内容优化DSP.doc

基于DSP电机控制方法研究

收藏

资源目录
跳过导航链接。
基于DSP电机控制方法研究.rar
毕业论文
内容优化DSP.doc---(点击预览)
0923163 马龙 基于DSP电机控制方法研究.doc---(点击预览)
毕设autocad
毕设公式
电磁转矩公式.gif---(点击预览)
K1.wmf
K2.wmf
PID偏差值.wmf
PID实际输出值.wmf
pid控制传递函数.wmf
PID理论输出值U.wmf
PID理论输出系数.wmf
Tm.wmf
位置式PID.wmf
位置式PID离散化.wmf
功率.wmf
增量式PID.wmf
无刷直流电动机传递函数.wmf
电机转动惯量.wmf
电机转速.wmf
电磁转矩.wmf
电磁转矩公式.wmf
编码器转速计算.wmf
编码器转速计算2.wmf
转子的运动公式.wmf
转子的运动方程.wmf
毕设流程图
霍尔传感器3.xls---(点击预览)
霍尔传感器2.xls---(点击预览)
霍尔传感器1.xls---(点击预览)
编码器1.xls---(点击预览)
电机逆时针换相顺序.xls---(点击预览)
电机换相顺序.xls---(点击预览)
DSP硬件设计的结构.vsd
IR230功能框图.vsd
PID控制.vsd
PID流程图.vsd
三相半桥主电路.vsd
三角形联结三相桥式主电路.vsd
主程序流程图.vsd
四相半桥主电路.vsd
堆成空间向量.vsd
子程序调用.vsd
控制器原理图.vsd
无刷直流伺服电机传递函数.vsd
无刷直流电机的原理框图.vsd
星形连接三相桥式主电路.vsd
步进电机据频特性.vsd
步进电机矩角特性.vsd
直流伺服电机的机械特性.vsd
直流伺服电机的调节特性曲线.vsd
系统主程序流程图.vsd
系统的总体设计.vsd
系统组成结构图.vsd
绘图1.vsd
霍尔电路内部原理图.vsd
相关资料
新建 文本文档.c
简介
压缩包内文档预览:

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

基于DSP电机控制方法研究,基于,DSP,电机,控制,方法,研究
编号:23145762    类型:共享资源    大小:3.67MB    格式:RAR    上传时间:2019-11-06 上传人:qq77****057 IP属地:江苏
12
积分
关 键 词:
基于 DSP 电机 控制 方法 研究
资源描述:
基于DSP电机控制方法研究,基于,DSP,电机,控制,方法,研究
内容简介:
序号换相控制字各开关管的通断情况霍尔1霍尔2霍尔3Q1Q2Q3Q41 H1上升101 PWM2 H3下降100 PWMON3 H2上升110ONPWM4 H1下降010PWMON5 H3上升011ON6 H2下降001相电流Q5Q6ABCON进出OFF进OFF出OFF进出出进OFFPWM出OFF进PWMON出OFF进各开关管的通断情况序号换相控制字各开关管的通断情况霍尔1霍尔2霍尔3Q1Q2Q3Q41 H1上升101PWMON2 H3下降100ON3 H2上升1104 H1下降010 PWM5 H3上升011 PWMON6 H2下降001ONPWM相电流Q5Q6ABC出进OFFPWM出OFF进PWMONOFF出进ON进出OFF进OFF出OFF进出各开关管的通断情况旋转一周脉冲数500通道数3最高工作频率100电源5V10%输出信号驱动相位移动90e逻辑状态宽度最小45e信号上升时间180ns信号下降时间40ns零位脉冲宽度90e运行温度范围0-70e码盘转动惯量0.6gcm最大加速度250000rad s通道最大输出电流最小-20mA,最大20mA1111000006012018018024030036040035030025020015010050000.811.200011110006012012018024030030036040035030025020015010050000.811.2Series11100001110606012018024024030036040035030025020015010050000.811.2Series140035030025020015010050000.811.2Series1编号无锡太湖学院毕业设计(论文)相关资料题目: 基于DSP电机控制方法研究 信机 系 机械工程及自动化专业学 号: 0923163学生姓名: 马龙 指导教师: 陈浩 (职称:高级工程师 ) 2012年5月25日目 录一、毕业设计(论文)开题报告二、毕业设计(论文)外文资料翻译及原文三、学生“毕业论文(论文)计划、进度、检查及落实表”四、实习鉴定表无锡太湖学院毕业设计(论文)开题报告题目: 基于DSP电机控制方法研究 信机 系 机械工程及自动化 专业学 号: 0923163 学生姓名: 马 龙 指导教师: 陈浩 (职称:机械工程师 ) 2012年11月14日 课题来源自拟。科学依据(包括课题的科学意义;国内外研究概况、水平和发展趋势;应用前景等)(1)课题的意义20世纪60年代以来,随着计算机和信息技术的飞速发展,有力的推动和促进了DSP技术的飞速发展。在过去20年间DSP技术在电机的控制和通讯等领域得到了飞速的发展。DSP数字信号处理时利用计算机或专用处理设备,以数字的形式对信号进行分析,采集,合成,变换,滤波,估算,压缩,识别等加工处理,以便提取有用的信息并进行有效的传输和应用。与模拟信号相比,数字信号处理具有精确,灵活,抗干扰能力强,可靠性高,体积小,易于大规模集成等特点。在现代社会机械加工对精度的要求日益提高的情况下,DSP利于实现电机的精确控制来实现。随着科学技术的不断进步,机电产品的功能日益强大,现代机电系统的运动状态也越来越复杂,系统控制的要求也越来越高。电动机控制越来越多的应用电动机控制技术,电动机计算机控制具有数值运算,逻辑判断及信号处理功能实现一些新的控制方法,新的功能和特性。使用数字信号处理器是指面向信号处理任务的实时处理应用而设计的一类特殊的微处理芯片。它在信号处理过程中承担按算法完成信号的处理任务。DSP有为实现某一具体特定功能设计的不可编程DSP,如FFT变换器;还有可以通过实现编程实现不同的信号处理功能,具有通用性和灵活性的可编程DSP。可编程DSP作为面向信号处理任务和计算型任务器件,既可以单独应用,又可以和其他的处理器或多个DSP一起,构成多处理器系统,使用灵活,适应性强。DSP系统设计结构简单。DSP控制无刷直流伺服电动机。随着电子技术的发展,微型处理器的发展,其运算速度及信息量的处理及可靠性和稳定性有了很大的提高,单片机以数字控制能力强为特点,但只能处理简单的系统。DSP以运算速度快为显著特点。如今电机控制对控制器要求有强大的I/O控制功能,又要求控制器有高效的数字信号处理能力以实现实时控制的目的。如今DSP价格不断降低且开发工具不断的简化,易于开发者使用。使得如今在实现控制高要求的同时,其使用成本也不断降低。研究内容 熟悉DSP的发展历程。 熟练掌握DSP的原理以及硬件结构。 熟练掌握DSP根据设计要求设计相应的外围电路。 掌握DSP集成开发环境CCS。 能够熟练使用C语言进行编程。 熟练使用CCS开发软件。拟采取的研究方法、技术路线、实验方案及可行性分析(1)实验方案采用TI公司的2000系列,采用TMS320F2812来实时控制无刷直流伺服电机(2)研究方法用CCS软件仿真和CCS编程研究计划及预期成果研究计划:2012年11月12日-2012年12月25日:按照任务书要求查阅论文相关参考资料,填写毕业设计开题报告书。2013年1月11日-2013年3月5日:填写毕业实习报告。2013年3月8日-2013年3月14日:按照要求修改毕业设计开题报告。