基于SolidWorks的三维轴系支承方式的CADCAMCAE的研究设计
收藏
资源目录
压缩包内文档预览:
编号:23177234
类型:共享资源
大小:17.22MB
格式:RAR
上传时间:2019-11-07
上传人:qq77****057
认证信息
个人认证
李**(实名认证)
江苏
IP属地:江苏
36
积分
- 关 键 词:
-
基于
SolidWorks
三维
支承
方式
CADCAMCAE
研究
设计
- 资源描述:
-
基于SolidWorks的三维轴系支承方式的CADCAMCAE的研究设计,基于,SolidWorks,三维,支承,方式,CADCAMCAE,研究,设计
- 内容简介:
-
应力分布图:应力最大值1.795e+8N/m。位移分布图:位移最大值为0.06768mm,满足工程需要。通过COSMOSWorks的有限元分析,齿轮轴的应力最大值小于材料的屈服极限,变形挠度仅有68m,所以齿轮轴结构设计是满足工程需要的。应变分布图:KC012-1 09 届毕业论文选题申报表二级学院(直属学部): 机电工程学院 专 业: 机械设计制造及其自动化 课题名称基于SolidWorks的三维轴系支承方式的CAD/CAM/CAE的研究课题来源常州澳德森江浪减速机有限公司申报人黄秀琴、刘黎职称讲师、高工课题简介(包括课题来源、主要内容、理论与实际意义、预期目标等):轴系结构设计是机械系统的重要组成部分,也是机械设计课程教学的重点内容,由于轴系结构设计涉及问题较多、实践性较强,长期以来始终是教学中的薄弱环节。目前,在教学过程中,学生的实践经验缺乏、动手能力差是普遍现象,为提高教学质量,强化学生结构设计能力的训练,进行了此项目的设计与研究。 轴是组成轴系的重要零件之一,轴是支撑轴上零件、传递运动和动力的关键部件,机器的工作能力和工作质量在很大程度上与轴有关,轴一旦失效,有可能造成严重后果。轴的设计很重要,其设计不同于一般零部件的设计,它包含两个主要内容:强度设计和结构设计。为了保证安装在轴上的零件能正确地定位和固定,轴的加工以及装配的要求,必须合理地定出轴各部分形状和结构尺寸,也即进行结构设计。实际设计中,强度计算和结构设计互相关联、互相影响,需要不断地交互,本文所进行的轴系设计的重点则放在结构设计上。通过本论文,能对轴系设计的整个过程有一个清晰的认识:能够熟悉轴系结构设计和轴系结构分析;能够熟悉并掌握轴、轴上零件的结构形状及功用、工艺要求和装配关系:能够熟悉并掌握轴、轴上零件的定位与固定方式; 能够了解轴承的类型、布置、安装及调整方法,以及润滑和密封方式。并对渐开线齿轮进行精确的三维造型设计,并通过标准数据接口转换进入有限元分析系统,根据齿轮的工作情况及失效形式,建立有限元分析模型,对所设计零件进行校核。最后对齿轮进行数控线切割加工指令程序的编制,并进行数控加工仿真。本设计应完成的任务:1. 调查研究、查阅文献和搜集资料;2. 阅读和翻译与研究内容有关的外文资料(外文翻译不能少于1.5万字符;3. 撰写文献综述,确定设计方案;4. 轴系的工艺计算;结构和强度设计计算;材料的选择; 齿轮的参数化设计及数控加工仿真5. 撰写毕业设计说明书(含中英文摘要)。6. 绘制图纸(总装配图、部件图、零件图)。工作内容:文献综述;加工仿真设计;计算机自控程序;三维参数化实体模型;轴系的设计计算完成本课题的现有条件分析及参考文献:1查阅并掌握有关轴系的工艺要求、结构和设计要求方面文献和搜集资料、阅读和翻译与研究内容有关的外文资料(外文翻译不能少于1.5万字),完成文献综述的撰写;2熟悉软件的三维造型模块、有限元分析模块以及数控编程加工仿真模块。3掌握齿轮啮合原理、齿轮齿形主要参数设计;4了解齿轮工作条件以及常见的失效形式;5应用软件进行零件造型、分析及生成数控加工程序;7所有外文资料翻译、文献综述、造型图及设计说明书等必须保存电子文档。进程安排:34周:查阅文献、搜集资料、阅读和翻译58周:选择并学习软件功能及其操作,交零件三维造型图911周:零件有限元分析,提交分析报告1215周:零件加工数控程序编制, 交加工程序1618周:撰写设计说明书并修正,准备答辩。交毕业设计说明书正式稿,含电子文档。系部审核意见 负责人签名: 年 月 日二级学院(直属学部)审核意见 负责人签名: 年 月 日审 题 说 明对选题应从以下几方面进行审题:1.课题是否符合专业培养目标及毕业论文教学大纲的要求,与专业知识结合程度如何;2.课题是否具有一定的科学性、社会价值和经济效益;3.课题是否具有一定的深度与广度;4.课题的工作量是否饱满。注:本表由提出课题的教师填写,系部保存。KC021-1CHANGZHOU INSTITUTE OF TECHNOLOGY毕业设计外文资料翻译题目: 专家主轴设计系统 二级学院(直属学部): 延陵学院 专业:机械设计制造及其自动化 班级: 05机Y1 学生姓名: 潘磊 学号: 05120718 指导教师姓名:黄秀琴、刘黎 职称: 讲师、高工 评阅教师姓名: 何亚峰 职称: 讲 师 2009年6月专家主轴设计系统摘要 本文介绍了一个专家主轴设计系统策略的基础上,有效地利用过去的设计经验,法律机械设计,动力学和金属切削力学。配置主轴,是从一开始就决定规格的工件材料,理想的切削条件,而最常见的工具,用来对机床。主轴驱动机构,驱动马达, 轴承种类,主轴轴的尺寸都是选定的基础上,其目标应用。该文件提供了一套模糊设计规则, 这导致一种互动,并以自动化设计的主轴驱动配置。结构动力学的主轴是自动优化配置轴承沿主轴轴。建议的策略是要反复地预测频率响应函数(法郎)的主轴在刀尖采用有限元法( FEM )的基础上,预测法郎的主轴是集成到颤振振稳定的法律,这表明设计是否会导致颤振振免费切割手术在理想的速度和深度,减少不同长笛的刀具。安排的轴承,是优化利用序贯二次规划(的SQP )方法。1 .介绍主轴是主要的机械零件在加工中心。主轴轴旋转速度各不相同,并持有刀,其中机器的物质附着在机床就座。静态和动态刚度主轴直接影响加工生产率和完成高质量的工件。结构性能的主轴取决于尺寸轴,电机,刀柄,轴承,并设计配置的整体主轴大会。 这项研究认为,主轴部件选择和配置使用提出了专家系统的基础上,数字化的知识基础。专家系统与模糊逻辑,是实施遴选制度。 埃斯基吉奥卢等人。制定了一个以规则为基础的算法为选拔主轴轴承布置用亲登录,这是一种编程语言专家系统。轴承的安排是由切割术式,以及所需的切削力和生活的方向。黄和阿特金森,体现了知识细胞的方法多样设计。他们分为知识单元分为四个部分;功能,选拔,图形和逻辑单元。 为优化设计主轴,杨进行了静刚度优化,事关跨度利用两个轴承,并介绍了所用的方法,以解决多轴承跨度优化方法。泰勒等人制定了一个计划,优化主轴轴直径,以减少静挠度与约束轴质量。下坡单纯形法是用来寻找最佳值。李彩进行了优化设计,使他们尽量减少重量的转子轴承系统与增强拉格朗日乘数法。陈展现了优化结果,以减少部队转发了由轴承支撑。王和昌模拟主轴轴承系统的有限元模型,并比较它的实验结果。他们得出结论认为,最佳轴承间距为静刚度,并不能保证一个最优的系统动态刚度的主轴,即轴承预紧力的研磨机进行优化。