箱盖2-10.dwg
箱盖2-10.dwg

履带式苗圃喷雾机喷雾装置设计

收藏

资源目录
跳过导航链接。
压缩包内文档预览:
预览图
编号:23264673    类型:共享资源    大小:6.07MB    格式:RAR    上传时间:2019-11-08 上传人:qq77****057 IP属地:江苏
36
积分
关 键 词:
履带式 苗圃 喷雾机 喷雾 装置 设计
资源描述:
履带式苗圃喷雾机喷雾装置设计,履带式,苗圃,喷雾机,喷雾,装置,设计
内容简介:
目 录 摘要5 关键词5 1前言6 2研究目的及意义6 3喷雾机设计总体方案7 3.1设计要求7 3.2苗圃履带喷雾机参数确定7 4整体方案设计8 4.1机器工作原理8 4.2作业流程9 4.3传动方案9 4.4操作系统以及行进系统的设计10 4.4.1履带结构10 4.4.2整机操作控制系统10 5喷雾系统设计11 5.1喷杆调节装置设计11 5.2 喷杆系统的设计计算13 5.2.1喷头13 5.2.2喷管13 5.2.3输送泵13 5.3液压泵的选用14 6各关键传动件强度计算156.1变速箱轴强度计算15 6.2级V带传动计算17 7喷雾机其他部件的选用18 7.1标准件的选用18 7.1.1轴承选用18 7.1.2螺母选用18 7.1.3垫圈选用18 7.2隔膜泵配套电机的选择18 7.3空气滤清器选用18 7.4过滤器选用19 7.5药箱设计19 7.6胶管选用19 8安全设计以及照明法案20 8.1安全设计208.2蓄电池、发电机及照明设计方案的确定208.3喷雾机的操作注意事项20 9结论21 参考文献21 致谢22 附录23履带式苗圃喷雾机喷雾装置设计摘 要:我国作为一个农业大国,苗圃经济作物在农业中占有很重要的地位,我国南方分布较广的主要有银杏,茶叶等重要经济作物,而南方的苗圃主要分布在苗圃地形以及山岭地区,针对我国南方苗圃道路路况差,机械行进作业困难,以及我国对于苗圃地形的机械研制的技术相对缺乏的情况,本设计欲研发出一种能适应苗圃山地地形特点的高效率,环保的履带式喷雾机。本课题设计出的履带式喷雾机能够满足苗圃机械作业农艺要求,实现喷雾,要求设计合理、结构简单、操作方便、在提高提高农药的利用率的情况下,又能够达到环保的要求,工作效率高效,真正实现了高效、经济、节能、环保的要求。关键词:喷雾;环保;履带式;效率;Abstract: As an agricultural country in our country, economic fruit wood occupies very important position in agricultural crop, widely distributed in south China mainly include ginkgo, tea and other important economic crop, and groves are mainly distributed in hilly terrain in the south and mountains area, southern hilly roads in our country poor road conditions, mechanical operation difficulty, marching and developed for hilly terrain machinery technology in China is relatively lack of situation, this design to the development of a kind of can adapt to the hilly mountainous topography features of high efficiency, environmental protection of the crawler sprayer. This topic design of crawler type sprayer can satisfy the fruit wood machinery operation agronomic requirements, realize the spray, reasonable design, simple structure, convenient operation, under the condition of improving the utilization of pesticide, and can meet the requirements of environmental protection, high efficiency, realize the high efficiency, energy saving, environmental protection requirements. Keywords: Spray ; Environmental protection ; Caterpillar ; Efficiency ;1 前言近年来随着农业产业结构的调整,林果生产已成为我国经济发展和农民增收致富的新亮点和支柱产业。随着林果种植面积的不断扩大,为合理利用苗圃农业资源,提高苗圃经济作物产量,降低其生产成本,减少环境污染,高效经济的精细农业研究成为21世纪的一大趋势。我国果园生产机械化的研究与应用起步较晚。20世纪50年代才推广使用手动喷雾器,60年代中期开始发展动力喷雾机,目前我国果园机械化程度低、缺乏大型高效的果园作业机械。果园多项作业大都主要依靠人工完成、生产效率低、劳动强度大、生产成本高,由于农忙时节的劳动力紧缺而造成的损失很大。我国早起研究的喷雾机,其喷雾性能落后、行走机构繁杂、种类奇缺、对农药的有效利用率低于30%,不仅浪费农药等资源,同时污染环境,影响人类赖以生存的生态环境,随着21世纪的社会经济的发展,现代化进程的加速,人类赖以生存和发展的环境正在急剧的发生变化,环境问题已构成威胁人类生存、制约经济发展的重要因素。因此在发展经济的同时,必须坚持可持续发展的战略,从而使人类文化能够源远流长。目前我国植保机械的发展程度还处于一个快速发展期,随着农业的发展,想辅的农业机械也要更着一并向前改进,在喷雾机这一研究领域,根据液压泵、风机、喷射部件、喷头、喷嘴的形状规格不同,同时可以应用到不同经济作物的施肥作业。对于国外欧美发达国家在喷雾机的研究领域中走在前列,俄罗斯研制的果园喷雾机采用超声波传感技术;德国进行了对定向靶喷雾的研究,包括使用辅助气流、静电喷雾、利用光电、红外技术的等智能测靶喷雾技术;精确喷雾,包括根据作业速度和作物密度自动调节喷量的智能喷雾技术;农药回收技术,采用静电或气流负压等技术将靶标外的雾滴回收;国内也有一些公司在结合外国的技术自主研发的一些喷雾机械,国内自主研发的背负式机动喷雾机以及山东出厂的3WZ-300型喷杆式喷雾机。总体上我国喷雾机机械研究起步较晚,果园生产机械化程度与欧美等国家还存在着较大差距,喷雾机以及喷雾系统的研究和设计还有一段很长的路要走。2 研究目的及意义在现代农业中,喷雾机是在农业生产工具占有重要地位,苗圃履带式喷雾机的使用更好的实现农业机械化的发展需求1,提高农业经济的生产率,合理利用现代化设备,减小了人类劳动,提高生产效率。近年来,大型的喷雾机作业对中国病虫草害防治有了明显的促进作用。随着农业种植结构的调整和规模化程度的提高以及大中型拖拉机市场占有率的快速增长,喷雾机技术将会发挥越来越重要的作用,研究喷雾机具有可观的经济价值。 针对苗圃产业的不断发展,国家对苗圃等特殊地形苗圃机械的重视,苗圃式苗圃喷雾机具有广阔的市场。目前我国缺乏试用于苗圃苗圃喷雾的作业机械,缺少具有多作业环境、减轻环境负荷、提高农药利用效益功能的机具。另外,我国南方地区,山区和苗圃约占60%以上,道路路况差,机械行走困难;苗圃行间机械化作业难,根据我国南方喷雾机发展现状,设计出苗圃苗圃履带喷雾机可以满足其经济作业的要求。另外目前我国常用的大田喷杆喷雾机在施药过程中存在农药飘失严重,雾滴在冠层中的透性较差、作物中下部沉积少、分布均匀性差、雾滴减飘效果受自然风速影响较大等问题,为了提高喷雾机性能,提高农田经济效率,故需改进喷雾机系统,从而提高农药使用效率,达到更高的经济利用率。3 喷雾机设计总体方案3.1 设计要求 (1)设计的苗圃履带式喷雾机适用于苗圃地区经济作物的施药作业。(2)喷雾机操作采用人工作业和固定作业两种形式人工可延伸至100M以上施药。