护已经拆除,可取。将试验巷道的参数带入公式(2)进行计算,得出:,考虑到一定得富裕系数,初步确定窄煤柱的合理宽度为5.0m。5 煤柱合理宽度的数值模拟根据试验巷道的生产地质条件,利用数值模拟软件UDEC310建立模型研究沿空掘巷窄煤柱的合理宽度。模拟过程分别取窄煤柱宽度为3m、4m、5m、6m、8m、10m、15m七个方案,对沿空掘道在掘进及回采期间的顶板下沉、底板鼓起、实体煤帮、窄煤柱帮的变形量进行研究。5.1 沿空掘巷在掘进期间围岩变形特征掘进期间沿空掘巷围岩变形情况如图5-1所示,由此可以看出其变化特征:图5-1 掘进期间沿空掘巷围岩变形情况1)尽管窄煤柱宽度不同,但是沿空掘巷两帮的相对移近量均大于顶底板的相对移近量,说明在巷道掘进期间,围岩变形以两帮移近为主。2)当窄煤柱宽度小于5m时,沿空掘巷的顶底板相对移近量以顶板下沉量为主,底板鼓起量相对较小。当窄煤柱宽度大于5m时,随着窄煤柱宽度的增加,顶板下沉量不断增大,底板鼓起量先增大后减小。当窄煤柱宽度等于5m时,顶板下沉量和底板鼓起量均达到最小。3)在沿空掘巷两帮移近量中,窄煤柱帮的移近量和实体煤帮的移近量随着窄煤柱宽度的不同稍有变化,但其变化幅度不大。窄煤柱帮的变化趋势是随着窄煤柱宽度的增加,移近量先增大后减小,但当煤柱宽度大于5m时,移近量又开始增加,宽度为5m时移近量最小;实体煤帮的变化趋势是随着窄煤柱宽度的增加,移近量不断减小,但当窄煤柱宽度大于5m时,移近量又开始有一定的增大,同样在窄煤柱宽度为5m时移近量最小。5.2 沿空掘巷在回采期问围岩变形特征回采期间沿空巷道围岩变形情况如图3所示,由此可以看出其变化特征:图5-2 回采期间沿空掘巷围岩变形情况1)本工作面回采时,沿空掘巷两帮相对黟近量和顶底板相对移近量相差不大,基本在650一700mm之间,说明在本工作面回采时,巷道围岩变化量比较均匀。2)沿空掘巷在受本工作面回采影响时,顶板下沉量和底板鼓起量的变化趋势基本一致。当窄煤柱宽度小于5m时,均是随着窄煤柱宽度的增加,移近量不断减小,宽度为5m时移近量达到最小值,窄煤柱宽度大于5m后随着宽度的不断增加,移近量先增大后减小,6m时移近量达到最大。但是顶板下沉量普遍大于底板鼓起量。3)在本工作面采动影响下,随窄煤柱宽度的增加,实体煤帮的移近量先减小后增大,并且在5m时达到最小;而窄煤柱帮的移近量却随着窄煤柱宽度的增加不断增人,当窄煤柱宽度小于5m时,移近量增大幅度较小,而当宽度大于5m时,移近量增大幅度显著增大。根据上述分析可知:沿空掘巷在巷道掘进期间,由于围岩变形量较小,窄煤柱宽度对巷道围岩变形量的影响不大;但是在受本工作面采动影响时,沿空掘巷的围岩变形量普遍较大,所以在此种条件下,合理的窄煤柱宽度与沿空掘巷的围岩稳定性有很大的关系。根据数值模拟分析在不同宽度窄煤柱条件下沿空掘巷在掘进和回采期间围岩的变形规律,确定窄煤柱的合理宽度为5m。6 沿空掘巷变形控制与支护6.1 技术原理沿空掘巷底鼓、变形控制的基本方法是提高巷道围岩整体强度及采用合理的全断面加固技术心。沿空掘巷底鼓、变形控制的基本技术和控制过程:采用高预紧力、大延伸量的高强度锚杆、加密锚索支护系统,强化锚固区围岩强度,提高巷道围岩自身稳定性;采用顶板、两帮、底角、底板的全断面加固技术,重点是提高巷道最薄弱部位(两帮、底角)残余强度和提高巷道围岩整体稳定性;采用注浆材料加固小煤柱,提高小煤柱的完整性和整体强度。6.2 空掘巷围岩变形理论分析6.2.1 顶板稳定性分析沿空掘巷与上覆岩体结构的平面、剖面关系如图6-1所示。图6-1 沿空掘巷与上覆岩层“砌体梁”结构的关系示意图1)工作面回采时,采空区老顶岩层产生新的破断,岩块C与关键块B相连通。2)老顶破断后,块体C将分别在回转力矩肘和M。的作用下向本工作面和侧向关键块B方向回转下沉,进而破坏工作面前方沿空掘巷上覆岩层“砌体梁”结构原有的平衡状态,此结构中的岩块C和关键块B处于运动和不稳定状态,从而引起岩块B下沉和在工作面前方形成较高的支承压力。3)上覆岩层“砌体梁”结构在较高支承压力的作用下,岩块C、B将有一定程度的回转下沉。这种运动和不稳定状态将造成沿空掘巷围岩应力的重新分布和集中,其影响程度远大于掘巷时围岩应力的重新分布和集中。4)沿空掘巷在回采时围岩应力高度集中,加上巷道围岩性质软弱,使大采高沿空掘巷围岩产生较大变形;同时,由于“砌体梁”结构造成的巷道围岩应力重新分布的不均匀性,使得巷道顶板、底板、实体煤帮及煤柱在变形方式和变形量上存在较大的差异。5)“砌体梁”结构从受工作面回采影响起,上覆岩体结构上的载荷在不断增加,但由于各岩块间仍保持随机的平衡状态,在工作面推过后这种平衡状态才会发生失稳,造成巷道的彻底破坏。6.3 沿空掘巷底鼓分析沿空掘巷在受回采影响期间,由于采动应力作用,巷道围岩变形远大于掘进影响期间,前者一般为后者的510倍。沿空掘巷所处的应力环境与实体煤巷道完全不同,在受采动影响时,由于本工作面的超前支承压力和上工作面的侧向支承压力叠加作用,在沿空掘巷附近形成高支承压力,巷道上覆老顶岩层发生二次回转运动,致使沿空掘巷顶板下沉、巷帮煤柱产生压缩变形、窄煤柱全部进入塑性或破碎状态,煤柱承载能力甚微,巷道底板严重鼓起,并且在二次水平应力作用下,巷道底板岩层产生压曲破坏,从而使沿空掘巷底鼓变形比实体煤巷道大得多。6.4 沿空掘巷围岩变形控制数值模拟分析为了研究全断面加固对提高围岩整体强度的程度,建立锚岩支护体数值模型,对沿空掘巷围岩不同部位加固支护时的围岩变形特性进行分析。沿空掘巷断面5 m4 m,断面积1725 ,锚杆规格22mm2 500 mm,锚索规格多18.9 mm9 200 mm。