康等人进行了静态和动态分析主轴用关闭搁置Fe体系的一个补充,硬磁盘和非直线轴承型号。以往研究只用了两个支持轴承,虽然实际纱锭可能会使用较多轴承。 以往研究只用了两个支持轴承, 虽然实际纱锭可能会使用较多的轴承依赖于加工中的应用。此外,他们大多是优化设计参数,如轴的直径,轴承跨距,轴承预紧力,以尽量减少静态偏转。本文认为,以上两个轴承在主轴模型,并考虑到颤振稳定的,这完全涉及到的动态特性主轴。整体专家主轴设计系统概述,设计主轴与优化轴承间距是用自动化的要求,设置由加工应用,专家主轴设计规则,切削力学,结构动力学和颤振稳定的铣削过程。2 .专家系统为主轴设计该专家系统为设计主轴,介绍了这里,以方便设计过程中利用过去的经验和知识。 专家系统结合起来,同模糊逻辑是作为遴选制度的组成部分,为主轴的设计,以处理不确定性,在设计过程中,作为所需输入的数据为主轴的设计,如切削扭矩和功率,是用法律的切削力学所描述的那样 。输入数据是进入模糊推理系统,该会是由设计专家,并用模糊隶属函数。该mamdani方法,是用来作为推理系统。模糊的价值观应用到模糊规则和汇总,使用最多的方法。结果聚集是defuzzified用质心的方法,并defuzzified号码是得到了。简单defuzzified号码是适用于选拔规则,为主轴部件。一个外部数据库,其中包括材料的切削系数,是连接到模糊推理系统,用户可以访问。该监理工程师,他们是获准继续维持这个专家系统,可以修改隶属函数和数据库时,倾向模糊的条款,如高,中和低的变化,并随着技术的演进。在这篇文章中,传输和润滑类型决心用专家系统与模糊逻辑。3 .优化轴承地点为了运用优化的主轴设计,客观和设计变量建立。颤振振动是一个重要的课题,为机械工具,因为它可能会导致主轴,刀具和部分损害赔偿。 有相当数量的参数,在一个典型的主轴设计过程中,如尺寸的主轴轴,住宅建设和衣领。然而,最有效的设计参数需要被选定的优化设计主轴,在实践中。有许多限制,对几何设计的主轴部件,并在设计层面,通常是再加上对方。举例来说,若直径主轴轴的变化,孔径的房屋也必须改变,并有更多的参数,必须考虑到它可能导致一个衔接的问题,在优化算法。由于目标函数是高度非线形,序贯二次规划(的SQP )方法是用在优化主轴的设计。迭代优化业务可以表示为下列方程。4 .应用专家主轴设计系统这项建议制度,举行示威,反对在商业上现有机床(森精机制作所的SH - 403 )。主要主轴规格的SH - 403显示。主轴有一个摩托化传输与石油换空气式润滑与四个轴承在前面,一是在后方。最高主轴转速是20000每分钟转速和功率与扭矩性能研究。主轴电机定,从数据显示,这是假设用户希望使用机器为主,在切削飞机的零部件是从al7075 - T6的一个四槽立铣刀与理想切削深度3毫米和15000 rpm的主轴转速。为了选择投送型,也可以直接耦合式或电动式,“主轴转速” ,“高动态刚度比低平衡振动” ,“低的热效应,主场迎战小噪音” ,和“低更换运行成本低,比更换零件的成本”须投入。主轴转速是自动设定从最高电机转速。在这种情况下,有多少是假定从概念的机器写的SH - 403目录。模糊重量号码分别定为“3 ” ,“ 8 ” ,并“4 ” 。同样,模糊权的润滑系统是一套。专家主轴设计系统选择了正确的传输和润滑型。名单协定之间的实际设计和设计,利用这个专家系统。成果经专家系统媲美的实际设计,在这5例。因此,正确的主轴组件可以选择与拟议专家系统,即是法治的基础和发展的隶属函数这一制度的定义是正确。5 .结论本文介绍了一个专家主轴设计系统的机床工程师。它提出了一种替代方法,以目前的设计实践,是基于过去的经验,个人设计师,而企图以消除昂贵的试验用法律的机械设计,固体力学,金属切削动力学的一个综合时尚。设计配置和隶属函数储存在知识库用套设计规则根据以往的经验和规律,切割技工。模糊逻辑是用来作为推理引擎,在建议的专家系统。模糊逻辑可以处理设计的不确定性,如高,中和低转速或大/小转矩需要从主轴所在的确切数值,是很难订死,由设计师。隶属函数可以更新,由设计师为规则的变化,主要原因是技术进步在工业中。专家系统,导致自动生成主轴配置,其中包括传动轴,汽车类型和大小,传输机制之间的电机和主轴,刀柄风格。而配置和分部件的主轴,是基于对扭矩,功率和速度的要求,从机床,确切地点的轴承必须下大决心的基础上,颤振振稳定的主轴。提出了一种轴承间距优化策略为主轴配置,由专家系统或设计,由工程师。设计者提供了初步的估计轴承地点,包括限制。配置主轴是分析一项拟议的有限元分析(有限元分析)基于梁元素。频率响应函数(法郎)的主轴在刀尖得到模态分析模块的有限元算法。轴承位置优化迭代,直到设计主轴满足颤振振免费切割限制。序贯二次规划(的SQP ) ,是用来作为优化方法在确定何为最佳轴承位置。拟议专家主轴设计的策略是体现在设计中的几个工业规模纱锭用于工业。Expert spindle design systemAbstractThis paper presents an expert spindle design system strategy which is based on the efficient utilization of past design experience, the laws of machine design, dynamics and metal cutting mechanics. The configuration of the spindle is decided from the specifications of the workpiece material, desired cutting conditions, and most common tools used on the machine tool. The spindle drive mechanism, drive motor, bearing types, and spindle shaft dimensions are selected based on the target applications. The paper provides a set of fuzzy design rules, which lead to an interactive and automatic design of spindle drive configurations. The structural dynamics of the spindle are automatically optimized by distributing the bearings along the spindle shaft. The proposed strategy is to iteratively predict the Frequency Response Function (FRF) of the spindle at the tool tip using the Finite Element Method (FEM) based on the Timoshenko beam theory. The