(3)喷雾机远距喷头喷量在1520L/min左右。3.2 苗圃履带式喷雾机参数确定(1)名称: 苗圃履带自走式苗圃喷雾机;(2)外形尺寸(长宽高)(mm):200019001500;(3)整机质量 (kg):650;(4)动力:7.3kW;(5)规格:(1)喷雾装置方案设计(2) 喷雾装置结构设计(3)喷头组合设计(4)风筒结构设计;(5)风筒支撑架结构设计。设计要求(1)风筒直径500600mm;(2)喷药量达到300600L/h4 整体方案设计4.1机器工作原理如图1所示,该机由动力系统3、行走系统、喷雾系统、操纵控制系统和机架等部件组成。 (1)动力系统包括总动力采用12.3KW大小柴油机,6KW的喷雾泵。(2)由于该机器在苗圃山地上作业,故采用履带式自动行走装置。(3) 药箱配置在机型的左前方,保持左右、前后平衡,驾驶室配置在右前方和发动机配置在右后方。(4)驾驶操作系统位于视野开阔的地方,可让驾驶员能清晰观察各部位的工作情况,安装照明系统,便于晚间或光线条件不好的情况下中使用。(5)从人机工程考虑,发动机在后部,此部位对驾驶员造成的噪音和振动相对较小,并便于保养。(6)喷杆操作采用人工作业和固定作业两种,人工可延伸作业距离120 m,满足苗圃间的作业。固定作业方式采用液压伸杆方式,有效伸长到苗圃作业区,节约农药(7)整机重心偏低,从而增强机器的爬坡性能和驾驶稳定性。 行走系统支架操作系统动力系统喷雾系统 图1 苗圃履带式果园喷雾机 Fig1 Hilly crawler orchard sprayer4.2 作业流程作业分工流程可以分为两种情况:单人和多人作业。单人模式驾驶室操作机器前进,通过离合器连接传动液压泵,调节液压泵压力和打开喷雾管道开关,然后使用固定方式施药。通过使用液压升降装置开关来调节喷杆长度以及角度。多人模式驾驶室或尾部操作机器前进,通过离合器连接传动液压泵,调节液压泵压力和打开喷雾管道开关,通过固定方式或人工延伸管道施药。采用固定方式可操作液压升降装置开关调节喷杆长度;人工移动管道定点作业可延伸长度到100 m。4.3 传动方案 (1)传动路线动力变速箱水泵中间齿轮轴 图2 传动关系图 Fig2 Transmission diagram (2)各传动部件的传动比发动机转速 n1=2200rpm 变速箱转速 n2=130/1602200=1800rpm 中间齿轮轴转速 n3=18/151800=2160rpm 水泵转速 n4=130/2502160=1100rpm4.4 操作系统以及行进系统的设计4.4.1 履带结构对于微型水稻联合收割机常用木板和铁块制成的行走履带,在道路上行走振动大、不平稳、破坏路面、且机架容易损坏变形等缺点,研发研铁制注胶下齿通过橡胶桥梁带用螺丝固接上齿板构成的铁制注胶复合履带,行走时减轻振动、降低摩擦阻力, 提高了行走的安全性能。图3 铁制注胶复合履带示意图 Fig3 Iron note glue composite track diagram4.4.2 整机操作控制系统我国南方苗圃分布在山区、苗圃,为了避免普通拖拉机平衡性差、安全性能低,在道路崎岖行走作业困难等缺陷,设计了结构独特的前后操作装置,特点是两根呈平行布置的传动杆(6)和(7)两端经销轴(4)分别连接前、后各两根呈相互平行布置的连动杆(5)和(8),前连动杆(5)经连接板块(3)通过前操纵连杆(13)经销轴(4)连接前操纵杆(1);后连动杆(8)经销轴(4)通过底盘支架(12)连接后操纵杆(9)构成四连杆传动机构的前后操作装置,在道路比较差的作业区,后操作系统更有利于判断道路情况和机械作业安全情况,有利于保证人员安全。图4 前后操作装置示意图 Fig4 operation device schematic diagram5 喷雾系统设计5.1 喷杆调节装置设计喷杆装置包括左喷杆、喷雾装置主杆、喷雾调节杆、喷杆滑块、调节杆滑块、喷雾主杆调节滑槽、喷雾装置固定块、喷雾药管、右喷杆、主杆斜度调节螺栓和主杆固定螺栓。左喷杆和右喷杆通过紧固螺栓套连在喷杆滑块上,喷杆滑块套在喷雾装置主杆上,上下可以调节,紧固螺栓固定在喷雾装置主杆上;喷雾装置主杆的下端通过喷雾装置固定块和主杆固定螺栓固定在机架上;喷雾装置主杆的上端供喷雾高度、斜度和宽度调节,喷雾装置主杆选用铝材方钢,减轻质量和便于固定安装,紧固螺栓紧固一面中心线上从上而下镶嵌连续圆锥式孔槽,以便紧固螺栓固定;喷雾调节杆为左右两根,一端通过紧固螺栓套连在调节杆滑块上,另一端相应连在左喷杆和右喷杆上;与喷杆滑块类似,调节杆滑块套在喷雾装置主杆上,上下可以调节,通过紧固螺栓固定在喷雾装置主杆的某一高度位置上;通过左右喷杆和喷雾调节杆构成的四杆机构通过喷杆滑块和调节杆滑块的调节来调整喷雾所需的高度和宽度;喷雾装置固定块上开有环形的喷雾主杆调节滑槽,喷雾装置主杆通过拧松主杆斜度调节螺栓在主杆调节滑槽中滑动,通过主杆固定螺栓和主杆斜度调节螺栓将喷雾装置主杆固定在喷雾装置固定块上,以调节喷杆斜度。 23.左喷杆、24.喷雾装置主杆、25.喷雾调节杆、26.喷杆滑块、27.调节杆滑块、28.喷雾主杆调节滑槽、29.喷雾装置固定块、46.右喷杆、47.主杆斜度调节螺栓、48. 主杆固定螺栓图5 喷杆调节装置 Fig5 Spray rod adjusting device 喷杆的实物图如下 图6 苗圃履带式喷雾机喷杆外形 Fig6 The shape of Hills crawler sprayer spray rod 5.2 喷杆系统的设计计算5.2.1 喷头 选用单孔喷嘴的远射程喷枪,设计射程,大喷枪为30m,小喷枪为24m。根据射程计算的经验公式 ; (1) 式中:S喷头静止时的射程(m); dc喷嘴的孔径(mm); hf=fQ/dL; (2) P喷嘴处工作压力(kPa); 系数,约为1.35。 由此计算出大、小喷嘴的工作压力为:1618 kPa、1635 kPa。5.2.2 喷管 软管的水头损失根据经验公式: 式中: hf软管沿程水头损失(m) f软管沿程水头损失系数,塑料管为0.948105 m流量指数,塑料管为1.77 b管径指数,塑料管为4.77 Q流量,m3/h d管径,mm L管长,m 计算得大、小管沿程水头损失分别为:47.70 m、65.18 m。局部水头损失按沿程水头的10%计算,这样总水头损失分别为,52.47 m、71.70 m,换算为压力分别为514.2 kPa、702.7 kPa。5.2.3 输送泵 输送泵的压力选择有前两项计算结果可知,要保证喷嘴处压力1635 kPa,输送泵的压力必须有大于1618+514.2 = 2131.8 kPa;1635+702.7 = 2337.3 kPa;所以选择三缸隔膜泵 压力:20583920 kPa; 转速:8001200r/min; 流量:4575L/min; 配套功率:57.5kW。5.3 液压泵的选用 由于活塞式隔膜泵具有流量较大、压力较高、体积小、结构紧凑、耐腐蚀能力较强、操作和维修方便、能经受短时脱水运转、适用范围广等特点。它可与多种动力设备(以小型发动机、电动机、手扶拖拉机、中小型轮式拖拉机、汽车等等)配套,组成各种型式的喷雾机及弥雾机。广泛适用于农业、林业及城市园林防病虫害,喷洒液态化学肥料和除草剂,也可用于工业清洗、卫生消毒、建筑喷浆、化工输液、环境保护等工业领域,是目前一种新型的工农业用的理想液泵。活塞式隔膜泵的结构及工作原理如下图所示:电动机通过减速机驱动曲柄滑块机构,将旋转运动变为活塞的直线运动,带动活塞往复运动,活塞借助油介质使橡胶隔膜凹凸运动,在隔膜室腔内的矿浆容积周期性变化,完成药液输送。由于隔膜将药液与油介质分隔开来,活塞、缸套、活塞杆等运动部件不与药液直接接触,避免了药液腐蚀泵结构零件,保证了这些运动部件的使用寿命。就可以保证较高的连续运转率和较低的运行成本。 1.活塞泵 2.导杆 3.探头 4.隔膜 5.进出料阀 图7 隔膜泵工作原理图 Fig7 Diaphragm pump working principle diagram6 各关键传动件强度计算6.1 变速箱轴强度计算 轴上受力如下图图7所示4,由于皮带轮输入功率为动力功率的20%,所以:皮带轮接受输入功率: N输入=12.1320%0.78=2.43kw(效率) 转速n2=135/2102200=1414rpm故皮带轮上受到的输入扭矩: (3) 对皮带轮的松边和紧边张力分别为F1和F2,且F1=2F2则: (4)即: (5)轴上齿轮受到啮合力 Fp齿轮分度圆直径 d1 =593.5= 206.5 mm 列平衡方程,求轴上所有未知力: (6) 求解得: 根据受力可画出弯矩图和扭矩图,从图可知:危险截面位B截面。 