6.4.1 加固巷道顶板顶板锚杆索加固控制围岩变形效果见表6-1,顶板加固后可起到控制顶板下沉、减小两帮移近量和底鼓量的作用。通过锚杆的作用提高顶板的强度,限制顶板塑性区的发展,减小顶板的下沉量和底鼓量,达到加固顶板防治底鼓的目的。表6-1 顶板锚杆索加固控制围岩效果 类别顶板下沉量/mm底鼓量/mm两帮移近量/mm加固前521598577加固后211441390顶板锚杆索提供径向和切向约束,阻止破坏区岩层扩容、离层及滑动,提高岩层的水平承载能力,使稳定岩层内的应力分布均匀,顶板的承载能力得到较大程度的提高。锚杆的存在,减小了岩层压曲或者弯曲失稳的可能性,锚杆预紧力越大,支护效果越好。在煤层回采的过程中,由于工作面超前支承压力和侧向固定支承压力的叠加影响,底鼓呈现明显的不对称性,煤柱侧大于煤体侧;由于煤柱受二次采动的影响且较破碎,顶板下沉量也是煤柱侧较大。6.4.2 加固巷道两帮1) 两帮锚杆加固效果分析两帮加固控制围岩变形效果见表6-2,帮部锚杆增加了两帮破碎煤体的整体强度,防止两帮进一步向巷道内移近,巷道帮水平位移量显著减小,两帮移近量减小261 mm。由于两帮煤体自承能力的增加,顶板的下沉得到控制,顶板下沉量减小179 mm;但对底鼓控制不明显,底鼓量的减小值只有65 mm,说明帮部岩层强度对巷道底板产生的弹塑性位移影响较小。表6-1 两帮加固控制围岩效果 类别顶板下沉量/mm底鼓量/mm两帮移近量/mm加固前521598577加固后342533316两帮围岩塑性区显著减小,锚杆对煤帮的控制效果尤为明显。在两帮塑性区减小的同时,底板塑性区却有所增大,并且顶板也出现塑性区,这主要是由于帮部岩层集中应力峰值靠近巷道底角,加剧了底板的破坏,帮较弱时,应力峰值转移到岩体深部,对底板影响较小。两帮的加固对底鼓的控制并不明显,底板下较大范围的岩层向巷道内移动。2) 煤柱注浆控制围岩变形效果分析煤柱注浆加固后控制围岩变形效果见表6-3,注浆加固煤柱后顶板下沉量减小129 mill,两帮移近量减小161 mm,而底鼓量减小值仅为42 mm。注浆加固煤柱对底鼓的控制并不明显;但煤柱强度得到提高,煤柱下底板不是鼓起而是压入;由于煤体侧没有加固又受回采应力集中影响,煤体侧底板鼓起程度反而增大。表6-3 煤柱注浆加固控制围岩效果 类别顶板下沉量/mm底鼓量/mm两帮移近量/mm加固前521598577加固后2114413906.4.3 加固底板效果分析1)底板锚杆加固效果分析底板锚杆加固后,底板岩层向上鼓起由较深部向较浅部发展,底板锚杆对控制底鼓起了明显的作用,见表6-4。表6-4 底板锚杆加固控制围岩效果 类别顶板下沉量/mm底鼓量/mm两帮移近量/mm加固前521598577加固后2114413902)底板锚杆不同角度、长度控制围岩变形效果分析底板锚杆不同角度时,控制底鼓效果也不一样,其中当锚杆倾角为45、60时底鼓减小值较大,但对顶板下沉和两帮移近控制效果不明显,见表6-5。表6-5 底板锚杆不同角度控制围岩效果 锚杆倾角/()底鼓量/mm顶板下沉量/mm两帮移近量/mm303385015314525048549460265499501不同长度锚杆控制围岩变形效果见表6-6,锚杆长度在25 m后对底鼓的控制效果已趋于平缓,为方便现场施工,锚杆长度可选25 m左右。表6-6 底板锚杆不同长度控制围岩效果 锚杆长度/m底鼓量/mm顶板下沉量/mm两帮移近量/mm1.55015115212.03845055082.52504854943.02114804853.51854804813)巷道围岩塑性区分布底板用锚杆加固后,巷道两帮和底板的塑性区均有不同程度的缩小,但加固后底板岩层的水平压力大于加固前的水平压力。通过以上分析,得出加固不同部位对底鼓控制的效果:底板锚杆顶板锚杆索帮部锚杆加固煤柱。但单一形式对沿空掘巷围岩变形控制效果不十分明显,应从整体支护进行考虑,提出了“强顶、固帮、控底”全断面控制沿空掘巷围岩变形的技术思路。4)全断面加固控制围岩变形效果分析巷道全断面加固后,顶板、底板及两帮的塑性区都缩小,围岩表面位移量显著减小,见表6-7。巷道顶板下沉量减小336 mm,两帮移近量减小301 mm,底鼓量减小427 mm,因此巷道全断面加固后,控制沿空掘巷围岩变形效果十分显著。表6-7 巷道全断面加固控制围岩变形效果 类别顶板下沉量/mm底鼓量/mm两帮移近量/mm加固前521598577加固后1851712766.5沿空掘巷底鼓控制效果实测分析6.5.1顶板内部位移距工作面煤壁前方110 m以外,顶板基本不受采动影响;当采距小于110 m时,顶板岩层受采动影响,随着采煤工作面推进,巷道围岩变形迅速增大,分为3个阶段:第一阶段工作面距离测点80110 m时,由于受采动影响,巷道围岩变形速度明显增加,由原来的l mm/d增加到12 mm/d;第二阶段工作面距离测点4080 m时,曲线斜率最大,随着工作面的推进围岩变形速度急剧增大。顶板表面围岩变形速度达98 mm/d;第三阶段在工作面前方40 m范围内,随着工作面的进一步推进,围岩变形速度有所下降。6.5.2煤柱表面变形与内部位移随着采煤工作面的推进,由于工作面移动支承压力和侧向固定支承压力的叠加作用,煤柱上的应力也迅速增大,致使煤柱发生严重塑性破坏,分为3个阶段:第一阶段工作面距离测点80120 m时,由于受采动影响煤柱变形速度明显增大,由原来的1 mm/d增大到20 mm/d;第二阶段工作面距离测点20一80 m时,随着工作面的推进,围岩变形速度急剧增大,煤柱表面围岩变形速度达71 mm/d;第三阶段工作面距离测点小于20 m时,变形速度达到最大值125 mm/d,随着工作面的进一步推进,巷道底鼓变形越来越严重。