predicted FRF of the spindle is integrated to the chatter vibration stability law, which indicates whether the design would lead to chatter vibration free cutting operation at the desired speed and depth of cut for different flutes of cutters. The arrangement of bearings is optimized using the Sequential Quadratic Programming (SQP) method.1. IntroductionThe headstock assembly is permanently fastened to the left end of the lathe. It contains the headstock spindle, which is rotated by gears or by a combination of gear and pulleys. The spindle holds the attachments which, in turn, hold and turn the workpiece. Spindles come in several quality ratings and are supported in headstocks by three to five bearings. Since the accuracy of the work done on a lathe depends on the axis of rotation of the spindle holding the workpiece, the spindle and all its accessories must be built and assemble with the greatest possible care. A hold extends through the spindle itself. The front end of this hole is tapered for holding tools having a tapered shank. A taper sleeve (a hollow-round part) fits into the taper spindle hole, when holding a headstock, or live center. The headstock center is called a live center because it turns with the work. The center is a tapered metal part with a pointed end. It is used to support the end of a workpiece as it is being turned. Power for driving the spindle is provided by an electric motor. There are four common ways of transmitting the power form the electric motor to the spindle. These include:Flat belt drive. On most belt-driven lathes, direct drive power is delivered through belts to a step pulley attached to the spindle. The spindle speed is changed by moving the belt to different positions on the step pulley. To obtain slower speeds and more powder, back gears are used.To understand how the back gears operate, study Fig, 2-3 Notice that gear F is fastened securely to the spindle. This gear is often called a bull gear. The small end of the step pulley gas a small gear attached to it called a pinion gear. This gear (E) always turns when the pulley turns. The step pulley and pinion gear are connected with the bull gear by a sliding pin called the bull-gear lock-pir. At the back of the headstock are two gears mounted on the same shaft. They are spaced to line up or mesh with the bull gear (F) and pinion gear (E). These are called back gears. To engage the back gear, the pin in the bull gear is pulled out (when the pin is out, the pulley and pinion gear will turn, but the spindle will not turn). Pull the back gear handle forward to mesh the back gears with bull gear F and pinion gear E. Do this by turning the step pulley by hand-never while the power is on. When engaged, power is delivered directly to the bull gear (F) and spindle by the back gears.At the left end of the headstock assembly is a feed reverse lever. It is used for reversing, the direction or movement of the lead screw. This lever can be moved to three positions. When it is in the upper position with