按第三强度理论校核有:查表知20CrMn渗碳钢的许用应力:可见,轴的强度是符合设计要求的。 图8 轴的力学分析图 Fig8 Shaft mechanics analysis diagram6.2 级V带传动计算 (1)已知 选择工作情况系数 计算功率 (7) (2)带型选择B型V带 (3)取主动轮基准直径 则从动轮基准直径 验算带速 (8) (4)确定V带的基准长度和传动中心距 根据,初定中心距, 计算所需的基准长度 (9) 取V带基准长度 计算实际中心距: (5)验算主动轮上的包角 故主动轮上的包角合适。 (6)确定带的根数 (10) 式中:包角系数, 查表得 Ka=0.96KL; 长度系数, 查表得 KL=0.90; 计入传动比的影响时,单根V带额定功率的增量,查表得 P0=0.79; 单根V带的基本额定功率,查表得 ; 由公式 Z = Pca/(P0+P0)KaKL; (11) 求得 Z=1.89, 取Z=2。7 喷雾机其他部件的选用7.1 标准件的选用7.1.1 轴承选用 对于轮芯1,主要受径向力的作用,可采用一对深沟球轴承,根据受力分析,可选用61909 GB/T276-94型轴承5。轮芯2上轴承可选61906 GB/T276-947.1.2 螺母选用 根据轴芯1的尺寸,确定蜗轮轴心1螺纹端所选配套螺母为GB/T 61712000 M3027.1.3 垫圈选用 根据轴径尺寸选用垫圈为GB97.185 30140HV7.2 隔膜泵配套电机的选择 根据液压泵的性能参数,所需电机工作方式为连续工作,温升可达稳定值,属变转矩性质,所需功率小,初步选用Y100L24型三相异步电动机其主要参数为: 额定功率:3 KW 额定转速:1430 r/min 效率:0.825 净重:38 kg7.3 空气滤清器选用 空气滤清器可以用来维持药箱里与外界大气压力平衡,同时预防灰尘从外部飘入箱体,保持箱体内的药液干净。在此选用由CM12空气滤清器。其大体尺寸如下图9 空气滤清器尺寸 Fig 9 The size of the Air filter7.4 过滤器选用 过滤器的作用是清除药液中的各种杂质,以免其划伤、磨损,甚至卡死有相对运动的零件,或堵塞零件上的小孔及缝隙,影响系统的正常工作,降低液压元件的寿命,甚至造成液压系统的故障。 根据设计要求,过滤器选用WU63180螺纹连接型网式过滤器,其主要参数如下过滤精度:180,压力损失:0.01 MPa流量:63 L/min,通径 :25 mm7.5 药箱设计根据设计要求,药箱选用400L容量的规格,边长尺寸为所选材料为工程塑料尼龙1010,它与不锈钢相比,它具有如下优点:(1)比重轻,便于携带。 (2)加工性比不锈钢好,可大批采用注塑成型。 (3)成本比金属低。 (4)耐腐蚀性能好。7.6 胶管选用 选用由盐城华兴液压机械有限公司生产的胶管总成,其型号为GB965.3-88-25其具体参数如下: 胶管内径:25mm ; 通径:25mm; I层工作压力:8MPa; II层工作压力:10MPa; III层工作压力:13MPa。8 安全设计以及照明法案8.1 安全设计 (1)所有能够运动的运动件都应该列为危险物件,还有所有能够旋转的工作部件、外露的部件都要安装安全防护的装置。 (2)在发动机排气管以及水箱加水口处应该设置有效的防护装置,从而防止工作人员的烫伤。 (3)在任何可能发生人身安全伤害事故的机械部位和附近要明显设置安全标志。 (4)在喷雾机上可以配置灭火器,要安装在容易取卸的位置上。8.2 蓄电池、发电机及照明设计方案的确定本履带式喷雾机可用于白天以及夜间同时进行工作,根据在苗圃内晚上作业照明的要求,喷雾机上附带配置功率为150W的永磁发电机、24V的蓄电池以及工作100W的照明灯,以及照明电路所需要的启动开关、安培表、电位开关和线路等元件。8.3 喷雾机的操作注意事项 (1)在打农药前要穿戴严实。戴口罩,手套,穿长袖衣服和长裤。 (2)在打农药前先仔细查看农药标签的说明,农药标签上都有解毒方法。 (3)要仔细了解农药毒性。高度和剧毒农药需要严格按照标签说明使用。操作人员必须带好防护用品。入口罩、手套、长衫、长裤等。严禁超量使用。 (4)操作人员必须清楚的知道,即使中低毒农药也必须按照标签严格使用,要严防安全事故的发生。 (5)操作人员应该尽量少的直接接触农药,在施药作业的时候切记勿饮食、饮水、吸烟。并且施药时站在上风处使自己处于一个相对安全干净的环境。 (6)打完农药后操作人员应该第一时间打开打药车的洗手箱,使用普通(碱性)肥皂情洗手或者其它身体部位,下班后应该立即洗澡洗澡。 (7)工作人员应该时刻记住无论任何时候不要污染打药车洗手箱,时刻保证洗手箱的水是充足和干净的。 (8)操作人员在洗完手时同时别忘记也把水龙头清洗干净,做到手和身体干净,水龙头开关和嘴部同样干净,这样便可以避免不必要的污染。 (9)在后备箱里带一块普通碱性肥皂,已用于更快地去除掉手上残留的农药。9 结论通过大四最后几个月的时间,在得到毕业设计选题后,结合大学间所学的课程理论以及实践知识进行了一次大应用。对于苗圃式履带式喷雾机的设计的过程中,我不断的学习新知识和回顾以往学过的内容。在学习的过程中得到很多宝贵经验。在这几个月毕业设计过程中,我通过阅读浏览大量的资料,其中很多是以前学过的专业课本,加深了我对专业基础知识的印象。在毕业设计中,常常会遇到很多问题。这时候要学会独立思考,在资料,书本中去找到相关内容,要学会使用各种工具书。在本次设计中,我遇到了很多的问题,比如说液泵的选择等我就查阅了各种泵的优缺点,再结合自己设计的需要来进行选择从收到履带式喷雾机的课题后,我自己通过图书,以及上网去查阅了很多关于该机械种类的文件和资料,比如履带底盘的设计,喷雾机喷杆的研究,以及各种发动机,如汽油发动机,柴油发动机之间的差异和比较,然我收获了很多额外的知识和内容。 合理利用电脑以及Auto CAD等画图等电脑软件来辅助毕业设计,对产品的数据分析优化,使自己的设计过程更加方便。 再有对设计机械的经济性能的调查,我们设计一个产品的目的就是创造价值,让这个世界更加美好,同时带动经济的发展和社会以及科学技术的进步,这个目的是乃至我们全人类的共同目的和希望。设计的产品要能够更好的提升我们的生活品质。在毕业设计的过程中发现我国果园机械化程度低缺乏大型高效的果园作业机械。果园多项作业大都主要依靠人工完成生产效率低、劳动强度大、生产成本高、由于农忙时节的劳动力紧缺而造成的损失很大。国内现有的果园管理机械多以手扶式、手持式和背负式等微小型机为主。在这15些微小型机具中,部分机具可实现一机多用,如可以实现开沟、培土、起垄、旋耕等多功能的果园微耕然而在作业效率方面,微小型机不能与国外大型机具相提并论。在了解到中国的机械发展现状下,我们这一辈更需要加大努力去为自己国家的农用机械的进步而奋斗。 参考文献1 曹洪.农业机械设计手册(上)M.机械工业出版社,2000: 80-102.2 雷天觉.液压工程手册M.机械工业出版社,1999: 52-58.3 吴尚斌.公差配合使用技术手册M.辽宁: 科学技术出版社,1987: 41-56.4 孙恒,陈作模,葛文杰.机械设计M.高等教育出版社,2005: 97-108.5 刘鸿文,黄毅.材料力学M. 高等教育出版社,1991: 37-42.6 刘鸿文,黄毅.高等材料力学M.高等教育出版社,1991: 56-72.7 汤兴初.画法几何及工程制图M.高等教育出版社,1998:13-24. 8 周宏平.喷雾机的研究与发展J.农业机械学报,2000.11(15). 9 王力军.喷雾机设计中喷头的选型J.农机化研究,2005,5(2):32-33.10 王守城,段俊勇.液压元件及选用M.化学工业出版社,1998: 46-47.11 王旭编.影响喷雾机工作性能的因素J.现代化农业,1996.7:15-1612 谭建荣,张树有,陆国栋,施岳.图学基础教程M.高等教育出版社,1987: 43-52.13 凌学勤.往复式活塞隔膜泵的技术参数及核心技术J. 机电产品开发与创新,2006.6:12-15.14 王荣编.植保机械学M.机械工业出版社,1999: 1-6.15 周弘平.液压与气压M.高等教育出版社,1997:20-22. 16 刘延俊.液压与气压传动M.机械工业出版社, 2006.12:69-7817 濮良贵.机械设计M.高等教育出版社,2006.5:275-31318 徐雪林.