




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 / 9 体验、感悟,奠定数学思维能力的基石 体验、感悟,奠定数学思维能力的基石 某机构曾就“学生获取知识的途径与效果比较”作了调查,发现只通过听讲、读写、训练却很少有情感与体验的途径获取的知识较系统,但面窄、封闭、肤浅,学生的遗忘率高;而通过尝试实践、经历、体验的途径获取的知识特定、深刻、迁移度强,易于应用实践,对学生终身有用。 这一结果清楚地表明:教学必须注重过程,必须强调学生的参与和体验。 其实,课堂教学是一种动态的生成过程,也是创造力开发、生成、积聚的基础,更是对数学活动本身建构、体验的过程。这种体 验数学学习的过程应比得出结论更具有意义。因为在体验的过程中能唤起学生探索与创造的快乐,激发认知兴趣和学习动机,能展现思路和方法,学会怎样学习,能帮助建构进取型人格,通过“效能感”完善自我,从而内化为学生的思维品质。因此,创设体验、感悟的过程,对学生的成长,思维能力的培养,有着不可替代的作用。那么,如何操作才能促进学生思维能力的提高呢?下面就本人教学实践谈一点体会。 一、秉承人性的理念,培育思维“温床”。 建构主义理论认为:学生不是一个简单的“认知体”,而2 / 9 是作为一个生命体存在的。新的课程也告诉我们:教学实 施的对象是活生生的人。因此,在教学实施过程中,必须关注学生的发展,关注学生的学习过程,关注学生的情感和情绪体验。这也是人性回归的要求。的确,作为学生的学习活动,它决不是一种简单的机械程序,而是伴随着巨大的情感体验,这种体验左右着学习者的兴趣和效率,左右着思维能力的提高和内驱力的促进。因此,在学习活动中应注意解放学生的心灵,释放学生的个性,尊重独特。例如:在七年级数学代数式一课中,代数式“ 10x+5y”表示什么时,有的学生认为:用 x表示小明跑步的速度,用 y表示小明走路的速度,那么 10x+5y 就表示他跑步 10 分和行走 5 分的所经过的路程,有的学生认为:如果用 x 和 y 分别表示 1 元和 5角硬币的枚数,那么 10x+5y 就表示 x 枚 1 元硬币和 y 枚 5 角硬币共是多少角钱。教室里一时气氛非常活跃,伴随着学生丰富的想象,课堂顿时成为了人性化的平台,萌生智慧的摇篮,培育思维的 “温床”。 二、解读教材,构建思维的着力点。 新的课程观认为:课程不只是“文本课程”,而更是“体验课程”(即被教师和学生实实在在体验到、感受到、领悟到、思考到),这就意味着,课堂教学活动所依托的教材,仅仅只是学生课堂生活的“剧本”,是一个个“案例”,对 这些“剧本”和“案例”,教师和每个学生解读的方式不同,3 / 9 获得的体验和感悟就不同。从而说明教材不是高高在上的“圣经”,教师和学生不能只停留在教材本身传达的文字信息上,而要关注“案例”之后的某些更为本质的东西 思维能力,而这种能力仅通过认知是难以全部获得的,相反,只有通过感悟才能构建起来。因此,教师必须明确到是“用教材教”而不是“教教材”,即把教材看成是一个例子,一个发展学生能力的“媒介”。例如:七年级数学探索规律(北师大版)教学时,为了让学生经历探索事物间的数量关系,并用字母和代数式表示的过程;体会从特殊 到一般的数学思想和思维方法。我在教学时,对教材进行了重组与整合:( 1)把教材中只有一行联体长方形增加到二行、三行联体长方形,然后探求搭 n个这样的联体长方形需要多少根火柴。( 2)把联体长方形改成联体梯形后,再探求搭 n 个这样的联体梯形需要多少根火柴。 通过上述的“手术”,帮助学生了解探索规律过程中变量和不变量的不同作用,初步建立了一类有规律递增问题的数学模型,同时,使学生的思维能力得到了锻炼与提高,更重要的是学生面对挑战性的问题所表现出来的勇气与信心得到了加强。 因此,教师只有视教材为桥梁,使之成为师生间共 同利用旧知探索新知的纽带,创造性、开发性地使用教材,以继承为中介,以创新、超越为目标,就必能让教材焕发出活力,4 / 9 使数学进入一片新天地。 三、“悟”理探“法”,促进思维的生长点。 传统教学中,任课教师经常有这样的困惑:为什么一些重要的原理、结论,虽经反复讲解,学生多次训练,但学生仍不能理解巩固,更谈不上灵活运用,殊不知,只有以过程为前提,由学生经历、体验自主得出的结论 ,自主发现的原理才是牢固的。由此可见,学习不只是一种简单的知识传递,而更多的是一种探讨,一种研究,一种创造。而我们常常求之不得的“思维能力”便在此过程中应用而生。例如:在人教版初二数学轴对称的应用一课中,有这样一个问题: 如图,在铁路 a 的同侧有两个工厂 A、 B,要在路边建一个货场 C,使货场 C到 A、 B两厂的距离之和最小。