6.5.3底板变形及内部位移在工作面前方130 m以外时,巷道变形基本不受采动影响,围岩以l mm/d的速度在流变。第一阶段工作面距离测点80120 m时,由于受采动影响底板变形速度明显增大,由原来的l mm/d增大到8 mm/d;第二阶段工作面距离测点2080 m时,随着工作面的推进,围岩变形速度急剧增大,底板表面围岩变形速度达54 mm/d;当工作面推进到距测站20 m左右时变形速度达到最大值,这时底鼓的变形速度为99 mm/d。6.5.4总体效果分析当顶板锚索补强、底板锚杆加固、煤柱化学材料加固后,受采动影响距离工作面10m范围内,巷道断面的收缩率为30.3,巷道断面积保持在12。6.6工程质量保证措施1)钢筋绑扎应按要求进行,搭接长度应做好标记,竖筋和环筋的每个交点都应用铁丝绑扎牢固,纵向间距不大于20 mm,环向间距不大于-4-10 mm。由于外层钢筋超前46 m,为防止竖筋歪斜,应及时绑扎好环筋,如发生偏斜,应及时纠正。2)必须认真掌握滑模中心线及水平高差,每滑升1次,都应认真校对中线及水平高差,当水平高差超过30 mm即应进行调差,此时可关闭高面的千斤顶12个,滑升12个行程后再打开校核,保持水平滑升是确保中线不发生偏差的关键。3)千斤顶的支承杆为税5 mm圆钢,使用螺纹联接,母丝长度应大于公丝12丝,联接时必须紧密,接头处应圆滑,不得留有间隙,以防影响千斤顶正常滑升。4)内、外层竖筋在第1次使用时,其长度应分为28,32,36,40 m,交错排列,以后使用等长度竖筋,使其接头不在同一平面上,环筋接头亦应上下错开,避免在同一垂直线上。5)搅拌站应按不同强度的砼要求,严格控制好砼配比和水灰比。砼中掺人适量高效防渗密实剂,以降低水灰比,提高砼早期强度。按照滑模施工的特点,保证25 h砼强度达到025 MPa以上,并要确保砼强度符合设计要求。6)混凝土浇灌应分层,对称循环浇灌,每层高度300 mm,固定专人用插入式振动器认真振捣,振捣应密实,要振捣出浆,振动棒不得插人下层已初凝的砼内,即插入砼的深度不得超过300 mm,且振动棒不得碰撞顶杆、钢筋和模板。7)井壁支撑圈应与内外层井壁整体浇筑段同时施工,即先浇筑井壁支撑圈混凝土,再浇筑内外壁整体浇筑段。7 结论1)合理的窄煤柱宽度和巷道位置使沿空掘巷处于应力降低区,从而保证了巷道围岩的变形量较小。根据极限平衡理论计算和数值模拟方法,最终确定窄煤柱的合理宽度为5m。2)正确运用沿空巷道变形控制与支护技术的原理,根据不同的条件选择合适的支护方法和控制技术,将巷道底鼓量控制在一个合理的界限内,以确保矿井的安全生产。3)加固顶板可限制顶板塑性区发展,提高顶板整体强度,减小底鼓量;煤巷两帮的变形破坏特征主要是扩容、松动和挤出,两帮锚杆加固(全锚)后有效地控制了两帮的变形;煤柱注浆加固后,煤柱的整体强度得到显著的提高,煤柱不再松散破碎且具有一定的承载能力,有效地防止了煤柱在回采过程中因松动破碎向巷道内移动;底板锚杆加固后减弱了巷道角部应力集中程度并在两帮和底角提高了围岩的强度,防止和减少了因底板围岩塑性变形和破裂围岩体体积膨胀造成的底鼓,并在两帮和角部形成具有一定支承能力的承载拱以控制两帮和底角塑性区的发展。4)对巷道单一部位加固控制沿空掘巷围岩变形效果不十分明显,巷道全断面加固后,顶底板及两帮的变形得到了有效控制。5)通过对沿空掘巷的顶板加强支护、煤柱注浆及底板锚杆加固的试验,在工作面前方10 m范围内,沿空掘巷断面收缩率为303,巷道全断面加固后有效地控制了沿空掘巷底鼓变形。沿空掘巷是控制巷道围岩变形、提高煤炭采出率的有效途径。根据现有的理论与现场检测的数据,选择合理的沿空掘巷的位置和煤柱尺寸,针对不同的地质条件采取合理的支护措施,根据现有条件选取经济可行的施工措施,在大多数矿井中采用沿空掘巷技术是其实可行的。参考文献1 钱鸣高,缪协兴,许家林等岩层控制的关键层理论M徐州:中国矿业大学出版社,20032 钱鸣高,石平五矿山压力与岩层控制M徐州:中国矿业大学,20033 王怀新巷道矿压观测分析方法探讨,煤矿开采J,2003(6),67-684 柏建彪沿空掘巷围岩控制Mi徐州:中国矿业大学出版社,2006外文原文:Methane control for mechanised longwall top-coal caving faces in high gas content mines(Guoming Cheng, Kan Huang, Fuzhang Yan, Weilin Li and Sijing Wang)In China, mechanised longwall top-coal caving technology (LTCT) has been widely used under suitable thick coal seam conditions due to its low cost, high production and productivity since it was introduced in 1982. It has even been applied in some high gas-content mines (e.g. No. 5 Mine, Yangquan coalfield), where methane is the most serious hazard affecting production in the mine. With the introduction of LTCT in 1992, the frequency of production delays greatly increased