互换性与测量技术基础M.湖南大学出版社,2009.7:54-6719 Aghion P,Howitt P. A model of growth through creativedestructionM. Econometrica 2009:32335120 DaimlerChrysler AG. Fgevorrichtung. Offen-legungsschrift M. World Dev 2007:22-26致 谢在论文完成之际,我首先向关心帮助和支持我的指导老师老师表示衷心的感谢并致以崇高的敬意!在农大四年的学习生活即将画上一个句号,不过这也是我走向社会的一个新的起点。回顾四年来的学习经历,面对现在的收获,我感到无限感激。在论文工作中,遇到了许许多多这样那样的问题,有的是专业上的问题,有的是论文格式上的问题,一直得到李明老师的亲切关怀和悉心指导,使我的论文可以又快又好的完成,李明老师以其渊博的学识、严谨的治学态度、求实的工作作风和他敏捷的思维给我留下了深刻的印象,不仅是在学术上给与我帮助,同时在做事做人上给予了我更多的启迪,再一次向他表示衷心的感谢。大学即将结束之际,我要把最真挚的祝福祝愿给养育我的父母们,没有他们几十年来孜孜不倦的教诲和养育,就没有我的今天,所以我所取得的所有成果都有他们的莫大功劳,再此,对我的父母真挚的说一声,谢谢!同时以后我会用自己的行动为社会创造价值,报答家人,报效社会。其次,对一直支持陪伴我的亲戚和好朋友们也表示衷心的感激,你们一直是我成长路上的重要伴侣,没有你们,我的生活将暗淡无光。值此论文完成之际最后,在对百忙之中评阅论文和参加答辩的各位专家、教授表示感谢,谢谢你们!附录附录1: 装配图附录2:带轮附录3:六角头螺栓1附录4:减速箱箱体1附录5:减速箱箱体2附录6:液压图 附录7:轴轴芯附录8:轴轴芯附录9:减速箱箱盖1附录10:减速想箱盖2附录11:支重轮附录12:支重轮端盖附录13:药箱附录14:喷管部件图附录15:喷杆附录16:喷杆支架支撑杆附录17:喷管支撑杆英文原文Spin control for carsStability control systems are the latest in a string of technologies focusing on improved diriving safety. Such systems detect the initial phases of a skid and restore directional control in 40 milliseconds, seven times faster than the reaction time of the average human. They correct vehicle paths by adjusting engine torque or applying the left- or-right-side brakes, or both, as needed. The technology has already been applied to the Mercedes-Benz S600 coupe.Automatic stability systems can detect the onset of a skid and bring a fishtailing vehicle back on course even before its driver can react. Safety glass, seat belts, crumple zones, air bags, antilock brakes, traction control, and now stability control. The continuing progression of safety systems for cars has yielded yet another device designed to keep occupants from injury. Stability control systems help drivers recover from uncontrolled skids in curves, thus avoiding spinouts and accidents. Using computers and an array of sensors, a stability control system detects the onset of a skid and restores directional control more quickly than a human driver can. Every microsecond, the system takes a snapshot, calculating whether a car is going exactly in the direction it is being steered. If there is the slightest difference between where the driver is steering and where the vehicle is going, the system corrects its path in a split-second by adjusting engine torque and/or applying the cats left- or right-side brakes as needed. Typical reaction time is 40 milliseconds - seven times faster than that of the average human. A stability control system senses the drivers desired motion from the steering angle, the accelerator pedal position, and the brake pressure while determining the vehicles actual motion from the yaw rate (vehicle rotation about its vertical axis) and lateral acceleration, explained Anton van Zanten, project leader of the Robert Bosch engineering team. Van Zantens group and a team of engineers from Mercedes-Benz, led by project manager Armin Muller, developed the first fully effective stability control system, which regulates engine torque and wheel brake pressures using traction control components to minimize the difference between the desired and actual motion. Automotive safety experts believe that stability control systems will reduce the number of accidents, or at least the severity of damage. Safety statistics say that most of the deadly accidents in which a single car spins out (accounting for four percent of all deadly collisions) could be avoided using the new technology. The additional cost of the new systems are on the order of the increasingly popular antilock brake/traction control units now available