2013年3月15日-2013年3月21日:学习并翻译一篇与毕业设计相关的英文材料。2013年3月22日-2013年4月11日:DSP控制电机硬件的设计。2013年4月12日-2013年4月25日:DSP控制电机程序的编辑。2013年4月26日-2013年5月21日:毕业论文撰写和修改工作。预期成果:达到预期的实验结论:能够实现对无刷直流伺服电动机的实时控制。特色或创新之处 结构简单,能够实现所需要的功能。 思路清晰,简洁明了,行之有效。已具备的条件和尚需解决的问题 实验方案思路已经非常明确,已经具备使用DSP基本原理,及其应用,以及一些基本的硬件设计。 使用CCS软件编程的能力尚需加强。指导教师意见 指导教师签名:年 月 日教研室(学科组、研究所)意见 教研室主任签名: 年 月 日系意见 主管领导签名: 年 月 日英文原文DSP-Based High-Speed SensorlessControl for a Brushless DC Motor Using a DC Link Voltage ControlDepartment of Electrical EngineeringKorea Advanced Institute of Science and TechnologyTaejon, KoreaA DSP-based high speed sensorless control for a brushless DC (BLDC) motor using a DC link voltage control scheme is presented. By operating the BLDC motor in a high speed range, the drive system can have a small size and be light weight at the same output rating. In the existing sensorless control schemes, the PW M technique is generally used as a speed control. However, since the PWM and inverter commutation cannot be performed independently, a significant commutation delay may exist in a high-speed region. On the other hand, using the DC link voltage control scheme, the inverter is operated with the squarewave of 120 conduction and the speed control is achieved by regulating the DC link input voltage of the inverter through the chopper. By using this technique,since the voltage control and commutation can be achieved independently, a commutating delay does not exist even in a high speed region. Also, the phase current can have a waveform similar to the rectangular wave and the terminal voltage is more e -cient to deal with in the position detection circuits. The practical implementation issues concerning the commutation delay in a high speed sensorless control are discussed. The whole control system is implemented on a BLDC motor using DSP TMS320C240 and the eectiveness is veried through the comparative simulations and experiments.Keywords brushless DC motor, sensorless control, DSP control 1.IntroductionIn many industrial elds, the installation of a shaft sensor may signi cantly increase the drive cost as well as complicate the motor configuration 1. In particular, for a motor built in a completely sealed compressor, a shaft sensor is difficult to apply due to the degradation of the sensor reliability in high temperature and the need for extra lead wires. Furthermore, these sensors, particularly Hall sensors, are temperature sensitive, limiting the operation of the motor to below about 75C 1. An absolute sensor is generally speed limited to about 6000 rpm and a resolver needs a special external circuit. Also, the sensor accuracy may be affected by the accuracy of the mounting. To overcome these drawbacks, sensorless control techniques for a BLDC motor have been proposed 1_5. There are two categories of position detection schemes, namely, the method using the back EMF of the motor 2 and themethod based on the detection of the conducting interval of free-wheeling diodes 3.In the existing sensorless control schemes, the PWM technique is generally used for a speed control. However, since the PWM and inverter commutation cannot be performed independently, a signi cant commutation delay may exist in a high speed region. Recently, to improve the drive effciency and provide the desired current