due to excess methane. In order to solve these problems, China University of Mining and Technology (CUMT) has been carrying out methane research jointly with Yangquan Coal Group Co. (YCGC) since 1993. The major focus of the research was concerned with the gas source and emission characteristics of the longwall top-coal caving face (LTCF) and the methane drainage methods from the adjacent strata during initial and normal mining. The research has helped the mine to control methane-related production delays to tolerable levels. The methane problems during normal mining were solved by the adoption of the high-level strike drainage roadway (HSDR). The methane concentration during initial mining was kept below the statutory limits by the adoption of the mid-level drainage roadway (MDR). In this way, the methane-related production delay problems were successfully solved by introduction of the HSDR in conjunction with the MDR. This paper analyses the gas source and emission characteristics of LTCF, and describes the experiences and methodologies adopted in methane control at the LTCF during normal and initial mining.BACKGROUNDChina is a large coal-producing country where underground mining of thick seams (i.e. more than 45 m thick) accounts for about 4050% of the national total coal output. The main mining methods of thick seams can be divided into two types longwall top-coal caving and longwall multislice mining. The latter was the major mining method in the past. LTCT was introduced in China in 1982, and is now widely used under suitable geomining conditions due to its low cost, high production and productivity.10,13 Through constant research,25,8,11,12,14,15 significant improvements have been made in LTCT, and the maximum production of a LTCF has reached up to 042 Mt per month in Dongtan mine, Yanzhou coalfield.At present, LTCT has been applied in thick seams ranging from 45 m to 12 m, even in difficult geomining conditions, such as three soft (soft roof, seam and floor), two hard (hard roof and seam), bigger slope angle of coal seam (less than 35) and high gas-content mines。