for cars. The debut of stability control technology took place in Europe on the Mercedes-Benz S600 coupe this spring. Developed jointly during the past few years by Robert Bosch GmbH and Mercedes-Benz AG, both of Stuttgart, Germany, Vehicle Dynamics Control (VDC). in Bosch terminology, or the Electronic Stability Program (ESP), as Mercedes calls it, maintains vehicle stability in most driving situations. Bosch developed the system, and Mercedes-Benz integrated it into the vehicle. Mercedes engineers used the state-of-the-art Daimler-Benz virtual-reality driving simulator in Berlin to evaluate the system under extreme conditions, such as strong crosswinds. They then put the system through its paces on the slick ice of Lake Hornavan near Arjeplog, Sweden. Work is currently under way to adapt the technology to buses and large trucks, to avoid jack-knifing, for example. Stability control systems will first appear in mid-1995 on some European S-Class models and will reach the U.S. market during the 1996 model year (November 1995 introduction). It will be available as a $750 option on Mercedes models with V8 engines, and the following year it will be a $2400 option on six-cylinder $1650 of the latter price is for the traction control system, a prerequisite for stability control.Bosch is not alone in developing such a safety system. ITT Automotive of Auburn Hills, Mich., introduced its Automotive Stability Management System (ASMS) in January at the 1995 North American International Auto Show in Detroit. ASMS is a quantum leap in the evolution of antilock brake systems, combining the best attributes of ABS and traction control into a total vehicle dynamics management system, said Timothy D. Leuliette, ITT Automotives president and chief executive officer. ASMS monitors what the vehicle controls indicate should be happening, compares that to what is actually happening, then works to compensate for the difference, said Johannes Graber, ASMS program manager at ITT Automotive Europe. ITTs system should begin appearing on vehicles worldwide near the end of the decade, according to Tom Mathues, director of engineering of Brake & Chassis Systems at ITT Automotive North America. Company engineers are now adapting the system to specific car models from six original equipment manufacturers. A less-sophisticated and less-effective Bosch stability control system already appears on the 1995 750iL and 850Ci V-12 models from Munich-based BMW AG. The BMW Dynamic Stability Control (DSC) system uses the same wheel-speed sensors as traction control and standard anti-lock brake (ABS) systems to recognize conditions that can destabilize a vehicle in curves and corners. To detect such potentially dangerous cornering situations, DSC measures differences in rotational speed between the two front wheels. The DSC system also adds a sensor for steering angle, Utilizes an existing one for vehicle velocity, and introduces its own software control elements in the over allantilock-brake/traction-control/stability-control system. The new Bosch and ITT Automotive stability control systems benefit from advanced technology developed for the aerospace industry. Just as in a supersonic fighter, the automotive stability control units use a sensor-based computer system to mediate between the human controller and the environment - in this case, the interface between tire and road. In addition, the system is built around a gyroscopelike sensor design used for missile guidance. Beyond abs and traction controlStability control is the logical extension of ABS and traction control, according to a