waveform, a sensorless control scheme using a quasi-current source inverter has been proposed 6. Such a circuit arrangement is known as a variable DC link inverter 7.In this scheme, the inverter frequency is controlled to supply three-phase rectangular current with a pulse width of 120 and the motor voltage for the speed control is regulated by using a step-down chopper acting as a buck converter. However, some advantages of the DC-link voltage control scheme over the conventional 2-phase PWM scheme in the high speed sensorless control have not been addressed.This article presents a DSP-based high speed sensorless control for a BLDC motor using a DC link voltage control scheme. By driving the BLDC motor at high speed, the overall drive system can have a small size and a light weight at the same power rating. To control the BLDC motor at high speed without a shaft sensor, a DSP-based controller is developed using TMS320C240. Using the DC link voltage control scheme, the inverter is operated with the squarewave of 120conduction interval and the speed control is achieved by regulating the DC link input voltage of inverter through the chopper. By using this technique, since the voltage control and commutation can be achieved independently, the commutating delay such as in the conventional 2-phase excitation PWM methods does not exist even in a high speed region, which will be discussed in the later section. The rotor position information is detected using the back EMF from the terminal voltages of the motor and the switching sequence of the inverter 2. The sensed back EMF is used in the integration and comparison circuits to obtain the commutation signals. The detected commutation signals are used to apply the proper next sequence of inverter and obtain the rotational speed within a DSP. The calculated speed is controlled by a digital PI control algorithm and the controller output is applied to the chopper. The practical implementation issues concerning the commutation delay of the 2-phase excitation PWM schemes at high speed are discussed and some advantages of the DC link voltage control scheme in a high speed sensorless control are mentioned. The whole control system is implemented on a BLDC motor using DSP TMS320C240 and the eectiveness is veri ed through the comparative simulations and experiments.2. Sensorless Control of BLDC MotorA BLDC motor considered in this paper consists of permanent magnets mounted on the rotor surface and three-phase concentrated stator windings displaced by 120 . The stator currents are supplied by the 2-phase excitation scheme where only two of the three phases are excited at any instant of time and one phase is conducted during 120 period 8. This excitation scheme does not require dead time of the power devices, and furthermore, the unconducting open-phase can be usefully utilized to obtain the rotor position information. The rotor position information are generally obtained from the indirect detection method using the motor back EMF 1_4. In 2, the rotor position has been estimated from the integration of the back EMF waveform. This method is known to provide the advantages such as the reduced switching noise sensitivity and automatic adjustment of the switching instants without the phase shift of 30 