While high production and productivity have been achieved using the technique, there are still some problems restricting its application,15 gas being one of the main hazards, especially in some high gas content mines (e.g. No. 5 mine, YCGC, etc).The No. 5 mine at YCGC is classified as gassy, and LTCT was applied to mine the No. 15 seam in 1992. The methane problems at LTCF during normal mining were solved by the adoption of the HSDR. However, at the early stages of mining, the overlying strata was not relieved, and the fractured zone in the roof was not extended to the HSDR; therefore, it is very difficult for HSDR to draw methane out of the adjacent strata. As a result, before the LTCF advanced about 38 m from the face start line, large amounts of methane were emitted from the waste into the return. The methane content in the return cannot be kept below the statutory limits (1%) just by increasing air quantity. For example, the air quantity at No. 8109 face, which was the maximum air quantity at the previously mined faces, was 2200m3 min1, the methane emission rate was 29 m3 min1, and the content in the return was 12%. Hence, the production was often delayed due to excessive methane.Total down-time at the previously mined faces is shown in Fig. 1.MINING METHODSThe No. 15 seam has been extracted by the longwall retreating method using the LTCT since 1992. No.8204 face at the No. 5 mine is 160 m long and equipped with 105 powered supports (FDC440- 175/26 made in China). It has a panel length of 708m. The bottom section cut by the shearer is only 25m, the remaining 43 m flows onto the rear armoured face conveyor (AFC) under the influence of gravity, without cutting or blasting. The roof behind the face adopts fully caving method. Layout of the face is shown in Fig. 3. The face production per day was about 2120t.The sequence of operations included: (i) cutting the bottom coal; (ii) advancing the face supports; (iii) pushing forward the front AFC; (iv) advancing the rear AFC; and (v) while cutting the second web (each web 600 mm) of the bottom coal, the top coal is allowed to fall.Gas source of the LTCFThe gas source of the LTCF generally originates from the seam being worked and the overlying adjacent strata. As shown in Fig. 2, methane emissions from the coal seam being worked come from: (i) the coal wall and the coal seam above the powered support (q1); (ii) the cutting (q2); (iii) top-coal caving (q3); and (iv) the abandoned coal in the gob (q4). In addition, the methane from the overlying adjacent strata (q5) should be taken into account. The total emissions rate is 1787 m3 min1 at No. 8204 face, in which the emissions from the coal