Society of Automotive Engineers paper written by van Zanten and Bosch colleagues Rainer Erhardt and Georg Pfaff. Whereas ABS intervenes when wheel lock is imminent during braking, and traction control prevents wheel slippage when accelerating, stability control operates independently of the drivers actions even when the car is free-rolling. Depending on the particular driving situation, the system may activate an individual wheel brake or any combination of the four and adjust engine torque, stabilizing the car and severely reducing the danger of an uncontrolled skid. The new systems control the motion not only during full braking but also during partial braking, coasting, acceleration, and engine drag on the driven wheels, circumstances well beyond what ABS and traction control can handle. The idea behind the three active safety systems is the same: One wheel locking or slipping significantly decreases directional stability or makes steering a vehicle more difficult. If a car must brake on a low-friction surface, locking its wheels should be avoided to maintain stability and steerability. Whereas ABS and traction control prevent undesired longitudinal slip, stability control reduces loss of lateral stability. If the lateral forces of a moving vehicle are no longer adequate at one or more wheels, the vehicle may lose stability, particularly in curves. What the drive fishtailing is primarily a turning or spinning around the vehicles axis. A separate sensor must recognize this spinning, because unlike ABS and traction control, a cars lateral movement cannot be calculated from its wheel speeds. Spin handlers The new systems measure any tendency toward understeer (when a car responds slowly to steering changes), or over-steer (when the rear wheels try to swing around). If a car understeers and swerves off course when driven in a curve, the stability control system will correct the error by braking the inner (with respect to the curve) rear wheel. This enables the driver, as in the case of ABS, to approach the locking limit of the road-tire interface without losing control of the vehicle. The stability control system may reduce the vehicles drive momentum by throttling back the engine and/or by braking on individual wheels. Conversely, if the hteral stabilizing force on the rear axle is insufficient, the danger of oversteering may result in rear-end breakaway or spin-out. Here, the system acts as a stabilizer by applying the outer-front wheel brake. The influence of side slip angle on maneuverability, the Bosch researchers explained, shows that the sensitivity of the yaw moment on the vehicle, with respect to changes in the steering angle, decreases rapidly as the slip angle of the vehicle increases. Once the slip angle grows beyond a certain limit, the driver has a much harder time recovering by steering. On dry surfaces, maneuverability is lost at slip-angle values larger than approximately 10 degrees, and on packed snow at approximately 4 degrees. Most drivers have little experience recovering from skids. They arent aware of the coefficient of friction between the tires and the road and have no idea of their vehicles lateral stability margin. When the limit of adhesion is reached, the driver is usually caught by surprise and very often reacts in the wrong way, steering too much. Oversteering, ITTs Graber explained, causes the car to fishtail, throwing the vehicle even further out of control. ASMS sensors, he said, can quickly detect the beginning of a skid and momentarily activate the brakes at individual wheels to help return the vehicle to a stable