the automatic feed engaged, the carriage will move to-ward the headstock (to the left) and the cross-feed will move in. When in the center position, the gears are out of mesh and the lead screw will not move. When in the lower position with the automatic feed engaged, the carriage will move toward the tailstock (to the right) and the cross-feed will move out.V-belt drive. A V-shaped groove is cut around the circumference of each pulley, and a V belt fits accurately into this groove. The V belt does not touch the bottom of the pulley. This type of drive has a back gear arrangement similar to that used on flat belt machines.Variable-speed driver. In this arrangement it is possible to change the speed between the driver and driven pulleys without stopping the lathe. In fact, the speed must be changed only when the machine is running. The driving pulley of a variable-speed drive is made with parts having V-shaped sides. One side of the pulley may be opened or spread apart from the other side. As it spreads apart, the belt moves inward toward the smaller diameter, producing a slower speed on the driven pulley. As the sides of the pulley are brought together, the belt is forced outward toward the large diameter which increases the speed of the driven pulley. The speed change may be done either manually or hydraulically. On the hydraulic type, a control dial located on the top of the head stock accurately activates the hydraulic system. Do not turn the control dial unless the motor is running. Speeds are from 300 to 1,600 revolutions per minute (rpm) in direct drive. For slower speeds, the lathe must be stopped and the back gear knob moved. This will provide slower speeds of 43 to 230 rpm.Geared head. This headstock contains gears and changing mechanisms for obtaining many different spindle speeds. The speed index plate attached to the headstock will help the operator select the required speed. Two or three levers or knobs must be moved to adjust the speed.The spindle is the main mechanical component in machining centers. The spindle shaft rotates at different speeds and holds a cutter, which machines a material attached to the machine tool table. The static and dynamic stiffness of the spindle directly affect the machining productivity and finish quality of the work pieces. The structural properties of the spindle depend on the dimensions of the shaft, motor, tool holder, bearings, and the design configuration of the overall spindle assembly.This research considers spindle component selection and configuration using the proposed expert system based on the digital knowledge base. The expert system with fuzzy logic is implemented as the selection system.Eskicioglu et al. developed a rule-based algorithm for the selection of spindle bearing arrangement using PRO-LOG, which is a programming language for expert systems. The bearing arrangements are determined by the cutting operation type, and the required cutting force and life of bearings. Wong and Atkinson demonstrated a knowledge