seam being worked were very low (about 39% of the total emissions of the face) while the emissions from the overlying adjacent strata make up about 961% of the total emissions of the face. Therefore, the overlying adjacent strata are significant gas sources. Patterns of methane emission of the LTCFUnder the same geomining conditions, the production of the LTCF is generally 23 times that of the LMMF. Therefore, methane emission rate is greatly increased. Comparisons of the emission rate between LTCF and LMMF in the No. 15 seam are presented in Table 2. From Table 2, it can be seen that the production of LTCF is 2730 times that of the LMMF, while its emission rate is 2122 times that of the LMMF. Compared to the LMMF, the methane-specific emissions of the LTCF are decreased. The reason for the above results is that with the longwall multi-slice mining method, a large portion of gas will be emitted from the coal seam being worked when mining the first slice. Subsequently, as the lower slices are mined, gas emission will be greatly decreased. With the longwall top-coal caving method, the gas emission will be even due to single-lift working of the thick coal seam. Table 2 shows that the specific emissions of the LTCF are reduced by 2026% compared to that of the LMMF.Table 2 Comparison of methane emission rate between the LTCF and the LMMFFace No.Working height (m)Mining methodProduction per day (t)Emission rate (m3/min)Specific emission (m3/t)8204680Top coal caving2120178712868103680Multi-slice mining78789216068101220Multi-slice mining6958431734Methane drainage researchObjectivesWhile the specific emission rate is slightly less for the LTCF, with the increase of production, methane emission of the LTCF is greatly increased. The emissions from the adjacent strata were more than 90% of the total emission due to higher working height and bigger range of stress relief of the adjacent strata. In such a high methane content coal mine, it is impossible or uneconomical to control methane below the statutory level (the maximum methane threshold limit values permitted within the intake, return and face are 05%, 1%, and 1%, respectively) only by means of ventilation. It is, therefore, necessary to develop a new technique and methodology to control the gas emission from the adjacent strata. Methane drainage is usually used during mining to reduce the hazards of mining and