line. It is important that stability control systems be user-friendly at the limit of adhesion - that is, to act predictably in a way similar to normal driving. The biggest advantage of stability control is its speed - it can respond immediately not only to skids but also to shifting vehicle conditions (such as changes in weight or tire wear) and road quality. Thus, the systems achieve optimum driving stability by changing the lateral stabilizing forces. For a stability control system to recognize the difference between what the driver wants (desired course) and the actual movement of the vehicle (actual course), current cars require an efficient set of sensors and a greater computer capacity for processing information. The Bosch VDC/ESP electronic control unit contains a conventional circuit board with two partly redundant microcontrollers using 48 kilobytes of ROM each. The 48-kB memory capacity is representative of the large amount of intelligence required to perform the design task, van Zanten said. ABS alone, he wrote in the SAE paper, would require one-quarter of this capacity, while ABS and traction control together require only one half of this software capacity. In addition to ABS and traction control systems and related sensors, VDC/ESP uses sensors for yaw rate, lateral acceleration, steering angle, and braking pressure as well as information on whether the car is accelerating, freely rolling, or braking. It obtains the necessary information on the current load condition of the engine from the engine controller. The steering-wheel angle sensor is based on a set of LED and photodiodes mounted in the steering wheel. A silicon-micromachine pressure sensor indicates the master cylinders braking pressure by measuring the brake fluid pressure in the brake circuit of the front wheels (and, therefore, the brake pressure induced by the driver). Determining the actual course of the vehicle is a more complicated task. Wheel speed signals, which are provided for antilock brakes/traction control by inductive wheel speed sensors, are required to derive longitudinal slip. For an exact analysis of possible movement, however, variables describing lateral motion are needed, so the system must be expanded with two additional sensors - yaw rate sensors and lateral acceleration sensors. A lateral accelerometer monitors the forces occurring in curves. This analog sensor operates according to a damped spring-mass mechanism, by which a linear Hall generator transforms the spring displacement into an electrical signal. The sensor must be very sensitive, with an operating range of plus or minus 1.4 g. Yaw rate gyro At the heart of the latest stability control system type is the yaw rate sensor, which is similar in function to a gyroscope. The sensor measures the speed at which the car rotates about its vertical axis. This measuring principle originated in the aviation industry and was further developed by Bosch for large-scale vehicle production. The existing gyro market offers two widely different categories of devices: $6000 units for aerospace and navigation systems (supplied by firms such as GEC Marconi Avionics Ltd., of Rochester, Kent, U.K.) and $160 units for videocameras. Bosch chose a vibrating cylinder design that provides the highest performance at the lowest cost, according to the SAE paper. A large investment was necessary to develop this sensor so that it could withstand the extreme environmental conditions of automotive use. At the same time, the cost for the yaw rate sensor had to be reduced so that it would be sufficiently affordable for vehicle