degrees. Thus, this detection scheme is employed in this paper. The speed information can be obtained from the derivative of the detected position signals. Since the commutation signals are fed into a DSP every 60period, if the counter clock in DSP is TC and the number of count during 60 degrees is a, the mechanical rotor speed can be computed in rpm as follows:where P is the number of poles.3. Problems of Existing Sensorless Speed Control SchemesIn the existing sensorless control schemes, the 2-phase excitation PWM technique is generally employed for a speed control. Based on the method executing the PWM,PWM schemes can be classified as the unipolar and bipolar switching methods.In the unipolar switching method, the PWM is superimposed on one of the two active switches in on state, while the other switch remains on state. On the other hand, in the bipolar switching method, the two active switches execute the PWM at the same time. Since the unipolar switching has an advantage of the reduced switching loss, this scheme is generally preferred 4. Also, based on the position that the PWM is superimposed on, the unipolar switching method is classi ed as the on-going phase PWM, off-going phase PWM, upper switch PWM, and lower switch PWM schemes. In the on-going phase PWM scheme, each switch executes the PWM during the rst 60 degrees of active interval and is held in on state during the second 60interval, and in the off-going phase PWM scheme, vice versa 3, 4.In the upper switch PWM scheme, the PWM is executed only on the upper one of two active switches, and in the lower switch PWM scheme, vice versa. Depending on the used PWM scheme, this control technique may cause a commutation delay or an irregular switching frequency of the power devices in a high speed sensorless control.Figure 1 shows the relation between the PWM switching period and commutating instant in the 2-phase excitation PWM scheme. In Figure 1, Ts and fs denote the PWM switching period and frequency, respectively. Figure 1(a) shows a case of the ideal commutation. As can be seen in the gure, if the commutating instant is synchronized with the end of the PWM switching period, an ideal commutation can be obtained without any delay in the inverter sequence change. However,since the commutating instant depends on the rotor position, it does not usually coincide with the end of the PWM period. In this case, the commutation can be performed synchronized with the end of the present PWM period to start a next inverter sequence as Figure 1(b) , which is the normally used method. This results in an undesirable commutation delay and the maximum value of this delay becomes the PWM switching period. If the switching frequency is chosen as 16 kHz,the maximum value of the commutation delay will be 62.5 sec. Even though this commutation delay can be neglected for a medium speed range, it has significant in uences on the phase current response and drive performance at high speed since the 60-degree interval that the commutation arises in is relatively small. For example, when a 2-pole motor is rotating at 50,000 rpm, 60-degree interval becomes 200 sec. This commutating delay can be reduced by increasing the PWM switching frequency. In practice, however, the switching frequency cannot be increased without