to improve the coal production capabilities. The research objectives were to optimise the existing drainage systems and improve their performance, and to reduce production delays in particular, as well as make some recommendations for future drainage systems.Assessment of the existing drainage systemsBased on whether there is a entry for gas drainage in the face or not, different methane control methods were employed in the mine. If there was an entry for gas drainage in the face, the high-level dip drainage roadway (HDDR)was employed to draw methane out of the adjacent strata (Fig. 3. This HDDR is about 5060 m above the No. 15 seam, starts from the entry at an angle of 45 leading to No. 11 or No. 12 seams, and then extends to the face by about 2540 m . Its effective drainage range is up to 240 m with a spacing of about 200 m, and the reasonable drainage range suction pressure is 10 00014 000 Pa. Details of the research and evaluation of the HDDR have been described elsewhere.1 If there was no entry for gas drainage, HSDR, which is about 5080 m above the No. 15 coal seam, was adopted.Outline of the trial face with the MDRProduction was frequently delayed at the previously mined LTCFs because the HSDR could not control the methane at acceptable levels during the early stages of mining. Hence, on the basis of the HSDR, the MDR was tested at No. 8111 face in August 1998. No. 8111 face is about 131162 m long, and the thickness of the No. 15 coal seam is 608 m. The intake and return roadway were laid along the bottom of the No. 15 coal seam, and the HSDR was laid below the No. 9 coal seam, about 60 m above the No. 15 coal seam with the horizontal distance of 60 m from the return (as shown in Fig. 4). The face was producing at an average rate of about 2740 t of coal per day.Layout of the MDRThe MDR starts from the return roadway, about 10m from the face start line, at an angle of 72 with the return roadway and 55 with the vertical direction leading to the K2 limestone, and then runs along the bottom of K2 limestone and parallel to the return, and finally runs 11 m passing through the face start line (see Fig. 4). The cross section is rectangular. After the drivage had been completed, gas pipe of 226 mm in diameter installed in the return roadway was connected to the main pipe line (380 mm in diameter) for methane extraction during the early stages of mining, as