use. The yaw rate sensor has a complex internal structure centered around a small hollow steel cylinder that serves as the measuring element. The thin wall of the cylinder is excited with piezoelectric elements that vibrate at a frequency of 15 kilohertz. Four pairs of these piezo elements are arranged on the circumference of the cylinder, with paired elements positioned opposite each other. One of these pairs brings the open cylinder into resonance vibration by applying a sinusoidal voltage at its natural frequency to the transducers; another pair, which is displaced by 90 degrees, stabilizes the vibration. At both element pairs in between, so-called vibration nodes shift slightly depending on the rotation of the car about its vertical axis. If there is no yaw input, the vibration forms a standing wave. With a rate input, the positions of the nodes and antinodes move around the cylinder wall in the opposite direction to the direction of rotation (Coriolis acceleration). This slight shift serves as a measure for the yaw rate (angular velocity) of the car. Several drivers who have had hands-on experience with the new systems in slippery cornering conditions speak of their cars being suddenly nudged back onto the right track just before it seems that their back ends might break away. Some observers warn that stability controls might lure some drivers into overconfidence in low-friction driving situations, though they are in the minority. It may, however, be necessary to instruct drivers as to how to use the new capability properly. Recall that drivers had to learn not to pump antilock brake systems. Although little detail has been reported regarding next-generation active safety systems for future cars (beyond various types of costly radar proximity scanners and other similar systems), it is clear that accident-avoidance is the theme for automotive safety engineers. The most survivable accident is the one that never happens, said ITTs Graber. Stability control technology dovetails nicely with the tremendous strides that have been made to the physical structure and overall capabilities of the automobile. The next such safety system is expected to do the same.中文译文汽车的转向控制控制系统稳定性是针对提高驾驶安全性提出的一系列措施中最新的一个。这个系统能够在40毫秒内实现从制动开始到制动恢复的过程,这个时间是人的反应时间得七倍。他们通过调整汽车扭矩或者通过应用汽车左侧或右侧制动,如果需要甚至两者兼用,来实现准确的行车路线。这个系统已被应用于奔驰S600汽车了。稳定的机械自动系统能够在制动时发现肇端,并且在驾驶人员发现能够反应以前实现车辆的减速。安全玻璃,安全带,撞击缓冲区,安全气囊,ABS系统,牵引力控制系统还有现在的稳定调节系统。汽车安全系统的连续升级,已经产生了一种为保护汽车所有者安全的设计模式。稳定调节系统帮助驾驶员从不可控制的曲线制动中解脱出来,从而避免了汽车的摆动滑行和交通事故。利用计算机和一系列传感器,稳定调节系统能够检测到制动轮的打滑并且比人更快的恢复对汽车的方向控制。系统每百万分之一秒作出一次快速捕捉,以及断断汽车是否在按照驾驶员的路线行驶。如果检测到汽车行驶路线和驾驶员驾驶路线存在一个微小的偏差 ,系统会在瞬间纠正发动机扭矩或者应用汽车左右制动。过程的标准反应时间是40毫秒人的平均反应时间的七分之一。罗伯特博世工程系统负责人安东范桑特解释说:“一个稳定的控制系统能够感觉到”驾驶员想要运动的方向,通过控制转向角度,油门踏板的位置,制动板的状态来确定汽车实际运动路线的偏航比率(汽车偏离方向轴的角度)和横向加速度”。项目负责人阿明马勒领导着范桑特的工作小组和奔驰汽车公司的工程师发明了第一个完全有效的稳定调节系统,该系统由发动机扭矩控制系统,制动系统,牵引控制系统组成以实现理想与现实运动之间的最小差距。汽车安全专家相信稳定调节系统能够减少交通事故的发生,至少是在伤亡严重的事故方面。安全统计表明,多数的单车撞击事故伤亡(占伤亡事故发生的4%),事故能够通过应用这项新技术避免。这项新系统的额外费用主要用于一系列目前汽车日益普遍应用的制动/牵引控制锁组件。稳定调节系统技术首次应用于欧洲的奔驰S600汽车,是由德国斯图加特市的罗伯特博世公司和奔驰公司在过去几年共同研制的。该系统在博世公司被称为汽车动力控制(VDC),而默西迪称它为稳定电控系统(ESP),作用就是在任何状况下维持车辆的稳定性。博世公司开发了这项系统,奔驰公司把它应用于车辆。工程师默西迪丝在柏林应用戴姆勒奔驰汽车虚拟驾驶模拟器在极限情况下对系统进行评估,例如极强的侧风。然后他们在瑞典的安杰普劳附近的后娜瓦安湖的冰面上进行性能测试。工作通常是在公路上进行以适用于公共汽车和大卡车,例如避免的折合问题。稳定调节系统将在1995年中应用于欧洲S系列产品上,随后会在1996年进入美国市场(1995年11月产品)。用户可以选择750美元的系统,就像应用于默西迪丝的试验用的V8发动机上的,也可以选择价格为2400美元的应用于六缸发动机汽车的系统。后者的系统中差不多有1650美元是用于牵引控制系统,该系统是稳定性系统的先决条件。并不是只有博世公司一家在开发这样的安全系统,美国密
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:履带式苗圃喷雾机喷雾装置设计
链接地址:https://www.renrendoc.com/p-23264673.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!