limit because of the increased switching loss. Also, the switching frequency of commercially available power devices is less than 20 kHz. Thus, to avoid an undesirable commutation delay, the next inverter sequence has to be applied as soon as the commutation signal interrupt occurs. Then, the present PWM period has to be terminated and the new PWM period synchronized with the commutation interrupt signal must be started. In the upper and lower switch PWM schemes,this may yield an irregular switching frequency much larger than f s under a high duty condition as shown in Figure 1(c) . In the on-going and off-going phase PWM schemes, this irregular switching frequency does not occur since the phase executing the PWM is continually changed every 60interval. Thus, the on-going and off-going phase PWM schemes with the method in Figure 1(c) can be a preferred way for a high speed sensorless control. Nevertheless, there is still a problem. At high speed, only a few PWM pulses can be used for the speed control during a 60interval. Since a 60interval of a 2-pole motor becomes 200 sec at 50,000 rpm,if the switching frequency is chosen as 16 kHz, the number of PWM pulses during 60 is only 3.2, which results in an unequal number of PWM pulses 3 or 4 during a 60 interval. Unless the resolution of the pulse width is considerably high, this may result in a speed ripple at steady state and degrade the accuracy of the position signal detection. This problem is more serious at a higher speed region and can be effectively overcome by controlling the voltage and frequency independently by the DC link voltage control scheme.中文译文基于DSP高速无刷直流电机控制使用直流环节电压控制电气工程部门韩国先进的科学技术学院韩国大田一个基于DSP高速度传感器控制无刷直流电机(无刷直流)汽车使用直流环节电压控制方案被提出了。无刷直流电机的运行在一个高速度范围、驱动系统可以有一个比较轻体积小,在同一输出等级。在现有的无传感器控制方案,通常采用PWM(脉宽调制)技术作为一个速度控制。然而,由于PWM技术和变频变换不能履行独立,明显的变换延迟存在于高速地区。另一方面,使用的直流母线电压控制方案,变频器操作与方波120传导速度控制是通过调节斩波直流环节逆变器的输入电压实现。利用这项技术,因为电压控制和变换就可以实现独立,延迟不存在运算可以交换甚至在一个高速地区。此外,以有一个波形相位目前类似的矩形波和终端电压更有效率的处理在位置检测电路。实际应用变换议题延迟的一个高速度的无传感器控制进行了讨论。整个控制系统的实施应用DSP芯片的无刷直流电机TMS320C240和有效性的比较验证了仿真和实验。关键词 无刷直流电机、无传感器控制、DSP控制。1.介绍在许多工业领域,需要安装一个轴传感器可能会大幅度增加推动成本以及复杂的电机配置1。特别是,为电动机建在一个完全密封压缩机、轴传感器是难以运用由于传感器可靠性降低高温需要额外的导线。此外,这些传感器,尤其是霍尔传感器,温度敏感,限制了电机运行大约75以下1。一个绝对速度传感器通常限于大约6000转速与旋转需要一个特殊的外部电路。同时,传感器的精度也会受到安装的准确性。要克服这些弊端,无位置传感器无刷直流电机控制技术提出了一个1 5。有两类位置检测方案,即,该方法利用电机的反电势2,该方法基于检测间隔进行随心所欲的二极管3。在现有的无传感器控制方案、PWM技术技术通常用于一个速度控制。然而,由于PWM技术和变频变换不能履行独立,明显的变换延迟的一个高速度可能存在的区域。最近,以提高驱动器E的效率,并提供所需的电流波形,一个传感器控制计划使用准电流源逆变器已提出6。这样的电路装置被称为一个变量直流环节逆变器7。在该方案中,逆变频率控制供应电流有三相矩形脉冲宽度120度及马达速度控制电压调节采用降压斩波器作为降压转换器。然而,一些优势的直流母线电压超过传统的两相PWM在高转速传感器控制计划控制计划都没有得到解决。本文提出了一种基于DSP高速无刷直流电机无位置传感器控制使用直流环节电压控制方案。无刷直流电机推在一个重量轻在相同的额定功率。控制高速无刷直流电机无转轴侦测元件传感器、基于DSP开发利用TMS320C240控制器。使用直流母线电压控制计划,逆变器的操作与方波120度传导间隔和速度控制是通过调节斩波直流环节逆变器的输入电压来实现。利用这项技术,因为电压控制和变换就可以实现独立,如运算可以交换延迟传统PWM方法二段式激励是不存在的。甚至在一个高速地区,将讨论在以后的部分。转子位置信息利用反电动势检测电压从终端电机和逆变器的开关顺序的2。反电动势的感觉到用于集成电路和比较得到变换信号。检测变换信号用于申请适当的下一个序列,得到了转速逆变器在DSP。计算速度的数字控制,控制算法和控制器的输出应用到斩波器。实际应用议题变换时延的激励方案二段式PWM高速进行了论述,并对直流环节电压的优势控制方案在高速度传感器控制提及。整个控制系统的实施应用DSP芯片的无刷直流电机TMS320C240和有效性的比较验证了仿真和实验。2、无刷直流电机的无传感器控制一个无刷直流电机本文认为由永磁体安装对转子表面和三相集中而流离失所的定子120度。定子电流励磁方案段提供的地方只有两三个阶段都很
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:基于DSP电机控制方法研究
链接地址:https://www.renrendoc.com/p-23145762.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!