shown in Fig. 7.Results of the trialDuring the early stages of mining, the methane concentration in the face was successfully kept below the statutory limit by the introduction of the MDR in conjunction with the HSDR, which lays the foundation for the safe operation of the face. The successful methane control in this high gascontent mine clearly shows the importance of the HSDR and the MDR. It also indicates that the HSDR and the MDR may be applied to control methane under similar difficult geomining conditions.However, when the MDR extracts methane out of the adjacent strata, a set of gas pipe lines has to be placed in the return roadway. During the early stages of mining, gas pipes were buried in the gob as the face advanced about 5060 m, which resulted in pipe losses. In the future, it is recommended that several boreholes be drilled from the MDR to connect into the HSDR. The pipes in the return roadway should be replaced by boreholes, and methane extracted by the HSDR to reduce pipe losses. This will make the drainage system more economic.Fig. 1. Down-time during the early stages of miningabFig. 2. Layout of the LTCF at the No. 5 mine: (a) plan view; (b) sectional viewFig. 3. Layout of the high-level dip drainage roadway (HDDR)Fig. 4 Layout of MDR中文译文:对于高瓦斯矿井机械化长壁放顶煤综放工作面的瓦斯控制在中国,机械化长壁放顶煤开采技术(LTCT)自1982年推出之后由于其成本低、产量高已被广泛的应用于适当的厚煤层条件的矿井。一些高瓦斯矿井甚至也已经使用了机械化放顶煤开采技术(如阳泉矿区五号矿),其中瓦斯对矿井生产的危害和影响程度最大。在1992年引进了LTCT以后,由于瓦斯含量的个过大致使矿井生产延误的频率大大增大。自1993年以来,为了解决这一系列问题,中国矿业大学与阳泉煤业集团有限公司一起一直针对瓦斯问题进行研究。这项研究的重点是长壁放顶煤工作面(LTCF)的瓦斯气体来源和排放特性以及在矿井生产前期和正常生产的条件下从相邻的岩层对瓦斯进行抽放的方法。这项研究已经帮助矿井控制了由于瓦斯引起的生产延误至可以接受的水平。正常生产的矿井通过采用走向高抽巷解决了矿井瓦斯问题。在掘进采用中层瓦排巷可以控制瓦斯浓度低于法定限度。这样,通过引进HSDR连同MDR技术,成功的解决了因瓦斯而引起的生产延误问题。本文分析了LTCF瓦斯气体的来源和排放特性,介绍了在LTCF正常生产和开采初期所采取的控制瓦斯的经验和方法。关键词:瓦斯控制、长壁放顶煤工作面、瓦斯抽放1背景:中国是一个大型的煤炭生产国,其中地下开采的厚煤层(即煤厚超过4.5m)产量占全国煤炭生产总量约40%50%。厚煤层的主要开采方法可以分成两类:长壁放顶煤采煤法和长壁分层开采法。在过去,后者是主要的采矿方法。LTCT是在1982年引入中国,由于其成本低、高产高效目前已广泛应用于适合的井工矿井中。通过不断地研究,LTCT已经有了很大的完善,并且在东滩煤矿和兖州矿区LTCF的最大月产量已经达到0.42万吨。目前,LTCT已广泛应用于厚度在4.5m12m的厚煤层,甚至应用在恶劣的地质条件中,如三软煤层(松软顶板、煤层和底板),两硬煤层(坚硬顶板和煤层),煤层倾角较大(小于35)和高瓦斯矿井中。虽然应用这种技术已经实现了高产高效,但是还有一些问题限制了这项技术的应用,瓦斯气体是其中一个主要危害,尤其是在一些高瓦斯矿井中(如阳泉矿区五号矿等)。阳泉矿区五号矿被列为高瓦斯矿井,1992年LTCT被应用于该矿第15号煤层。在正常生产的LTCF中,通过采用HSDR技术解决的瓦斯问题。然后,在开采初期,上覆地层没有收到采动影响,顶板上的破碎带不能延伸到HSDR;因此,通过HSDR很难将相邻岩层中的瓦斯排出。这就导致,在LTCF推进到工作面起点线38m之前,大量被排放的瓦斯会回归。只是通过增加风量不能控制瓦斯含量
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。