问点 C 的位置如何选择? 显然,这一道题对绝大多数同学来说是比较难的,可能感到无从下手,为了解决这一棘手的问题,我采用了分步推进,逐层体验的策略,过程如下: ( 1) 把 A、 B 放在 a 的两侧,怎样寻找点 C 的位置? ( 2) 把学生的找法画在一透明的塑料纸上(如图),然后将纸片的下半部分沿直线 a旋转一个角度,你能在 a 上找点 C,使 AC+BC 最小吗? ( 3) 将纸片下半部分继续旋转,直至与上半部分5 / 9 重叠,你还能找到满足条件的的点 C 吗? a B A 通过上述渐进的序列,使学生在体验中思考,在思考中感悟,在感悟中获得解决问题的方法。起到了外化能力,内化品质的作用,改变了传统教学中重结论、轻过程的一贯做法,很 好地实现了掌握知识与发展智力的统一,也就是说让学生学会变成了会学,从传承走向了创新。 四、多元感悟,培养思维的发散点。 心理学家奥托指出:所有的人都有惊人的创造力。而创造6 / 9 力的开发取决于开放的思维,这种思维引导人们从不同的角度、结构、关联出发进行思考,这种思考具有多端性、灵活性、精细性、新颖性,这种思维能够使学生迅速摆脱早先建立的那些联系,克服消极的思维定势,易于形成新的结合,从而把他所熟悉的概念、形象、规律纳入新的关系之中,从新的角度提出自己独到的见解,因此,体验、感悟是培养创造性思维的基础。例如:在七 年级数学探索规律第二课时,我给出了如下的一个问题: 用火柴棒按下图的方式搭正方形并填写表格 图形编号 7 / 9 火柴根数 按此图形 ,第 n号图形需要多少根火柴棒 ? 显然 ,这是一道颇有难度的问题。但是,通过学生的探究、讨论、体悟,很快地得出了结论: 生 1:我发现图形是 4 根火柴棒,图形是 10根,图形是 18根, 图形是 28根,如果把火柴棒的根数除以图形的编号即 4 1=4, 10 2=5, 18 3=6, 28 4=7,由此我猜测第 n号图形火柴棒的根数应该是 n( n+3)。 生 2:我是这样考虑的:把上面图形的火柴棒分成两类,即横竖两种情况,横的分别是: n、 n、 n-1, 2,1;竖的分别也是 n, n、 n-1, 2, 1。因此总的根数应是 2( 1+2+n+n),然后用高斯求和法也能得到 n( n+3)。 生 3:我和他们不一样。我把原来的图形、作移动,对应图形如下: 8 / 9 我发现第 n个也可以这样 处理,从而就得到 4n+2( n-1) +2 2+2 1,把这个结果整理后也得到: n( n+3)。 通过上述学生多角度、多方位的体验、感悟、求异的过程,学生的各种情意被积极地调动了起来,思维得到了扩张,能力得到了提高。 如果没有上述求异的思维过程和多样化的认知方式,没有多种观点的碰撞、论争和比较,没有学生的参与、体验、感悟,这种境界是难以达到的,更重要的是,没有以多样性、丰富性、体验性为前提的教学过程,学生的创新精神和创新思维就不可能培养起来。 因此,我们在教学中应该把思维的过程还给学生,让学生用个性化 的语言展示其独具魅力的思维过程,让其体验现实,感悟真谛,引导学生有所思、有所感、有所悟。这样,每一个学生在个性化的数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广发银行武汉市江岸区2025秋招结构化面试经典题及参考答案
- 浦发银行绍兴市嵊州市2025秋招笔试价值观测评题专练及答案
- 广发银行唐山市路北区2025秋招群面案例总结模板
- 华夏银行温州市乐清市2025秋招小语种岗笔试题及答案
- 农发行菏泽市巨野县2025秋招英文面试题库及高分回答
- 辅警招聘考试通关考试题库附答案详解【综合题】
- 2025年海城市面向应届毕业生招聘医疗岗位高层次急需紧缺人才模拟试卷附答案详解(精练)
- 2025年5月深圳市大鹏新区总工会招聘工会社会工作者(1人)模拟试卷及一套答案详解
- 招商银行沈阳市沈河区2025秋招笔试性格测试题专练及答案
- 浦发银行台州市黄岩区2025秋招笔试综合模拟题库及答案
- 教科版科学五年级上册2.1地球的表面教学课件
- 2025至2030中国克罗恩病药物行业项目调研及市场前景预测评估报告
- 知识分享大讲堂活动方案
- 2026届初三启动仪式校长讲话:初三启航!以信念为舵赴青春与使命之约
- 制药企业GMP生产质量管理培训资料
- 4.1.2+无理数指数幂及其运算性质课件-2025-2026学年高一上学期数学人教A版必修第一册
- 土地管理法测试题及答案
- T∕FSI 084-2022 双酚AF
- 无人机培训教材学习教案
- 简易智力状态评估表Mini-cog
- 铁路技规第十六章资料
评论
0/150
提交评论