cell approach for diverse designs. They divided the knowledge cell into four parts; the Function, Selection, Graphics, and Logic cells.For design optimization of spindles, Yang conducted static stiffness to optimize a bearing span using two bearings, and described the methods used to solve the multi-bearing spans optimization method. Taylor et al. developed a program which optimizes the spindle shaft diameters to minimize the static deflection with a constrained shaft mass. The Downhill Simplex Method is used to find the optimum value. Lee and Choi conducted an optimization design in which they minimized the weight of the rotor-bearing system with the augmented Lagrange multiplier method. Chen et al.and Nataraj and Ashrafiuon demonstrated the optimization results to minimize the forces transmitted by the bearings to the supports. Wang and Chang simulated a spindle-bearing system with a finite element model and depending on the machining application. In addition, most of them optimize design parameters, such as shaft diameter, bearing span, and bearing preload, to minimize the static deflection. This paper considers more than two bearings in the spindle model and takes into account the chatter stability that is totally related to the dynamic properties of the spindle.The overall expert spindle design system is outlined . The design of the spindle with optimized bearing spacing is automated using the requirements set by the machining application, expert spindle design rules, cutting mechanics, structural dynamics and chatter stability of milling process.2. Expert system for spindle designThe expert system for spindle design is introduced here to facilitate the design process using past experience and knowledge.The expert system combined with the fuzzy logic is used as the selection system of components for the spindle design in order to handle uncertainties in the design process as illustrated . The required input data for the spindle design, such as the cutting torque and power, are computed using the laws of cutting mechanics, as described . The input data is entered into the fuzzy inference system, which is established by design experts, and is fuzzified using membership functions. The Mamdani method is used as the inference system. The fuzzified values are applied to the fuzzy rules and aggregated using the maximum method. The result of the aggregation is defuzzified using the centroid method,and a defuzzified number is obtained. The simple defuzzified number is applied to the selection rule forthe spindle components. An external database, which includes material cutting coefficients, is connected to the fuzzy inference system, which users can access. The supervising engineer, who is permitted to maintain this expert system, can modify the membership function and database when the tendency of the fuzzy terms, such as high, middle, and low changes as the technology evolves. In this article, transmission and lubrication types are determined using the expert system with fuzzy logic.3. Optimization of bearing locations In order to apply the optimization to the spindle design, objective and design variables are established. Chatter vibration is an important issue for machine tools since it may lead to spindle, cutter and part damages.There are significant number of parameters in a typical spindle design process, such as the dimensions of the spindle shaft, housing, and collars. However, the most effective design parameters need to be selected to optimize the spindle design in practice. There are numerous constraints on the geometric design of spindle parts, and design dimensions which are usually coupled with each other. For example, if the diameter of the spindle shaft changes, the bore diameter of the housing also has to be changed, where more parameters need to be taken into account which may lead to a convergence problem in optimization algorithm. Since the objective function is highly non-linear, the Sequential Quadratic Programming (SQP) method is used in the optimization of the spindle design.4. Application of the expert spindle design systemThe proposed system is demonstrated against a commercially existing machine tool (Mori Seiki SH-403) as shown for comparison. The main spindle specifications of SH-403 are shown. The spindle has a motorized transmission with oilair type lubrication with four bearings at the front and one at the rear. The maximum spindle speed is 20,000 rpm and the power and torque properties of the spindle motor are set from the data shown. It is assumed that the user wishes to use the machine predominantly in cutting aircraft parts made from Al7075-T6 with a four-fluted end mill with a desireddepth of cut of 3 mm and 15,000 rpm spindle speed. The most common cutting conditions are listed.In order to select the transmission type from either the direct coupling type or the motorized type, Spindle Speed, High Dynamic Stiffness vs. Low Balancing Vibration, Low Thermal Effect vs. Small Noise, and Low Replacement Operation Cost vs. Low Replacement Parts Cost need to be input. The spindle speed is automatically set from the maximum motor speed. In this case, the numbers are assumed from the concepts of the machine written in the SH-403 catalog. The fuzzy weight numbers are setas 3, 8, and 4, respectively. Similarly, the fuzzy weight of the lubrication system is set.The Expert Spindle Design System selected the proper transmission and lubrication type.The list of agreements between the actual design and the design that uses this expert system. The results attained via the expert system match those of the actual design in all five cases. Therefore, the proper spindle components can be selected with the proposed expert system, that is, the rule base and the membership functions of this system are defined properly.5. ConclusionsThis paper presents an Expert Spindle Design system for machine tool engineers. It proposes an alternative method to the present design practice, which is
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。